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1. Introduction

Many authors have studied several concepts of fuzzy systems. Diamond and Kloeden [1]
proved the fuzzy optimal control for the following system:

x(t) = at)x(t) +u(t),  x(0) = xo, (1.1)

where x(-) and u(-) are nonempty compact interval-valued functions on E!'. Kwun and
Park [2] proved the existence of fuzzy optimal control for the nonlinear fuzzy differential
system with nonlocal initial condition in E} by using Kuhn-Tucker theorems. Fuzzy
integrodifferential equations are a field of interest, due to their applicability to the
analysis of phenomena with memory where imprecision is inherent. Balasubramaniam and
Muralisankar [3] proved the existence and uniqueness of fuzzy solutions for the semilinear
fuzzy integrodifferential equation with nonlocal initial condition. They considered the
semilinear one-dimensional heat equation on a connected domain (0,1) for material with
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memory. In one-dimensional fuzzy vector space Ey, Park et al. [4] proved the existence
and uniqueness of fuzzy solutions and presented the sufficient condition of nonlocal
controllability for the following semilinear fuzzy integrodifferential equation with nonlocal
initial condition:

dx(t)
dt

= A[x(t) + th(t - s)x(s)ds] + f(t,x)+u(t), te]=1[0,T],

0 (1.2)

x(0) + g(t1,ta, ... by, x(tw)) =x0 € En, m=1,2,...,p,

where T > 0, A: ] — Ey is a fuzzy coefficient, Ey is the set of all upper semicontinuous
convex normal fuzzy numbers with bounded a-level intervals, f : [xEx — En isanonlinear
continuous function, g : J¥ x Ey — Ep is a nonlinear continuous function, G(f) isan n x n
continuous matrix such that dG(t)x/dt is continuous for x € Ey and t € | with ||G(t)| < K,
K > 0, with all nonnegative elements, u : ] — Ey is control function.

In [5], Kwun et al. proved the existence and uniqueness of fuzzy solutions for
the semilinear fuzzy integrodifferential equations by using successive iteration. In [6],
Kwun et al. investigated the continuously initial observability for the semilinear fuzzy
integrodifferential equations. Bede and Gal [7] studied almost periodic fuzzy-number-valued
functions. Gal and N’Guérékata [8] studied almost automorphic fuzzy-number-valued
functions.

In this paper, we study the the existence and uniqueness of solutions and
controllability for the following semilinear fuzzy integrodifferential equations:

dxi(t) _ A | xi(b) +ftG(t—s)x,-(s)ds + fit, x;(t)) + u;(t) on Ej,
dt 0 (1.3)

xi(O) +g,~(xi) = Xp; € Ej\l (i = 1,2,...,11),

where A; : [0,T] — Ej is fuzzy coefficient, E}; is the set of all upper semicontinuously
convex fuzzy numbers on R with E\, # E}; (i#7), fi : [0,T] xEi; — E&, is a nonlinear regular
fuzzy function, g; : Ey, — E}, is a nonlinear continuous function, G(t) is n x n continuous
matrix such that dG(t)x;/dt is continuous for x; € E}; and t € [0, T] with [|G(t)|| < k, k > 0,
u; : [0,T] — E} is control function and xo, € E} is initial value.

2. Preliminaries

A fuzzy set of R" is a function u : R" — [0, 1]. For each fuzzy set u, we denote by [u]” = {x €
R" : u(x) > a} for any a € [0, 1], its a-level set.

Let u, v be fuzzy sets of R". It is well known that [u]” = [v]” for each a € [0, 1] implies
u=mu.

Let E" denote the collection of all fuzzy sets of R" that satisfies the following
conditions:

(1) u is normal, that is, there exists an xy € R" such that u(x,) = 1;

(2) u is fuzzy convex, that is, u(Ax + (1 — \)y) > min{u(x),u(y)} for any x,y € R",
0<ALT,;
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(3) u(x) is upper semicontinuous, that is, u(xp) > limg _, oot (xx) for any xx € R" (k =
0,1,2,...), xx — Xo;

(4) [u]’is compact.

