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1. Introduction

1.1. Preliminary Notions and Properties

We use the following notation: for integers s, q, s ≤ q, we define Z
q
s := {s, s + 1, . . . , q} where

s = −∞ or q = ∞ are admitted, too. Throughout this paper, using notation Z
q
s , we always

assume s ≤ q. In this paper we deal with the discrete planar systems

x(k + 1) = Ax(k) + Bx(k −m), (1.1)

where m ≥ 0 is a fixed integer, k ∈ Z
∞
0 , A = (aij) and B = (bij) are constant 2 × 2 matrices,

and x : Z
∞
−m → R

2. Following the terminology (used, e.g., in [1, 2]), (1.1) is referred to as a
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nondelayed discrete system ifm = 0 and as a delayed discrete system ifm > 0. Together with
(1.1), we consider an initial (Cauchy) problem

x(k) = ϕ(k), (1.2)

where k = −m,−m + 1, . . . , 0 with ϕ : Z
0
−m → R

2. We will investigate only the case m > 0
since the solution of (1.1) for m = 0 is given by the known formula x(k) = (A + B)kϕ(0) for
k ∈ Z

∞
1 .
The existence and uniqueness of the solution of the initial problems (1.1) and (1.2) on

Z
∞
−m are obvious. We recall that the solution x : Z

∞
−m → R

2 of (1.1) and (1.2) is defined as an
infinite sequence

{
x(−m) = ϕ(−m), x(−m + 1) = ϕ(−m + 1), . . . , x(0) = ϕ(0), x(1), x(2), . . . , x(k), . . .

}
, (1.3)

such that, for any k ∈ Z
∞
0 , equality (1.1) holds.

The space of all initial data (1.2)with ϕ : Z
0
−m → R

2 is obviously 2(m+1)-dimensional.
Below we describe the fact that, among the systems (1.1), there are such systems that their
space of solutions, being initially 2(m + 1)-dimensional, on a reduced interval turns into a
space having dimension less than 2(m + 1).

1.2. Systems with Weak Delay

We consider the system (1.1) and we look for a solution having the form x(k) = λk, k ∈ Z
∞
−m,

λ = const with a λ/= 0. The usual procedure leads to a characteristic equation

det
(
A + λ−mB − λI

)
= 0, (1.4)

where I is the unit 2 × 2 matrix. Together with (1.1), we consider a system with the terms
containing delays omitted

x(k + 1) = Ax(k), (1.5)

and the characteristic equation

det(A − λI) = 0. (1.6)

Definition 1.1. The system (1.1) is called a system with weak delay if the characteristic
equations (1.4) and (1.6) corresponding to systems (1.1) and (1.5) are equal, that is, if for
every λ ∈ C \ {0}

det
(
A + λ−mB − λI

)
= det(A − λI). (1.7)
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We consider a linear transformation

x(k) = Sy(k), (1.8)

with a nonsingular 2 × 2 matrix S. Then the discrete system for y is

y(k + 1) = ASy(k) + BSy(k −m), (1.9)

with AS = S−1AS, BS = S−1BS. We show that the property of a system to be the system with
weak delay is preserved by every nonsingular linear transformation.

Lemma 1.2. If the system (1.1) is a system with weak delay, then its arbitrary linear nonsingular
transformation (1.8) again leads to a system with the weak delay (1.9).

Proof. It is easy to show that

det
(
AS + λ−mBS − λI

)
= det(AS − λI) (1.10)

holds since

det
(
AS + λ−mBS − λI

)
= det

(
S−1AS + λ−mS−1BS − λI

)

= det
[
S−1(A + λ−mB − λI

)S
]

= det
(
A + λ−mB − λI

)
,

det(AS − λI) = det
(
S−1AS − λI

)

= det
[
S−1(A − λI)S

]

= det(A − λI),

(1.11)

and the equality

det
(
A + λ−mB − λI

)
= det(A − λI) (1.12)

is assumed.

1.3. Necessary and Sufficient Conditions Determining the Weak Delay

In the forthcoming theorem, we give conditions, in terms of determinants, indicating whether
a system is a system with weak delay or not.
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Theorem 1.3. System (1.1) is a system with weak delay if and only if the following three conditions
hold simultaneously:

b11 + b22 = 0,
∣
∣
∣
∣
∣

b11 b12

b21 b22

∣
∣
∣
∣
∣
= 0,

∣
∣
∣
∣
∣

a11 a12

b21 b22

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

b11 b12

a21 a22

∣
∣
∣
∣
∣
= 0.

