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1. Introduction

The stability of neural networks, which includes the stability of periodic solution and the
stability of equilibrium point, has been extensively studied by many authors so far; see,
for example, [1–15]. In [1–4], the authors investigated the stability of periodic solutions of
neural networks with or without time delays, where the assumptions on neuron activation
functions include Lipschitz conditions, bounded and/or monotonic increasing property.
Recently, in [13–15], the authors discussed global stability of the equilibrium points for the
neural networks with discontinuous neuron activations. Particularly, in [14], Forti conjectures
that all solutions of neural networks with discontinuous neuron activations converge to an
asymptotically stable limit cycle whenever the neuron inputs are periodic functions. As far as
we know, there are only works of Wu in [5, 7] and Papini and Taddei in [9] dealing with this
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conjecture. However, the activation functions are required to be monotonic in [5, 7, 9] and to
be bounded in [5, 7].

In this paper, without assumptions of the boundedness and the monotonicity of the
activation functions, by the Leray-Schauder alternative theorem in differential inclusion
theory and some new analysis techniques, we study the existence of periodic solution for
discontinuous neural networks with nonlinear growth activations. By constructing suitable
Lyapunov functions we give a general condition on the global asymptotical stability of
periodic solution. The results obtained in this paper show that Forti’s conjecture in [14] for
discontinuous neural networks with nonlinear growth activations is true.

For later discussion, we introduce the following notations.
Let x = (x1, . . . , xn)

′, y = (y1, . . . , yn)
′, where the prime means the transpose. By x > 0

(resp., x ≥ 0) we mean that xi > 0 (resp., xi ≥ 0) for all i = 1, . . . , n. ‖x‖ = (
∑n

i=1x
2
i )

1/2 denotes
the Euclidean norm of x. 〈x, y〉 =

∑n
i=1xiyi〈·, ·〉 denotes the inner product. ‖B‖ denotes 2-

norm of matrix B ∈ Rn×n, that is, ‖B‖ =
√
σ(B′B), where σ(B′B) denotes the spectral radius of

B′B.
Given a set C ⊂ Rn, by K[C] we denote the closure of the convex hull of C, and Pkc(C)

denotes the collection of all nonempty, closed, and convex subsets of C. Let X be a Banach
space, and ‖x‖X denotes the norm of x, ∀x ∈ X. By L1([0, ω], Rn) we denote the Banach space
of the Lebesgue integrable functions x(·): [0, ω] → Rn equipped with the norm

∫ω
0 ‖x(t)‖dt.

Let V : Rn → R be a locally Lipschitz continuous function. Clarke’s generalized gradient
[16] of V at x is defined by

∂V (x) = K
[{

lim
i→∞
∇V (xi) : lim

i→∞
xi = x, xi ∈ Rn \ΩV ∪N

}]

, (1.1)

where ΩV ⊂ Rn is the set of Lebesgue measure zero where ∇V does not exist, andN ⊂ Rn is
an arbitrary set with measure zero.

The rest of this paper is organized as follows. Section 2 develops a discontinuous
neural network model with nonlinear growth activations, and some preliminaries also are
given. Section 3 presents the proof on the existence of periodic solution. Section 4 discusses
global asymptotical stability of the neural network. Illustrative examples are provided to
show the effectiveness of the obtained results in Section 5.

2. Model Description and Preliminaries

The model we consider in the present paper is the neural networks modeled by the
differential equation

ẋ(t) = −Ax(t) + Bg(x(t)) + I(t), (2.1)

where x(t) = (x1(t), . . . , xn(t))
′ is the vector of neuron states at time t; A is an n × n matrix

representing the neuron inhibition; B is an n×n neuron interconnection matrix; g : Rn → Rn,
gi, i = 1, . . . , n, represents the neuron input-output activation and I(t) = (I1(t), . . . , In(t))

′ is
the continuous ω-periodic vector function denoting neuron inputs.

Throughout the paper, we assume that
H1: (1) gi has only a finite number of discontinuity points in every compact set of R.

Moreover, there exist finite right limit gi(ν+k) and left limit gi(ν−k) at discontinuity point νk.
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(2) g has the nonlinear growth property, that is, for all x ∈ Rn

∥
∥K
[
g(x)
]∥
∥ = sup

γ∈K[g(x)]

∥
∥γ
∥
∥ ≤ c

(
1 + ‖x‖α

)
, (2.2)

where c > 0, α ∈ (0, 1) are constants, and K[g(x)] = (K[g1(x1)], . . . , K[gn(xn)])
′.