We call u € E" an n-dimension fuzzy number.

Wang et al. [9] defined n-dimensional fuzzy vector space and investigated its
properties.

Forany u; € E,i =1,2,...,n, we call the ordered one-dimension fuzzy number class
Ui, Uy, ..., Uy (i-e., the Cartesian product of one-dimension fuzzy number u;, u, ..., u,) an n-
dimension fuzzy vector, denote it as (1, uy, . .., u,), and call the collection of all n-dimension

—N—
fuzzy vectors (i.e., the Cartesian product E x E x - - - x E) n-dimensional fuzzy vector space,
and denote it as (E)".

Definition 2.1 (see [9]). If u € E", and [u]” is a hyperrectangle, that is, [u]” can be represented

by [T [uf, ul.], thatis, [uf), uf, 1x[u3, us,]x- - -x[u%, u%, ] forevery a € [0,1], where uj, uf, € R

with uf <uf when a € (0, 1],i=1,2,...,n, then we call u a fuzzy n-cell number. We denote

the collection of all fuzzy n-cell numbers by L(E").

Theorem 2.2 (see [9]). For any u € L(E") with [u]" = TTiL, [uf, ul] (a € [0,1]), there exists a

unique (uy, Uy, ..., uy) € (E)" such that [u;]* = [u§,ul] (i=1,2,...,nand a € [0,1]).
Conversely, for any (uy, uy, ..., u,) € (E)" with [w;]* = [uf,ul](i =1,2,...,nand a €

[0,1]), there exists a unique u € L(E") such that [u]” = [T, [u§, ul] (a € [0,1]).

Note 1 (see [9]). Theorem 2.2 indicates that fuzzy n-cell numbers and n-dimension fuzzy
vectors can represent each other, so L(E") and (E)" may be regarded as identity. If
(w1, uz,...,uy) € (E)" is the unique n-dimension fuzzy vector determined by u € L(E"),
then we denote u = (u1,uy, ..., uy).

- Let (Ei,)" = E5 x E3 x -+ x E}, Ei; (i = 1,2, x,n) be fuzzy subset of R. Then (E};)" C

Definition 2.3 (see [9]). The complete metric Dy, on (Eg\,)" is defined by

Dy (u,v) = supdi([u]”, [0]%)

O<a<l
(2.1)
= sup max([u — v5], [, ~ o2
0<a<l 1<i<n
forany u,v € (Efv)”, which satisfies dy (u + w, v + w) = dr(u,v).
Definition 2.4. Letu,v € C([0,T] : (E},)"), then
Hi(u,v) = sup Dr(u(t), v(t)). (2.2)

0<t<T
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Definition 2.5 (see [9]). The derivative x'(t) of a fuzzy process x € (Eév)" is defined by

[ (8)]" [(xl,) 1), (x)' )] 2.3)

n

provided that the equation defines a fuzzy x'(t) € (E},)".

Definition 2.6 (see [9]). The fuzzy integral fo(t)dt, a,b € [0,T] is defined by
U x(t)dt] =11 U xg(t)dt,f x;;(t)dt] (2.4)
b i=1 b b
provided that the Lebesgue integrals on the right-hand side exist.

3. Existence and Uniqueness

In this section we consider the existence and uniqueness of the fuzzy solution for (1.3) (u = 0).

We define
A= (A1, A, ..., Ay,
x = (x1,%2,..., %),
f:(flleI"‘/le)/ (31)
u=(uy,uy, ..., Uy), ’
g = (glngI' . ~/gn)/
X0 = (xOl,sz,. . .,xon).
Then
A,x, f,x0,u,g € <E§V>n. (3.2)

Instead of (1.3), we consider the following fuzzy integrodifferential equations in

(ER)"™

dz(tt) = A[x(t) + f;c(t - s)x(s)ds] + f(tx() +u(t) on (Ei)"

(3.3)
x(0) + g(x) =xp € <E§\,>
with fuzzy coefficient A : [0,T] — (E%,)", initial value xo € (E,)", and u : [0,T] — — (E\)"

is a control function. Given nonlinear regular fuzzy function f : [0,T] x (E ) (E )"
satisfies a global Lipschitz condition, that is, there exists a finite k > 0 such that

di([f(s,x())]°, [f (s,9())]") < kdr([x()]% [y(s)]) (3.4)
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for all x(s), y(s) € (E})". The nonlinear function g : (E};)" — (E;)" is a continuous function
and satisfies the Lipschitz condition

di([g(x()]" [y ()]?) < hdr([x()]% [y()]") (3.5)

forall x(-), y(-) € (Eév)", h is a finite positive constant.