(1.13)

Proof. We start with computing the determinant (1.4). We get

det
(
A + λ−mB − λI

)
=

∣∣∣∣∣

a11 + b11λ
−m − λ a12 + b12λ

−m

a21 + b21λ
−m a22 + b22λ

−m − λ

∣∣∣∣∣

=

∣∣∣∣∣

a11 − λ a12

a21 a22 − λ

∣∣∣∣∣
− λ−m+1(b11 + b22)

+ λ−m
[ ∣∣∣∣∣

a11 a12

b21 b22

∣∣∣∣∣
+

∣∣∣∣∣

b11 b12

a21 a22

∣∣∣∣∣

]

+ λ−2m
∣∣∣∣∣

b11 b12

b21 b22

∣∣∣∣∣
.

(1.14)

Now we see that, for (1.7) to hold, that is,

det
(
A + λ−mB − λI

)
= det(A − λI) =

∣∣∣∣∣

a11 − λ a12

a21 a22 − λ

∣∣∣∣∣
, (1.15)

conditions (1.13) are both necessary and sufficient.

Remark 1.4. It is easy to see that conditions (1.13) are equivalent to

trB = detB = 0, det(A + B) = detA. (1.16)

1.4. Problem under Consideration

The aim of this paper is to show that the dimension of the space of all solutions, being initially
equal to the dimension 2(m+1) of the space of initial data (1.2) generated by discrete functions
ϕ, is, after several steps, reduced (on an interval of the form Z

∞
s with an s > 0) to a dimension

less than the initial one. In other words, we will show that the 2(m + 1)-dimensional space of
all solutions of (1.1) is reduced to a less-dimensional space of solutions onZ

∞
s . This problem is

solved directly by explicitly computing the corresponding solutions of the Cauchy problems
with each of the cases arising being considered. The underlying idea for such investigation is
simple. If (1.1) is a system with weak delay, then the corresponding characteristic equation
has only two eigenvalues instead of 2(m+1) eigenvalues in the case of systems with nonweak
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delay. This explains why the dimension of the space of solutions becomes less than the initial
one. The final results (Theorems 2.5–2.8) provide the dimension of the space of solutions.

1.5. Auxiliary Formula

For the reader’s convenience we recall one explicit formula (see, e.g., [3]) for the solutions
of linear scalar discrete nondelayed equations used in this paper. We consider the first-order
linear discrete nonhomogeneous equation

w(k + 1) = aw(k) + g(k), w(k0) = w0, k ∈ Z
∞
k0
, (1.17)

with a ∈ C and g : Z
∞
k0

→ C. Then it is easy to verify that

w(k) = ak−k0w0 +
k−1∑

r=k0

ak−1−rg(r), k ∈ Z
∞
k0+1

. (1.18)

Throughout the paper, we adopt the customary notation for the sum:
∑�

i=�+sF(i) = 0 where �
is an integer, s is a positive integer and, “F” denotes the function considered independently
of whether it is defined for indicated arguments or not.

2. Results

If (1.7) holds, then (1.4) and (1.6) have only two (and the same) roots simultaneously. In
order to prove the properties of the family of solutions of (1.1) formulated in Section 1.4, we
will separately discuss all the possible combinations of roots, that is, the cases of two real and
distinct roots, a couple of complex conjugate roots, and, finally, a two-fold real root.

2.1. Jordan Forms of Matrix A and Corresponding Solutions of
the Problem (1.1), (1.2)

It is known that, for every matrixA, there exists a nonsingular matrix S transforming it to the
corresponding Jordan matrix form Λ. This means that

Λ = S−1AS, (2.1)

where Λ has the following possible forms, depending on the roots of the characteristic
equation (1.6), that is, on the roots of

λ2 − (a11 + a22)λ + (a11a22 − a12a21) = 0. (2.2)
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If (2.2) has two real distinct roots λ1, λ2, then

Λ =

(
λ1 0

0 λ2

)

, (2.3)

if the roots are complex conjugate, that is, λ1,2 = p ± iq with q /= 0, then

Λ =

(
p q

−q p

)

, (2.4)

and, finally, in the case of one two-fold real root λ1,2 = λ, we have either

Λ =

(
λ 0

0 λ

)

(2.5)

or

Λ =

(
λ 1

0 λ

)

. (2.6)

The transformation y(k) = S−1x(k) transforms (1.1) into a system

y(k + 1) = Λy(k) + B∗y(k −m), k ∈ Z
∞
0 , (2.7)

with B∗ = S−1BS, B∗ = (b∗ij), i, j = 1, 2. Together with (2.7), we consider an initial problem

y(k) = ϕ∗(k), (2.8)

k ∈ Z
0
−m with ϕ∗ : Z

0
−m → R

2 where ϕ∗(k) = S−1ϕ(k) is the initial function corresponding to
the initial function ϕ in (1.2).