H2: 〈x,Ax〉 ≥ ρ‖x‖2 for all x ∈ Rn, where ρ > 0 is a constant.
Under the assumption H1, g is undefined at the points where g is discontinuous.

Equation (2.1) is a differential equation with a discontinuous right-hand side. For (2.1), we
adopt the following definition of the solution in the sense of Filippov [17] in this paper.

Definition 2.1. Under the assumption H1, a solution of (2.1) on an interval [0, b) with the
initial value x(0) = x0 is an absolutely continuous function satisfying

ẋ(t) ∈ −Ax(t) + BK
[
g(x(t))

]
+ I(t), for a.e. t ∈ [0, b). (2.3)

It is easy to see that φ: (x, t) ↪→ −Ax + BK[g(x)] + I(t) is an upper semicontinuous
set-valued map with nonempty compact convex values; hence, it is measurable [18]. By the
measurable selection theorem [19], if x(·) is a solution of (2.1), then there exists a measurable
function η(t) ∈ K[g(x(t))] such that

ẋ(t) = −Ax(t) + Bη(t) + I(t), for a.e. t ∈ [0, b). (2.4)

Consider the following differential inclusion problem

ẋ(t) ∈ −Ax(t) + BK
[
g(x(t))

]
+ I(t), for a.e. t ∈ [0, ω],

x(0) = x(ω).
(2.5)

It easily follows that if x(t) is a solution of (2.5), then x∗(t) defined by

x∗(t) = x
(
t − jω

)
, t ∈

[
jω,
(
j + 1
)
ω
]
, j ∈N (2.6)

is an ω-periodic solution of (2.1). Hence, for the neural network (2.1), finding the periodic
solutions is equivalent to finding solutions of (2.5).

Definition 2.2. The periodic solution x∗(t) with initial value x∗(0) = x∗0 of the neural network
(2.1) is said to be globally asymptotically stable if x∗ is stable and for any solution x(t), whose
existence interval is [0,+∞), we have limt→+∞‖x(t) − x∗(t)‖ = 0.

Lemma 2.3. If X is a Banach space, C ⊆ X is nonempty closed convex with 0 ∈ C and G : C →
Pkc(C) is an upper semicontinuous set-valued map which maps bounded sets into relatively compact
sets, then one of the following statements is true:

(a) the set Γ = {x ∈ C : x ∈ λG(x), λ ∈ (0, 1)} is unbounded;
(b) the G(·) has a fixed point in C, that is, there exists x ∈ C, such that x ∈ G(x).
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Lemma 2.3 is said to be the Leray-Schauder alternative theorem, whose proof can be
found in [20]. Define the following:

W1,1([0, ω], Rn) = {x(·) : x(·) is absolute continuous on [0, ω]},

W1,1
p ([0, ω], Rn) =

{
x(·) ∈W1,1([0, ω], Rn) | x(0) = x(ω)

}
,

‖x‖W1,1 =
∫ω

0
‖x(t)‖dt +

∫ω

0
‖ẋ(t)‖dt, ∀x ∈W1,1([0, ω], Rn),

(2.7)

then ‖ · ‖W1,1 is a class of norms of W1,1([0, ω], Rn), W1,1([0, ω], Rn), and W1,1
p ([0, ω], Rn) ⊂

W1,1([0, ω], Rn) are Banach space under the norm ‖x‖W1,1 .
If V : Rn → R is (i) regular in Rn [16]; (ii) positive definite, that is, V (x) > 0 for x /= 0,

and V (0) = 0; (iii) radially unbounded, that is, V (x) → +∞ as ‖x‖ → +∞, then V (x) is said
to be C-regular.

Lemma 2.4 (Chain Rule [15]). If V (x) is C-regular and x(·) : [0,+∞) → Rn is absolutely
continuous on any compact interval of [0,+∞), then x(t) and V (x(t)) : [0,+∞) → R are differential
for a.e. t ∈ [0,+∞), and one has

d

dt
V (x(t)) =

〈

ζ,
dx(t)
dt

〉

, ∀ζ ∈ ∂V (x). (2.8)

3. Existence of Periodic Solution

Theorem 3.1. If the assumptionsH1 andH2 hold, then for any x0 ∈ Rn, (2.1) has at least a solution
defined on [0,+∞) with the initial value x(0) = x0.

