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1. Introduction

Delay differential equations play an important role in the mathematical modelling of various
practical phenomena in the biosciences and control theory. Any system involving a feedback
control will almost always involve time delays. These arise because a finite time is required
to sense information and then react to it. A singularly perturbed delay differential equation
is an ordinary differential equation in which the highest derivative is multiplied by a small
parameter and involving at least one delay term [1–4]. Such problems arise frequently in the
mathematical modelling of various practical phenomena, for example, in the modelling of
several physical and biological phenomena like the optically bistable devices [5], description
of the human pupil-light reflex [6], a variety of models for physiological processes or diseases
and variational problems in control theory where they provide the best, and in many cases
the only realistic simulation of the observed phenomena [7].

It is well known that standard discretizationmethods for solving singular perturbation
problems are unstable and fail to give accurate results when the perturbation parameter ε is
small. Therefore, it is important to develop suitable numerical methods to these problem,
whose accuracy does not depend on the parameter value ε, that is, methods that are
uniformly convergent with respect to the perturbation parameter [8–10]. One of the simplest



2 Advances in Difference Equations

ways to derive such methods consists of using an exponentially fitted difference scheme (see,
e.g., [10] for motivation for this type of mesh), which are constructed a priori and depend
of the parameter ε, the problem data and the number of corresponding mesh points. In
the direction of numerical treatment for first-order singularly perturbed delay differential
equations, several can be seen in [4, 7, 11].

In order to construct parameter-uniform numerical methods, two different techniques
are applied. Firstly, the numerical methods of exponential fitting type (fitting operators)
(see [9]), which have coefficients of exponential type adapted to the singular perturbation
problems. Secondly, the special mesh approach (see [11, 12]), which constructs meshes
adapted to the solution of the problem.

In the works of Amiraliyev and Erdogan [11], special meshes (Shishkin mesh) have
been used. The method that we propose in this paper uses exponential fitting schemes, which
have coefficients of exponential type.

2. Statement of the Problem

Consider a model problem for the initial value problems for singularly perturbed delay
differential equations with delay in the interval I = [0,T]:

εu′(t) + a(t)u(t) + b(t)u(t − r) = f(t), t ∈ I,
u(t) = ϕ(t), t ∈ I0,

(2.1)

where I = (0, T] =
⋃m
p=1Ip, Ip = {t : rp−1 < t ≤ rp}, 1 ≤ p ≤ m and rs = sr, for 0 ≤ s ≤ m and I0 =

[−r, 0] (for simplicity we suppose that T/r is integer). 0 < ε ≤ 1 is the perturbation parameter,
a(t) ≥ α > 0, b(t), f(t), and ϕ(t) are given sufficiently smooth functions satisfying certain
regularity conditions to be specified and r is a constant delay. The solution u(t) displays in
general boundary layers at the right side of each points t = rs(0 ≤ s ≤ m) for small values
of ε.

In this paper, we present the completely exponentially fitted difference scheme on the
uniformmesh. The difference scheme is constructed by the method of integral identities with
the use of exponentially basis functions and interpolating quadrature rules with weight and
remainder terms integral form [10]. This method of approximation has the advantage that the
schemes can also be effective in the case when the continuous problem is considered under
certain restrictions.

In the present paper, we analyze a fitted difference scheme on a uniform mesh
for the numerical solution of the problem (2.1). In Section 2, we describe the problem. In
Section 3, we state some important properties of the exact solution. In Section 4, we construct
a numerical scheme for solving the initial value problem (2.1) based on an exponentially
fitted difference scheme on a uniform mesh. In Section 5, we present the error analysis for
approximate solution. Uniform convergence is proved in the discrete maximum norm. A
numerical example in comparison with their exact solution is being presented in Section 6.
The approach to construct discrete problem and error analysis for approximate solution is
similar to those ones from [10, 11].