Below we consider all four possible cases (2.3)–(2.6) separately.
We define

Φ1(k) :=
(
0, ϕ∗

1(k)
)T
, Φ2(k) :=

(
ϕ∗
2(k), 0

)T
, k ∈ Z

0
−m. (2.9)

Assuming that the system (1.1) is a system with weak delay, the system (2.7), due to
Lemma 1.2, is a system with weak delay again.
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2.1.1. The Case (2.3) of Two Real Distinct Roots

In this case, we have Λk = diag(λk1 , λ
k
2). The necessary and sufficient conditions (1.13) for

(2.7) turn into

b∗11 + b∗22 = 0, (2.10)
∣
∣
∣
∣
∣

b∗11 b∗12
b∗21 b∗22

∣
∣
∣
∣
∣
= b∗11b

∗
22 − b∗12b

∗
21 = 0, (2.11)

∣
∣
∣
∣
∣

λ1 0

b∗21 b∗22

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

b∗11 b∗12
0 λ2

∣
∣
∣
∣
∣
= λ1b

∗
22 + λ2b

∗
11 = 0. (2.12)

Since λ1 /=λ2, (2.10), (2.12) yield b∗11 = b∗22 = 0. Then, from (2.11), we get b∗12b
∗
21 = 0, so either

b∗21 = 0 or b∗12 = 0.

Theorem 2.1. Let (1.1) be a system with weak delay and (2.2) admit two real distinct roots λ1, λ2.
Then b∗11 = b∗22 = b∗12b

∗
21 = 0. The solution of the initial problems (1.1) and (1.2) is x(k) = Sy(k),

k ∈ Z
∞
−m where y(k) has, in the case b∗21 = 0, the form

y(k) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ∗(k), if k ∈ Z
0
−m,

Λkϕ∗(0) + b∗12
k−1∑

r=0

λk−1−r1 Φ2(r −m), if k ∈ Z
m+1
1 ,

Λkϕ∗(0) + b∗12

[
m∑

r=0

λk−1−r1 Φ2(r −m) + Φ2(0)
k−1∑

r=m+1

λk−1−r1 λr−m2

]

, if k ∈ Z
∞
m+2,

(2.13)

and, in the case b∗12 = 0, the form

y(k) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ∗(k), if k ∈ Z
0
−m,

Λkϕ∗(0) + b∗21
k−1∑

r=0

λk−1−r2 Φ1(r −m), if k ∈ Z
m+1
1 ,

Λkϕ∗(0) + b∗21

[
m∑

r=0

λk−1−r2 Φ1(r −m) + Φ1(0)
k−1∑

r=m+1

λr−m1 λk−1−r2

]

, if k ∈ Z
∞
m+2.

(2.14)

Proof. In the case considered we have b∗11 = b∗22 = b∗12b
∗
21 = 0 and the transformed system (2.7)

takes either the form

y1(k + 1) = λ1y1(k) + b∗12y2(k −m), k ∈ Z
∞
0 , (2.15)

y2(k + 1) = λ2y2(k), k ∈ Z
∞
0 , (2.16)
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if b∗21 = 0 or the form

y1(k + 1) = λ1y1(k), k ∈ Z
∞
0 , (2.17)

y2(k + 1) = λ2y2(k) + b∗21y1(k −m), k ∈ Z
∞
0 , (2.18)

if b∗12 = 0. We investigate only the initial problem (2.15), (2.16), (2.8) since the initial problem
(2.17), (2.18), (2.8) can be examined in a similar way. From (2.16) and (2.8), we get

y2(k) =

⎧
⎨

⎩

ϕ∗
2(k), if k ∈ Z

0
−m,

λk2ϕ
∗
2(0), if k ∈ Z

∞
1 .

(2.19)

Then (2.15) becomes

y1(k + 1) =

⎧
⎨

⎩

λ1y1(k) + b∗12ϕ
∗
2(k −m), if k ∈ Z

m
0 ,

λ1y1(k) + b∗12λ
k−m
2 ϕ∗

2(0), if k ∈ Z
∞
m+1.

(2.20)

First we solve this equation for k ∈ Z
m
0 . This means that we consider the problem

y1(k + 1) = λ1y1(k) + b∗12ϕ
∗
2(k −m), k ∈ Z

∞
0 ,

y1(0) = ϕ∗
1(0).