Definition 3.1. The fuzzy process x : I = [0,T] — (EX,)" with a-level set [x(t)]" = IT", [x;]* =
T2, [x§, x{.] is a fuzzy solution of (3.3) without nonhomogeneous term if and only if

(x:};)'(t) = rnin{Ag.(t) I:xf‘k(t) + J.;G(t - s)xf‘k(s)ds:I 1j k= l,r},
(x2)'(t) = maX{A;’;(t) [xf‘k(t) + f;G(t - s)xl‘."k(s)ds] k= l,r}, (36)

x5(0) + g (x5) = xg, x5(0) + gr(xl) = xg, i=1,2,...,n

For the sequel, we need the following assumptions.
(H1) S(t) is a fuzzy number satisfying, for y € (EY,)", (d/dt) S(t)y € C*(I : (E},)")N
C(I : (Ey,)"), the equation

d t
ES(t)y = A[S(t)y + J‘OG(t -5)S(s)y ds]

(3.7)
t
=S(t)Ay + f S(t-s)AG(s)yds, tel,
0
where
[S®H1*=] [ISih]* =] [[Sah), S5 (B)], (3.8)
i=1 i=1
and S;’;.(t) (j =1, r) is continuous with |S:.’;.(t)| <c,c>0foralltel=|0T].
(H2) c{h(1+T+cT)+kT(1+cT)} < 1.
In view of Definition 3.1 and (H1), (3.3) can be expressed as
t
x(t) = S(t)(xo — g(x)) + IOS(t - 5)(f(s,x(s)) +u(s))ds, 39)

x(0) + g(x) = xo.

Theorem 3.2. Let T > 0. If hypotheses (H1)-(H2) are hold, then for every xo € (Ej\])”, (3.9) (u=0)
have a unique fuzzy solution x € C([0,T] : (EX)").
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Proof. For each x(t) € (E )" and t € [0, T], define (Gox)(t) € (E )" by
t
(Gox)(t) = S(t) (x0 — g(x)) + J‘ S(t-s)f(s,x(s))ds. (3.10)
0

Thus, Gox : [0, T] — (E}'\,)"is continuous, so Gy is a mapping from C([0,T] : (E )") into
itself. By Definitions 2.3 and 2.4, some properties of d;, and inequalities (3.4) and (3.5), we
have following inequalities. For x,y € C([0,T] : (EY)"),

dr([(Gox)()]*, [(Goy) ()] )
= dL< S(t) (x0 — g(x)) + foS(t - s)f(s,x(s))ds] ,

S0~ 50 + [ s -9 1 vonas] )

a

i t
= dL< -S(t)g(x) +f05(t—s)f(s,x(s))ds] ,

- t a
-S(Hg(y) + LS(t -s)f (S,y(s))dS] >

<dr([S()g()]*, [Sthg(y)]®) + deL( [S(t=9)f(s,x(s)]", [S(t=5)f(s,y(s))]")ds
ax{[ S5 (1) (g1 (x) = &i (V) |, 1S5 (1) (8370 — &5 () [}

Imax |Sii(t = 5) (fii (s, x(5)) = fii (5, y())) |, | (t = 5) (s (s, x(5)) = fi(s,y(5))) | }ds

< cmax | (gll (.X') il (y)) | | (gzr(x) glr (]/)) |

1<i<n
t
s max{1£3(6,x9) = £ (5, w6 | | folo,x(60) = £ (5, (50 s
t
= cdu([5)° 51 + < (76, x(6N]% [ (5 )]s

< chdy ([x()]% [y()]%) +ckf di([x(s)]% [y(s)]%)ds.
(3.11)
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Therefore

Dr((Gox)(t), (Goy)(t))
= sup dr ([(Gox)(£)]%, [(Goy) (1)]")

O<a<l

3.12
< chsupdy ([x()]% [y()]*) + ck sup dL([x<s) y()])ds 12

O<a<l 0<a<l

t
<chDp(x(-),y()) + cijDL (x(s),y(s))ds.