Notation. Throughout the paper, C will denote a generic positive constant (possibly
subscripted) that is independent of ε and of the mesh. Note that C is not necessarily the
same at each occurrence.
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3. The Continuous Problem

Here, we show some properties of the solution of (2.1), which are needed in later sections
for the analysis of appropriate numerical solution. Let, for any continuous function g, ‖g‖∞,I

denotes a continuous maximum norm on the corresponding interval.

Lemma 3.1. Let a, b, f ∈ C1(I), ϕ ∈ C1(I0). Then, for the solution u(t) of the problem (2.1) the
following estimates hold

∥
∥u(t)

∥
∥
∞,Ip

≤ Cp, 1 ≤ p ≤ m, (3.1)

where

C1 = α−1‖f‖∞,I1
+
(
1 + α−1‖b‖∞,I1

)‖ϕ‖∞,I0
,

Cp = α−1‖f‖∞,Ip
+
(
1 + α−1‖b‖∞,Ip

)
Cp−1, p = 2, 3, . . . , m.

(3.2)

Proof. see [11].

4. Discretization and Mesh

In this section, we construct a numerical scheme for solving the initial value problem (2.1)
based upon an exponential fitting on a uniform mesh.

We denote by ωN0 the uniform mesh on I:

ωN0 =
{

ti = iτ, i = 0, 1, 2, . . . ,N0; τ =
r

N
, pN =N0

}

, (4.1)

which containsN mesh points at each subinterval Ip (1 ≤ p ≤ m):

ωN,p =
{
ti : (p − 1)N + 1 ≤ i ≤ pN}

, 1 ≤ p ≤ m, (4.2)

and consequently

ωN0 =
m⋃

p=1

ωN,p. (4.3)

To simplify the notation, we set gi = g(ti) for any function g(t), and moreover yi
denotes an approximation of u(t) at ti. For any mesh function {wi} defined on�N0 , we use

wt,i =
wi −wi−1

τ
,

‖w‖∞,N,p = ‖w‖∞,ωN,p
:= max

(p−1)N≤i≤pN

∣
∣wi

∣
∣, 1 ≤ p ≤ m.

(4.4)
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The approach of generating difference methods through integral identity

χiτ
−1
∫ ti

ti−1
Lu(t)ψi(t)dt = χiτ−1

∫ ti

ti−1
f(t)ψi(t)dt, (4.5)

with the exponential basis functions

ψi(t) = exp
(

− ai
(
ti − t

)

ε

)

, ti−1 ≤ t ≤ ti, (4.6)

where

χi =
(

τ−1
∫ ti

ti−1
ψi(t)dt

)−1
=

aiρ

1 − exp
( − aiρ

) , ρ =
τ

ε
. (4.7)

We note that function ψi(t) is the solution of the problem

−εψ ′
i(t) + aiψi(t) = 0, ti−1 ≤ t < ti,

ψi
(
ti
)
= 1.

(4.8)

The relation (4.5) is rewritten as

χiτ
−1ε

∫ ti

ti−1
u′(t)ψi(t)dt + aiχiτ−1

∫ ti

ti−1
u(t)ψi(t)dt + biχiτ−1

∫ ti

ti−1
u(t − r)ψi(t)dt + Ri = fi, (4.9)

with the remainder term

Ri = R
(1)
i + R(2)

i + R(3)
i ,

R
(1)
i = χiτ−1

∫ ti

ti−1

[
a(t) − a(ti)

]
u(t)ψi(t)dt,

R
(3)
i = χiτ−1

∫ ti

ti−1

[
b(t) − b(ti)

]
u(t − r)ψi(t)dt,

R
(3)
i = χiτ−1

∫ ti

ti−1

[
f(ti) − f(t)

]
ψi(t)dt.

(4.10)

Taking into account (4.5) and using interpolating rules with the weight (see [10]), we
obtain the following relations:

εθiut,i + aiui + biui−N + Ri = fi, 1 ≤ i ≤N0, (4.11)
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where

θi = 1 + χiτ−1ai ε−1
∫ ti

ti−1

(
t − ti

)
ψi(t)dt, (4.12)

and a simple calculation gives us

θi =
aiρ

1 − exp
( − aiρ

) exp
( − aiρ

)
. (4.13)

As a consequence of the (4.11), we propose the following difference scheme for
approximation (2.1):

Lyi := εθiyt,i + aiyi + biyi−N = fi, 1 ≤ i ≤N0,

yi = ϕi, −N ≤ i ≤ 0,
(4.14)

where θi is defined by (4.13).