(2.21)

With the aid of formula (1.18), we get

y1(k) = λk1ϕ
∗
1(0) + b∗12

k−1∑

r=0

λk−1−r1 ϕ∗
2(r −m), k ∈ Z

m+1
1 . (2.22)

Nowwe solve (2.20) for k ∈ Z
∞
m+1, that is, we consider the problem (with initial data deduced

from (2.22))

y1(k + 1) = λ1y1(k) + b∗12λ
k−m
2 ϕ∗

2(0), k ∈ Z
∞
m+1,

y1(m + 1) = λm+1
1 ϕ∗

1(0) + b∗12
m∑

r=0

λm−r
1 ϕ∗

2(r −m).
(2.23)



Advances in Difference Equations 9

Applying formula (1.18) yields (for k ∈ Z
∞
m+2)

y1(k) = λ
k−(m+1)
1 y1(m + 1) + b∗12ϕ

∗
2(0)

k−1∑

r=m+1

λk−1−r1 λr−m2

= λ
k−(m+1)
1

[

λm+1
1 ϕ∗

1(0) + b∗12
m∑

r=0

λm−r
1 ϕ∗

2(r −m)

]

+ b∗12ϕ
∗
2(0)

k−1∑

r=m+1

λk−1−r1 λr−m2

= λk1ϕ
∗
1(0) + b∗12

m∑

r=0

λk−1−r1 ϕ∗
2(r −m) + b∗12ϕ

∗
2(0)

k−1∑

r=m+1

λk−1−r1 λr−m2 .

(2.24)

Picking up all particular cases (2.8), (2.22), and (2.24), we have

y1(k) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ∗
1(k), if k ∈ Z

0
−m,

λk1ϕ
∗
1(0) + b∗12

k−1∑

r=0

λk−1−r1 ϕ∗
2(r −m), if k ∈ Z

m+1
1 ,

λk1ϕ
∗
1(0) + b∗12

[
m∑

r=0

λk−1−r1 ϕ∗
2(r −m) + ϕ∗

2(0)
k−1∑

r=m+1

λk−1−r1 λr−m2

]

, if k ∈ Z
∞
m+2.

(2.25)

Now, taking into account (2.9), the formula (2.13) is a consequence of (2.19) and (2.25). The
formula (2.14) can be proved in a similar way.

Finally, we note that both formulas (2.13) and (2.14) remain valid for b∗12 = b∗21 = 0 as
well. In this case, the transformed system (2.7) reduces to a system without delay.

2.1.2. The Case (2.4) of Two Complex Conjugate Roots

The necessary and sufficient conditions (1.13) for (2.7) take the forms (2.10) and (2.11) and

∣∣∣∣∣

p q

b∗21 b∗22

∣∣∣∣∣
+

∣∣∣∣∣

b∗11 b∗12
−q p

∣∣∣∣∣
= p
(
b∗11 + b∗22

)
+ q
(
b∗12 − b∗21

)
= 0. (2.26)

The system of conditions (2.10), (2.11), and (2.26) gives b∗12 = b∗21, (b
∗
11)

2 = −(b∗12)2 and admits
only one possibility, namely,

b∗11 = b∗22 = b∗12 = b∗21 = 0. (2.27)

Consequently, B∗ = 0 and B = 0 as well. The initial problems (1.1) and (1.2) reduces to a
problem without delay

x(k + 1) = Ax(k), k ∈ Z
0
−m,

x(k) = ϕ(k), k ∈ Z
0
−m,

(2.28)
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and, obviously,

x(k) =

⎧
⎨

⎩

ϕ(k), if k ∈ Z
0
−m,

Akϕ(0), if k ∈ Z
∞
1 .

(2.29)

2.1.3. The Case (2.5) of Two-Fold Real Root

We have Λk = diag(λk, λk). The necessary and sufficient conditions (1.13) are, for (2.7),
reduced to (2.10), (2.11), and

∣
∣
∣
∣
∣

λ 0

b∗21 b∗22

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

b∗11 b∗12
0 λ

∣
∣
∣
∣
∣
= λ
(
b∗11 + b∗22

)
= 0. (2.30)

From (2.10), (2.11), and (2.30), we get b∗12b
∗
21 = −(b∗11)2. Now we will analyse the two possible

cases: b∗12b
∗
21 = 0 and b∗12b

∗
21 /= 0.