Hence

H; (Gox, Goy) = SUPDL((GOx)(t) (Goy) (t))

0<t<T

< Ch(fjngL(x() L, y( )+cks<1tlf DL(x s),y(s))ds (3.13)

<chHi(x,y) +ckT Hi(x,y)

=c(h+kT) Hi(x,y).

By hypothesis (H2), Gy is a contraction mapping.
Using the Banach fixed point theorem, (3.9) have a unique fixed point x € C([0,T] :
(E\)")- O

4. Controllability
In this section, we show the nonlocal controllability for the control system (1.3).

Definition 4.1. Equation (1.3) is nonlocal controllable. Then there exists u(t) such that the
fuzzy solution x(t) for (3.9) as x(T) = x! - g(x) (i.e., [x(T)]* = [x' - g(x)]%) where x' € (E )"
is target set.

Define the fuzzy mappmgﬁ P(R") — (EN)" by

T
~ j SYT - s)v(s)ds, vcCT,,
pr(v)=4"° (4.1)

0, otherwise,
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where T, is closed support of u. Then there exists
pi: P(R) — Ey, (i=1,2,...,n) (4.2)

such that

T
f SH(T - s)vi(s)ds, vi(s) C Ty,
0

pE(vi) = (4.3)
0, otherwise.
Then ﬁf; (j = I, r) exists such that
N T
Brcon) = [ S3T = syou(s)ds, ou(s) € [ug(s) ],
i (4.4)
Bron) = [ S3T -9 0)ds, vn(s) € [ulu(5)]
0
We assume that BI”‘, Ni“r are bijective mappings.
We can introduce a-level set of u(s) of (3.4)-(3.5)
[we]* =TT )"
i=1
= [T15s), 8 (9)]
i=1
n ~ \ -1 a
= [( 2 <((x1)ﬂ—g:;<xs>) - ST (x5, - 85(x5))
i=1
(4.5)

T
_Jo ST -s)f5 (s, xg(s))ds>,

()" (- s0) st (o, ~s5e0)

T
_f SE(T - s) f2 (s, x;(s))ds>].
0

Then substituting this expression into (3.9) yields a-level of x(T).
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Foreachi=1,2,...,n,

[x;(T)]* = I:S;.’;(T) (xgﬂ - g7 (xﬁ)) + JZSZ(T -s)fi(s,x(s))ds
+ f ZS,%(T -~ (F) <<(x1)§ - g5 (x8)) = S50 (x5, - g (x5))

T
_Io SH(T —s)fi (s, xf;(s))ds> ds,

SeT)(x6, - g5 (x5)) + fOTS:;(T ~8)f5 (5, x5, (s))ds e
+ f Zsm— 9(F)" <(<x1)§ - g (xi)) - Sa () (xg, - 8 (x2)
T
—I Si(T -s)fa(s, xﬁ(s))ds) ds]
0
- [ -5’ (< )] = [ -s00) .
Therefore
=TT e =T I[(x - 5@) ] = [« - s)]" (47)

i=1 i=1

We now set
t
Ox(t) = S(t) (20— g(x)) + IOS(t —-8)f(s,x(s))ds

t B T
+ jOS(t - s)ﬁ*1 <x1 - g(x) = S(T) (x0 — g(x)) - IOS(T - s)f(s,x(s))ds> ds,
(4.8)

where the fuzzy mapping ﬁ‘l satisfies above statements.
Notice that ®x(T) = x! — g(x), which means that the control u(t) steers (3.9) from the
origin to x! — g(x) in time T provided that we can obtain a fixed point of the operator ®.
(H3) Assume that the linear system of (3.9) (f = 0) is controllable.