5. Analysis of the Method

To investigate the convergence of the method, note that the error function zi = yi − ui, 0 ≤ i ≤
N0, is the solution of the discrete problem

εθizt,i + aizi + bizi−N = Ri, 1 ≤ i ≤N0,

zi = ϕi, −N ≤ i ≤ 0.
(5.1)

where Ri and θi are given by (4.10) and (4.13), respectively.

Lemma 5.1. Let yi be approximate solution of (2.1). Then the following estimate holds

‖y‖∞,ωN,p
≤ ‖ϕ‖∞,ωN,0

Qp + α−1
p∑

k=1

‖f‖∞,ωN,k
Qp−k, 1 ≤ p ≤ m, (5.2)

where

Qp−k =

⎧
⎪⎪⎨

⎪⎪⎩

1, for k = p,
p∏

s=k+1

(
1 + α−1‖b‖∞,Is

)
, for 0 ≤ k ≤ p − 1.

(5.3)

Proof. The proof follows easily by induction in p.
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Lemma 5.2. Let zi be solution of (5.1). Then following estimate holds

‖z‖∞,N,p ≤ C
p∑

k=1

‖R‖∞,ωN,k
. (5.4)

Proof. It evidently follows from (5.2) by taking ϕ ≡ 0 and f ≡ R.

Lemma 5.3. Under the above assumptions of Section 2 and Lemma 3.1, for the error function R, the
following estimate holds

‖R‖∞,ωN,p ≤ Cτ, 1 ≤ p ≤ m. (5.5)

Proof. To this end, it suffices to establish that the functions R(k)
i (k = 1, 2, 3), involved in the

expression for Ri, admit the estimate

‖R(k)‖∞,ωN,p ≤ Cτ, k = 1, 2, 3. (5.6)

Using the mean value theorem, we get

∣
∣a(t) − a(ti

)∣
∣ =

∣
∣a′(ξ)

(
t − ti

)∣
∣,

= max
ωN,p

∣
∣a′(ξ)

∣
∣
∣
∣t − ti

∣
∣ ≤ Cτ, ξ ∈ [

ti−1, ti+1
]
.

(5.7)

Hence

∣
∣R

(1)
i

∣
∣ ≤ Cττ−1

∫ ti

ti−1

∣
∣u(t)

∣
∣ψi(t)dt, (5.8)

and taking also into account that 0 ≤ ψi(t) ≤ 1 and using Lemma 3.1, we have

∥
∥R(1)∥∥

∞,ωN,p
≤ Cτ. (5.9)

For R(2)
i , in view of b ∈ C1(I) and using Lemma 3.1, we obtain

∣
∣R

(2)
i

∣
∣ ≤ τ−1

∫ ti

ti−1

∣
∣b(t) − b(ti

)
u(t − r)∣∣ψi(t)dt ≤ C

∫ ti

ti−1

∣
∣u(ξ − r)∣∣dξ. (5.10)

Hence

∥
∥R(2)∥∥

∞,ωN,p
≤ C

∫ ti

ti−1

∣
∣u(ξ − r)∣∣dξ, (5.11)
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and after replacing s = ξ − r this reduces to

∥
∥R(2)∥∥

∞,ωN,p
≤ C

∫ ti−r

ti−1−r

∣
∣u(s)

∣
∣ds = C

(∫0

−r

∣
∣ϕ(s)

∣
∣ds +

∫ ti

ti−1

∣
∣u(s)

∣
∣ds

)

, (5.12)

which yields

∥
∥R(2)∥∥

∞,ωN,p
≤ Cτ(‖ϕ‖1,0 + Cp

)
= O(τ). (5.13)

The same estimate is obtained for R(3)
i in the similar manner as above.