The Case b∗12b
∗
21 = 0

Theorem 2.2. Let (1.1) be a system with weak delay, (2.2) admit a two-fold root λ1,2 = λ, b∗12b
∗
21 = 0

and the matrix Λ has the form (2.5). Then the solution of the initial problems (1.1) and (1.2) is
x(k) = Sy(k), k ∈ Z

∞
−m where y(k) has, in the case b∗21 = 0, the form

y(k) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ∗(k), if k ∈ Z
0
−m,

Λkϕ∗(0) + b∗12
k−1∑

r=0

λk−1−rΦ2(r −m), if k ∈ Z
m+1
1 ,

Λkϕ∗(0) + b∗12

[
m∑

r=0

λk−1−rΦ2(r −m) + (k − 1 −m)λk−1−mΦ2(0)

]

, if k ∈ Z
∞
m+2,

(2.31)

and, in the case b∗12 = 0, the form

y(k) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ∗(k), if k ∈ Z
0
−m,

Λkϕ∗(0) + b∗21
k−1∑

r=0

λk−1−rΦ1(r −m), if k ∈ Z
m+1
1 ,

Λkϕ∗(0) + b∗21

[
m∑

r=0

λk−1−rΦ1(r −m) + (k − 1 −m)λk−1−mΦ1(0)

]

, if k ∈ Z
∞
m+2.

(2.32)

Proof. The assumption b∗21 = 0 or b∗12 = 0 leads to b∗11 = b∗22 = 0. Then the following cases arise.
Either b∗12 /= 0, b∗21 = 0 or b∗12 = 0, b∗21 /= 0 or b∗12 = b∗21 = 0. The latter case is covered by the above
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formulas (2.31) and (2.32) since it can be treated as system (2.28) considered previously (with
A = Λ) when B∗ = B = 0, and the corresponding solution is described by the formula (2.29).
If b∗12 /= 0, then (2.7) turns into the system

y1(k + 1) = λy1(k) + b∗12y2(k −m), k ∈ Z
∞
0 ,

y2(k + 1) = λy2(k), k ∈ Z
∞
0 ,

(2.33)

and, if b∗21 /= 0, then (2.7) turns into the system

y1(k + 1) = λy1(k), k ∈ Z
∞
0 ,

y2(k + 1) = λy2(k) + b∗21y1(k −m), k ∈ Z
∞
0 .

(2.34)

System (2.33) can be solved in much the same way as the systems (2.15) and (2.16) if we
put λ1 = λ2 = λ, and the discussion of the system (2.34) copies the discussion of the systems
(2.17) and (2.18) with λ1 = λ2 = λ. Formulas (2.31) and (2.32) are consequences of (2.13) and
(2.14).

The Case b∗12b
∗
21 /= 0

For k ∈ Z
0
−m we define

Φ(k) :=

(

b∗11

[

ϕ∗
1(k) +

b∗12
b∗11

ϕ∗
2(k)

]

,− (b
∗
11)

2

b∗12

[

ϕ∗
1(k) +

b∗12
b∗11

ϕ∗
2(k)

])T

. (2.35)

Theorem 2.3. Let the system (1.1) be a system with weak delay, (2.2) admit two repeated roots
λ1,2 = λ, b∗12b

∗
21 /= 0, and the matrix Λ has the form (2.5). Then the solution of the initial problems

(1.1) and (1.2) is given by x(k) = Sy(k), k ∈ Z
∞
−m where y(k) has the form

y(k) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ∗(k), if k ∈ Z
0
−m,

Λkϕ∗(0) +
k−1∑

r=0

λk−1−rΦ(r −m), if k ∈ Z
m+1
1 ,

Λkϕ∗(0) +
m∑

r=0

λk−1−rΦ(r −m) + (k − 1 −m)λk−1−mΦ(0), if k ∈ Z
∞
m+2.

(2.36)

Proof. In this case, all the entries of B∗ are nonzero and, from (2.10), (2.11), and (2.30), we get

B∗ =

⎛

⎜⎜
⎝

b∗11 b∗12

−
(
b∗11
)2

b∗12
−b∗11

⎞

⎟⎟
⎠. (2.37)
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Then the system (2.7) reduces to

y1(k + 1) = λy1(k) + b∗11y1(k −m) + b∗12y2(k −m), (2.38)

y2(k + 1) = λy2(k) −
(
b∗11
)2

b∗12
y1(k −m) − b∗11y2(k −m), (2.39)

where k ∈ Z
∞
0 . It is easy to see (multiplying (2.39) by b∗12/b

∗
11 and summing both equations)

that

y1(k + 1) +
b∗12
b∗11

y2(k + 1) = λ

[

y1(k) +
b∗12
b∗11

y2(k)

]

, k ∈ Z
∞
0 . (2.40)

We can see (2.40) as a homogeneous equation with respect to the unknown expression y1(k)+
(b∗12/b

∗
11)y2(k). Then, using (1.18), we obtain

y1(k) +
b∗12
b∗11

y2(k) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ϕ∗
1(k) +

b∗12
b∗11

ϕ∗
2(k), if k ∈ Z

0
−m,

λk
[

ϕ∗
1(0) +

b∗12
b∗11

ϕ∗
2(0)

]

, if k ∈ Z
∞
1 .