Theorem 4.2. Suppose that hypotheses (H1)—(H3) are satisfied. Then (3.9) are nonlocal controllable.
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Proof. We can easily check that @ is continuous function from C([0,T] : (Eé\])") to itself. By
Definitions 2.3 and 2.4, some properties of d, and inequalities (3.4) and (3.5), we have the
following inequalities. For any x, y € C([0,T] : (E}))"),

dp ([@x(1)]%, [Py (1)])

t t
=d; < [S(t)(xo - g(x)) + f S(t—s)f(s,x(s))ds + IOS(t - s)ﬁ_1
T 24
y <x1 ~ g(x) = S(T)(x0 - g(x)) - J.OS(T - s)f(s,x(s))ds>ds] ,
t t 5
[S(t)(xo -g(y)) + f S(t—s)f(s,y(s))ds + J‘ S(t-s)p!
0 0
T a
x <x1 -8(y) - S(T)(x0-8(¥)) - JOS(T -s)f (s, y(S))dS> d5] >
t
<di([S(hg()]" [Sthg(w)]") + fodL([S(f —5)f(s,x(s)]" [S(t=95)f(s,5(5))]")ds
¥ JOdL<[S(t -5 s’ [st-9)F8(v)] )ds
t ~ a ~ 24
[ au([se-9F smse]’ [se- 95 sms)]")ds

+J;dL<[S(t—s)ﬁ‘1IZS(T— s) f(s,x(s))ds] ,[S(t—s)ﬁ-1 OTS(T—S) f(s,y(s))ds] >ds

= max{[ S5 (1) (g (x) = &7 ()|, [S5.(1) (gi;(0) — &5 () [}

t

+ | max{|Si(t=s)(fi(s,x(5)) = fii (s, y()], |55 (£ = 9) (£ (s, x(5)) = fiz (5, y(5))) | }ds

ol<isn

t

+ max
ol<i<n
t

+ max
ol<i<n

s1.0-9)(B) (50 - 850))| et

si(t-9)(F) " (8309~ 510)|

syt =) (F) SHD (g - g5,

Se (- s)(N?,)_ls?r(T) (gh(x) - g5 (v)) | }ds

T

Sy (t - s)<~5>_1 <IZS?;(T - 5)fi(s,x(s))ds - fo

4

Jas

Si(T =) f (s, y(s))ds>

t
+ max
ol<i<n

-1/ (T T
Si(t- s)( ;’;) <J‘0 Si(T-s)fi(s,x(s))ds _—[0 Si(T-s)fs (s,y(s))ds>
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<c max{ |gll (.X') 8il (y) | |glr (.X') glr (y) | }

1<i<n

+ CJ‘O{I}%{ |fii(s,x(s)) = fif (s, y(s))|, | fir (s, x(s)) = fir (s, y(s)) |} ds

t

+c 11’I<1a<x{|gll(x) 8l (y)| |glr(x) gzr(y)”
+c Hggx{lgﬁ(x)—gﬁ(y)lflgﬁ(x)—gﬁ(y)l}ds
+c J‘ f max {|fi(s,x(8)) = f5(s, y())|, | fii (s, x(s)) = f{(s,y(s))|}ds ds
= cdu (301" [T +¢f [ xN] [5s v s
vef (s 5] ds+ [ du(ls0]", [s)])ds
t AT
+czj f dr([f (s, x(s)]", [f (s, y(s))]")dsds
0o
< Ch{dL([x(')]“r [y()]) + 1+ C)IOdL([X(')]a/ [y(-)]“)dS}

t t AT
+ ck{f dr([x(s)]% [y(s)]")ds + cf I dr([x(s)]% [y(s)]")ds ds}.
0 0Jo

(4.9)
Therefore
Dy (Dx(t), Dy (t))
= supdr ([x()]°, [Py(8)]")
t
< ch{ sup dL([x(')]a/ []/(')]u) +(1+ C)f b dL([X(.)]a, [y(-)]“)ds}
0<a<l 0 0<a<l
(4.10)