Combining the previous lemmas we get the following final estimate, that is, uniformly
convergent estimate.

Theorem 5.4. Let u be the solution of (2.1) and y be the solution of (4.14). Then the following
estimate holds

‖y − u‖∞,ωN,p
≤ Cτ, 1 ≤ p ≤ m. (5.14)

6. Numerical Results

We begin with an example from Driver [2] for which we possess the exact solution.

εu′(t) + u(t) = u(t − 1), t ∈ [0, T],

u(t) = 1 + t, −1 ≤ t ≤ 0.
(6.1)

The exact solution for 0 ≤ t ≤ 2 is given by

u(t) =

⎧
⎪⎨

⎪⎩

−ε + t + (1 + ε)e−t/ε, t ∈ [0, 1],

−1 − 2ε + t + (1 + ε)e−t/ε +
[

ε − 1
ε
+
(

1 +
1
ε

)

t

]

e(1−t)/ε, t ∈ (1, 2].
(6.2)

We define the computed parameter-uniform maximum error eN,p
ε as follows:

e
N,p
ε = ‖y − u‖∞,ωN,p

, p = 1, 2, (6.3)

where y is the numerical approximation to u for various values of N, ε. We also define the
computed parameter-uniform convergence rates for eachN:

rN,p = ln
eN,p/e2N,p

ln 2
, p = 1, 2. (6.4)

The values of ε for which we solve the test problem are ε= 2−i, i = 1, 2, . . . , 8.
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Table 1: Maximum errors eN,1
ε and convergence rates rN,1 on ωN,1.

ε N = 128 N = 256 N = 512 N = 1024 N = 2048
2−1 0.0033688 0.0016866 0.000843849 0.000422062 0.000211065

0.998 0.999 0.999 0.999

2−2 0.00381473 0.00191236 0.000957428 0.000479026 0.000239591

0.996 0.996 0.998 0.999

2−3 0.00386427 0.00194230 0.000973693 0.000487882 0.000243900

0.992 0.996 0.998 0.999

2−4 0.00382489 0.00193278 0.000971476 0.00048701 0.000243823

0.984 0.992 0.996 0998

2−5 0.00374366 0.00191245 0.000966391 0.000485738 0.000243505

0.969 0.984 0.992 0.996

2−6 0.00358208 0.00187183 0.000956223 0.000433195 0.000242869

0.936 0.969 0.984 0.992

2−7 0.00326581 0.00179104 0.000935915 0.000477811 0.000241598

0.866 0.936 0.969 0.984

2−8 0.00268346 0.0016329 0.00895519 0.00467957 0.000239057

0.716 0.866 0.936 0.969

Table 2: Maximum errors eN,2
ε and convergence rates rN,2 on ωN,2.

ε N = 128 N = 256 N = 512 N = 1024 N = 2048
2−1 0.00319858 0.00164347 0.000832995 0.000419339 0.000211065

0.960 0.980 0.990 0.995

2−2 0.00600293 0.00300639 0.00150442 0.000752515 0.000376334

0.997 0.999 0.999 1.00

2−3 0.00780800 0.00396966 0.00200100 0.00100461 0.000503328

0.975 0.988 0.994 0.997

2−4 0.0185227 0.00951902 0.00482057 0.00242576 0.001216820

0.960 0.981 0.990 0995

2−5 0.0388137 0.0202932 0.0103797 0.00525228 0.002641280

0.935 0.967 0.9982 0.9916

2−6 0.0747962 0.0405973 0.0211784 0.0108201 0.005461600

0.881 0.938 0.968 0.984

2−7 0.131822 0.0765885 0.0414891 0.0216210 0.011040200

0.783 0.884 0.940 0.969

2−8 0.149561 0.133579 0.0774847 0.0419350 0.021842300

0.163 0.785 0.885 0.941

These convergence rates are increasing as N increases for any fixed ε. Tables 1 and 2
thus verify the ε-uniform convergence of the numerical solutions and the computed rates are
in agreement with our theoretical analysis.
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