(2.41)

With the aid of (2.41), we rewrite the systems (2.38) and (2.39) as follows:

y1(k + 1) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λy1(k) + b∗11

[

ϕ∗
1(k −m) +

b∗12
b∗11

ϕ∗
2(k −m)

]

, if k ∈ Z
m
0 ,

λy1(k) + b∗11λ
k−m
[

ϕ∗
1(0) +

b∗12
b∗11

ϕ∗
2(0)

]

, if k ∈ Z
∞
m+1,

y2(k + 1) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λy2(k) −
(
b∗11
)2

b∗12

[

ϕ∗
1(k −m) +

b∗12
b∗11

ϕ∗
2(k −m)

]

, if k ∈ Z
m
0 ,

λy2(k) −
(
b∗11
)2

b∗12
λk−m

[

ϕ∗
1(0) +

b∗12
b∗11

ϕ∗
2(0)

]

, if k ∈ Z
∞
m+1.

(2.42)
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It is easy to see that the system (2.42) is decomposed into two separate equations. Solving
each of them in a similar way as in the proof of Theorem 2.1 using (1.18) (details are omitted),
we conclude

y1(k) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ∗
1(k), if k ∈ Z

0
−m,

λkϕ∗
1(0) + b∗11

k−1∑

r=0

λk−1−r
[

ϕ∗
1(r −m) +

b∗12
b∗11

ϕ∗
2(r −m)

]

, if k ∈ Z
m+1
1 ,

λkϕ∗
1(0) + b∗11

[
m∑

r=0

λk−1−r
[

ϕ∗
1(r −m) +

b∗12
b∗11

ϕ∗
2(r −m)

]

+(k − 1 −m)λk−1−m
[

ϕ∗
1(0) +

b∗12
b∗11

ϕ∗
2(0)

]]

, if k ∈ Z
∞
m+2,

y2(k) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ∗
2(k) if k ∈ Z

0
−m,

λkϕ∗
2(0) −

(
b∗11
)2

b∗12

k−1∑

r=0

λk−1−r
[

ϕ∗
1(r −m) +

b∗12
b∗11

ϕ∗
2(r −m)

]

, if k ∈ Z
m+1
1 ,

λkϕ∗
2(0) −

(
b∗11
)2

b∗12

[
m∑

r=0

λk−1−r
[

ϕ∗
1(r −m) +

b∗12
b∗11

ϕ∗
2(r −m)

]

+(k − 1 −m)λk−1−m
[

ϕ∗
1(0) +

b∗12
b∗11

ϕ∗
2(0)

]]

, if k ∈ Z
∞
m+2.

(2.43)

Formula (2.36) is now a direct consequence of (2.43) and (2.35).

2.1.4. The Case (2.6) of Two-Fold Real Root

If the matrix Λ has the form (2.6), the necessary and sufficient conditions (1.13), for (2.7), are
reduced to (2.10), (2.11), and

∣∣∣∣∣

λ 1

b∗21 b∗22

∣∣∣∣∣
+

∣
∣∣∣∣

b∗11 b∗12
0 λ

∣∣∣∣∣
= λ
(
b∗11 + b∗22

) − b∗21 = 0. (2.44)

Then (2.10), (2.11), and (2.44) give b∗11 = b∗22 = b∗21 = 0, and the system (2.7) can be written as

y1(k + 1) = λy1(k) + y2(k) + b∗12y2(k −m), k ∈ Z
∞
0 , (2.45)

y2(k + 1) = λy2(k), k ∈ Z
∞
0 . (2.46)

Solving (2.46), we get

y2(k) =

⎧
⎨

⎩

ϕ∗
2(k), if k ∈ Z

0
−m,

λkϕ∗
2(0), if k ∈ Z

∞
1 .

(2.47)
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Then (2.45) turns into

y1(k + 1) =

⎧
⎨

⎩

λy1(k) + λkϕ∗
2(0) + b∗12ϕ

∗
2(k −m), if k ∈ Z

m
0 ,

λy1(k) + λkϕ∗
2(0) + b∗12λ

k−mϕ∗
2(0), if k ∈ Z

∞
m+1.