+ck{f sup dr ([x(s)]% [y(s)] )ds+cj‘f supdp ([x(s)]%, [y(s)]a)dsds}

0 0<a<1 00<a<1

t
_ ch{DL<x<~>,y<->> +(1+0) f ODL<x(->,y<->>ds}

t t T
+ck{f DL(x(s),y(s))ds+cJ‘ f Dy (x(s),y(s))ds ds}.
0 0Jo



12 Advances in Difference Equations

Hence

H; (®x, Dy) = sup Dy (Dx(t), Py(t))

0<t<T

t
< ch{ supDr(x(-),y(-)) + (1 +¢)sup ODL(x(-),y(-))dS}
0<t<T

0<t<T

T (4.11)
+ck{sup Dy (x(s), y(s))ds+csupf I Dy (x(s),y(s))ds ds}
0

0<t<T 0<t<T
<ch{Hi(x,y) + (1+c)T Hi(x,y)} + ck{TH1 (x,y) + cT’H; (x, y)}

=c{h(1+T+cT)+kT(1+cT)}H:i(x,y).

By hypothesis (H2), @ is a contraction mapping. Using the Banach fixed point theorem, (4.8)
has a unique fixed point x € C([0,T] : (E},)"). O

5. Example

Consider the two semilinear one-dimensional heat equations on a connected domain (0, 1)
for material with memory on Ei,i=1,2, boundary condition x;(t,0) = x;(t,1) = 0,

= 1,2 and with initial conditions x;(0, z;) + Zzzl(ck)ixi(tkl zi) = xo,(zi), where x¢.(z;) €
Eé\,, Ll(ck)ixi(tk, zi) = gi(x;), i = 1,2. Let x;(¢, zi), i = 1,2, be the internal energy and let

fi(t, xi(t,z;)) = Etx,-(t, zi)z, i =1,2, be the external heat.

Let
&
(AerZ) < oz %lza_z%>/
ft,x®) = (At x®), fo(tx0)) = (2xatz), 2t 22)),
g(x) = (g1(x1), £2(x2)) = <Z(Ck)1x1(tkle) Z(Ck)zxZ tk, z2) > 61
x(0) + g(x) = (x10) + g1(x), %2(0) + £2(x)), %0 = (x0,,%0,) = (0,0),
G(t-s)= (e‘(“s),e_(t_s)>,
then the balance equations become

dx(t)
dt

t SN2
- A[x(t) + foc(t - s)x(s)ds] + f(t,x(t)) on <E§\]> )
(5.2)

x(0) + g(x) =xp € (E;,)z.
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The a-level sets of fuzzy numbers are the following: [0]* = [# - 1,1 - a], [2]* = [a +
1,3 — a] for all « € [0,1]. Then a-level set of f (¢, x(t)) is

[f(t, x(t)]"
- [itxl(t)z]“ x [EtxZ(t)z]a
=[] tfa@?] < 2] t[ra?] (5.3)
= [a+1,3-a] -] (x (1) (¥5.(0)°] x [+ 1,3 - a] - £ (x5 (1), (x5,(1)°)
= [@+ De(®), G- (s, 1) x [(a+ D M), G- at(xs, ()]
Further, we have
du([ftx@®)]", f(ty(®)]")
= dp ([t + DEE0)?, G- ()], [(@+ DE@E®)?, G- at(ys1)?])

= tmax{(a+ )| (x§(1)" - (Wi 0], G- 0| (x5 1)* - (0’|}

<T(3 =) max{ () - v [x50) + vi®], x50 - v O x50 + s O])
< BT |5, + i (0] x max{ |x§(0) - yi ()], x5 ()~ v ()]}

= kd ([x(1)]%, [y(H]7),
dr([g(x()]% [8(w()]Y)

=dL<[iCk(x(tk))] ,[ick(y(tk))] >

p P C S
- E“az{ ()i (i (b)) = (e (Wi ()|, | X (erdi (xip () = X (ew)i (i (t)) }
<i<2 | |4 k=1 k=1 =
14
< | ek max g (te) = yi k)|, | () - v () |}
k=1 T
P
= [Dex|dr ([x(t)]1, [y(t)] )
k=1