(2.48)

Equation (2.48) can be solved in a similar way as in the proof of Theorem 2.1 using (1.18) (we
omit details). We get

y1(k) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ∗
1(k), if k ∈ Z

0
−m,

λkϕ∗
1(0) +

k−1∑

r=0

λk−1−r
[
λrϕ∗

2(0) + b∗12ϕ
∗
2(r −m)

]
, if k ∈ Z

m+1
1 ,

λkϕ∗
1(0) + kλk−1ϕ∗

2(0) + b∗12(k − 1 −m)λk−1−mϕ∗
2(0)

+b∗12
m∑

r=0

λk−1−rϕ∗
2(r −m), if k ∈ Z

∞
m+2.

(2.49)

Formulas (2.47), (2.49) can be used in the case b∗12 = 0 as well. In this way, the ensuing result
is proved.

Theorem 2.4. Let (1.1) be a system with weak delay, (2.2) admit two repeated roots λ1,2 = λ, and the
matrix Λ has the form (2.6). Then b∗11 = b∗22 = b∗21 = 0 and the solution of the initial problems (1.1)
and (1.2) is x(k) = Sy(k), k ∈ Z

∞
−m where y(k) = (y1(k), y2(k))

T , y1(k) is defined by (2.49) and
y2(k) by (2.47).

2.2. Dimension of the Set of Solutions

Since all the possible cases of the planar system (1.1) with weak delay have been analysed,
we are ready to formulate results concerning the dimension of the space of solutions of (1.1)
assuming that initial conditions (1.2) are variable.

Theorem 2.5. Let (1.1) be a system with weak delay, and (2.2) has both roots different from zero.
Then the space of solutions, being initially 2(m + 1)-dimensional, becomes on Z

∞
m+2 only

(1) (m + 2)-dimensional if (2.2) has

(a) two real distinct roots and (b∗12)
2 + (b∗21)

2 > 0;

(b) a two-fold real root, b∗12b
∗
21 = 0 and (b∗12)

2 + (b∗21)
2 > 0;

(c) a two-fold real root and b∗12b
∗
21 /= 0,

(2) 2−dimensional if (2.2) has

(a) two real distinct roots and b∗12 = b∗21 = 0;
(b) a pair of complex conjugate roots;
(c) a two-fold real root and b∗12 = b∗21 = 0.
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Proof. We will carefully trace all theorems considered (Theorems 2.1–2.4) together with the
case of a pair of complex conjugate roots uncovered by a theorem and our conclusion will
hold on Z

∞
m+2 (some of the statements hold on a greater interval).

(a) Analysing the statement of Theorem 2.1 (the case (2.3) of two real distinct roots)
we obtain the following subcases.

(a1) If b∗11 = b∗22 = b∗21 = 0, b∗12 /= 0, then the dimension of the space of solutions on Z
∞
m+2

equals m + 2 since the last line in (2.13) uses only m + 2 arbitrary parameters

ϕ∗
1(0), ϕ

∗
2(−m), ϕ∗

2(−m + 1), . . . , ϕ∗
2(0). (2.50)

(a2) If b∗11 = b∗22 = b∗12 = 0, b∗21 /= 0, then the dimension of the space of solutions on Z
∞
m+2

equals m + 2 since the last line in (2.14) uses only m + 2 arbitrary parameters

ϕ∗
1(−m), ϕ∗

1(−m + 1), . . . , ϕ∗
1(0), ϕ

∗
2(0). (2.51)

(a3) If b∗11 = b∗22 = b∗12 = b∗21 = 0, then the dimension of the space of solutions on Z
∞
m+2

equals 2 since the last line in (2.13) and in (2.14) uses only 2 arbitrary parameters

ϕ∗
1(0), ϕ∗

2(0). (2.52)

This means that all the cases considered are covered by conclusions (1a) and (2a) of
Theorem 2.5.

(b) In the case (2.4) of two complex conjugate roots, we have b∗11 = b∗22 = b∗12 = b∗21 = 0
and the formula (2.29) uses only 2 arbitrary parameters

ϕ∗
1(0), ϕ∗

2(0), (2.53)

for every k ∈ Z
∞
1 . This is covered by case (2b) of Theorem 2.5.

(c) Analysing the statement of Theorems 2.2 and 2.3 (the case (2.5) of two-fold real
root), we obtain the following subcases.

(c1) If b∗21 = 0, b∗12 /= 0, then the dimension of the space of solutions on Z
∞
m+2 equals m + 2

since the last line in (2.31) uses only m + 2 arbitrary parameters

ϕ∗
1(0), ϕ

∗
2(−m), ϕ∗

2(−m + 1), . . . , ϕ∗
2(0). (2.54)

(c2) If b∗12 = 0, b∗21 /= 0, then the dimension of the space of solutions on Z
∞
m+2 equals m + 2

since the last line in (2.32) uses only m + 2 arbitrary parameters

ϕ∗
1(−m), ϕ∗

1(−m + 1), . . . , ϕ∗
1(0), ϕ

∗
2(0). (2.55)

(c3) If b∗12 = b∗21 = 0, then the dimension of the space of solutions on Z
∞
m+2 equals 2 since

the last line in (2.31) and in (2.32) uses only 2 arbitrary parameters

ϕ∗
1(0), ϕ∗

2(0). (2.56)
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(c4) If b∗12b
∗
21 /= 0, then the dimension of the space of solutions on Z

∞
m+2 equalsm+ 2 since

the last line in (2.36) uses only m + 2 arbitrary parameters

C(−m), C(−m + 1), . . . , C(0), ϕ∗
1(0), (2.57)

where

C(k) :=

[

ϕ∗
1(k) +

b∗12
b∗11

ϕ∗
2(k)

]

, k ∈ Z
0
−m. (2.58)

The parameter ϕ∗
2(0) cannot be seen as independent since it depends on the

independent parameters ϕ∗
1(0) and C(0).

All the cases considered are covered by conclusions (1b), (1c), and (2c) of Theorem 2.5.
(d) Analysing the statement of Theorem 2.4 (The case (2.6) of two-fold real root), we

obtain the following subcases.

(d1) If b∗11 = b∗22 = b∗21 = 0, b∗12 /= 0, then the dimension of the space of solutions on Z
∞
m+2

equals m + 2 since the last line in (2.49) uses only m + 2 arbitrary parameters

ϕ∗
1(0), ϕ

∗
2(−m), ϕ∗

2(−m + 1), . . . , ϕ∗
2(0), (2.59)

and the last line in (2.47) provides no new information.

(d2) If b∗11 = b∗22 = b∗21 = b∗12 = 0, then the dimension of the space of solutions on
Z
∞
m+2 equals 2 since, as follows from (2.49) and (2.47), there are only 2 arbitrary

parameters

ϕ∗
1(0), ϕ∗

2(0). (2.60)

Both cases are covered by conclusions (1b) and (2c) of Theorem 2.5.
Since there are no cases other than the above cases (a)–(d), the proof is finished.

Theorem 2.5 can be formulated simply as follows.

Theorem 2.6 (Main result). Let (1.1) be a system with weak delay and let (2.2) have both roots
different from zero. Then the space of solutions, being initially 2(m + 1)-dimensional, is on Z

∞
m+2 only

(1) (m + 2)-dimensional if (b∗12)
2 + (b∗21)

2 > 0.

(2) 2-dimensional if b∗12 = b∗21 = 0.

We omit the proofs of the following two theorems since again, they can be done in much the same way
as Theorems 2.1–2.4.

Theorem 2.7. Let (1.1) be a system with weak delay and let (2.2) have a simple root λ = 0. Then the
space of solutions, being initially 2(m+1)-dimensional, is either (m+1)-dimensional or 1-dimensional
on Z

∞
m+2.
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Theorem 2.8. Let (1.1) be a system with weak delay and let (2.2) have a two-fold root λ = 0. Then
the space of solutions, being initially 2(m + 1)-dimensional, turns into 0-dimensional space on Z

∞
1 ,

namely, into the zero solution.

3. Concluding Remarks

To our best knowledge, weak delay was first defined in [4] for systems of linear delayed
differential systems with constant coefficients. Nevertheless, separate particular examples
can be found in various books concerning delayed differential equations. Let us summarize
the advantage of investigating “weak” delayed systems in the plane. Such systems can be
simplified and their solutions can be found in a simple explicit analytical form. In the case
of ordinary differential systems with delay, to obtain the corresponding eigenvalues, it is
sufficient to solve only a polynomial equation rather than a quasipolynomial one. In the case
of discrete systems of two equations investigated in this paper in the “weak” case, to obtain
the corresponding eigenvalues, it is sufficient to solve only polynomial equation of the second
order rather than a polynomial equation of 2(m + 1)th order. Note that results obtained can
be directly used to investigate such asymptotic problems as boundedness or convergence of
solutions (using different methods, such problems have recently been investigated, e.g., in
[5–11]).
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