IN

4
> ex [maxy ([x(t01% [y (t0)]*)
k=1

= hdr ([x()]% [y()]"),
(5.4)
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where k and h satisfy the inequality (3.4) and (3.5), respectively. Choose T such that T <
(1 — ch)/ck. Then all conditions stated in Theorem 3.2 are satisfied, so problem (5.2) has a

unique fuzzy solution. s s
Let target set be x! = (x%,x%) = (2,3). The a-level set of fuzzy numbers is 3[3]" =

[a+2,4-al.
From the definition of fuzzy solution,

P
x; () = S3(t) <(xo)3 - Z(Ck)i(xfi(tk))>
k=1
t t
+ f SG(t—s)(a+ 1)s(xf§(s))2ds + f S§(t = s)uf(s)ds,
0 0
) (5.5)
x5, (1) = S5 (1) ((xo)?r - Z(Ck)i(xfr(fk))>
k=1

¢ t
+ j St (t—s)(3- cx)s(xf’r(s))zds + ’[ St - s)uf.(s)ds,
0 0

wherei=1,2.
Thus the a-level of u(s) is

~ \-1 p
uyy(s) = <ﬁl111> <(“ +1) - Z(Ck)l(xg(tk))
k=1
P T ,
- [ST,(T) ((xo)‘l"l AC (x;*l(tk))> + IO (a+1)S%(T - 5)s(x%(s)) ds] >
k=1
~ \-1 P
us () = (1) <<3 - @) = 3 ey (x5 (1)
k=1
P T )
- I:S’fr(T) <(x0)‘fr—Z(Ck)1 (xfr(tk))> + Jo (3—a)S§.(T —s)s(xf.(s)) ds] >,
k=1
~ \-1 p
u(s) = (P <<a+z> e (x5 (1)
k=1
4 T )
- I:ng(T) <(xo)§l - Z(Ck)z(xgl(tk))> + .[0 (a+1)S5(T - s5)s(x5(s)) ds] >,
k=1
~ \ -1 P
us,(s) = (3,) <<4 —a) = (e (< (1))
k=1

p T
- I:Sgr(T) <(x0)§r - Z(ck) (xgr(tk))> + fo B-a)S5.(T - s)s(xg‘r(s))zds] >
k=1
(5.6)
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Then a-level of x(T) = (x1(T), x2(T)) is

[x1(T)]*
= [x3y(T), x3,(T)]

P T
= I:STI(T) ((xo)‘l"l - Z(ck)1 (xi‘l(tk))> + Jo (a+1)S§(T - s)s(xi‘l(s))zds
=1
o e - 4
+ B () 1<<a+1>— PNCINEHD)
k=1
P
- {Silz(T) <(x0)?1 - Z(Ck)1(x[f1(fk))>
=1

T
+f (a+1)S§(T - s)s(xi"l(s))zds}>ds,
0

(5.7)
4 T
51.(T) ((xO)‘{‘r - > (an (xTr(tk))> + IO (3 - a) S5 (T - 5)s (x5, (5)) ds
k=1
~ e\l ld
A <<s—a>—z<ck>1<x;*,<tk>)
k=1
4
- {S?T(T) <(x0)lfr - Z(Ck)l<xilr(tk))>
k=1
T
+f (3-a)S% (T - s)s(x$r(s))2ds}>ds]
0
4 14 P a
= [(rx +1) = Y (e (2 (8)), (B - a) = Z(Ck)l(xfr(fk))] = [2 - Z(ck)l(xl(tk))] :
k=1 k=1 k=1
Similarly
~ p .
[x2(T)]* = [x3(T), x5,(T)] = [3—Z(Ck)z(xz(tk))] : (5.8)
k=1
Hence
x(T) = (x1(T), x2(T))
(5.9)

P . P
= <2 = (e (xa(te), 3 - Z(Ck)z(Xz(tk))> = x! - g(x).
k=1 k=1

Then all the conditions stated in Theorem 4.2 are satisfied, so system (5.2) is nonlocal
controllable on [0, T].
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