Proof. By the assumption H1, it is easy to get that φ: (x, t) ↪→ −Ax + BK[g(x)] + I(t) is an
upper semicontinuous set-valued map with nonempty, compact, and convex values. Hence,
by Definition 2.1, the local existence of a solution x(·) for (2.1) on [0, t0], t0 > 0, with x(0) = x0,
is obvious [17].

Set ψ(t, x) = BK[g(x)] + I(t). Since I(·) is a continuous ω-periodic vector function,
I(·) is bounded, that is, there exists a constant I > 0 such that ‖I(t)‖ ≤ I, t ∈ [0, ω]. By the
assumption H1, we have

sup
x∈Rn, t∈[0,+∞]

∥
∥ψ(t, x)

∥
∥ ≤ ‖B‖

∥
∥K
[
g(x)
]∥
∥ + ‖I(t)‖ ≤ c‖B‖

(
1 + ‖x‖α

)
+ I. (3.1)

By lim‖x‖→+∞(c‖B‖(1 + ‖x‖α) + I)/‖x‖ = 0, we can choose a constant R̃ > 0, such that when
‖x‖ > R̃,

c‖B‖
(
1 + ‖x‖α

)
+ I

‖x‖ <
ρ

2
. (3.2)



Advances in Difference Equations 5

By (2.4), (3.1), (3.2), and the Cauchy inequality, when ‖x(t)‖ > R̃,

1
2
d

dt
‖x(t)‖2 = 〈x(t), ẋ(t)〉 = 〈x(t),−Ax(t) + Bη(t) + I(t)〉

= −〈x(t), Ax(t)〉 + 〈x(t), Bη(t) + I(t)〉

≤ −ρ‖x(t)‖2 + ‖x(t)‖
(
c‖B‖
(
1 + ‖x(t)‖α

)
+ I
)

=

(

−ρ +
c‖B‖
(
1 + ‖x(t)‖α

)
+ I

‖x(t)‖

)

‖x(t)‖2

< −
ρ

2
‖x(t)‖2 < 0.

(3.3)

Therefore, let R = max{‖x0‖, R̃}, then, by (3.3), it follows that ‖x(t)‖ ≤ R on [0, t0]. This means
that the local solution x(·) is bounded. Thus, (2.1) has at least a solution with the initial value
x(0) = x0 on [0,+∞). This completes the proof.

Theorem 3.1 shows the existence of solutions of (2.1). In the following, we will prove
that (2.1) has an ω-periodic solution.

Let Lx = ẋ +Ax for all x ∈W1,1
p ([0, ω], Rn), then L : W1,1

p ([0, ω], Rn) → L1([0, ω], Rn)
is a linear operator.

Proposition 3.2. L : W1,1
p ([0, ω], Rn) → L1([0, ω], Rn) is bounded, one to one and surjective.

Proof. For any x ∈W1,1
p ([0, ω], Rn), we have

‖Lx‖L1 =
∫ω

0
‖ẋ(t) +Ax(t)‖dt ≤

∫ω

0
‖ẋ(t)‖dt +

∫ω

0
‖Ax(t)‖dt

≤
∫ω

0
‖ẋ(t)‖dt + ‖A‖

∫ω

0
‖x(t)‖dt ≤ max{1, ‖A‖}‖x‖W1,1

(3.4)

this implies that L is bounded.
Let x1, x2 ∈W1,1

p ([0, ω], Rn). If Lx1 = Lx2, then

ẋ1(t) − ẋ2(t) = −A
(
x1(t) − x2(t)

)
. (3.5)

By the assumption H2,

d

dt

(

−
∥
∥
∥x1(t) − x2(t)

∥
∥
∥

2
)

= −2〈x1(t) − x2(t), ẋ1(t) − ẋ2(t)〉

= 2
〈
x1(t) − x2(t), A

[
x1(t) − x2(t)

]〉
≥ 2ρ
∥
∥
∥x1(t) − x2

∥
∥
∥

2
.

(3.6)
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Noting x1(0) = x1(ω), x2(0) = x2(ω), we have

∫ω

0

d

dt

(

−
∥
∥
∥x1(t) − x2(t)

∥
∥
∥

2
)

dt =
∥
∥
∥x1(0) − x2(0)

∥
∥
∥

2
−
∥
∥
∥x1(ω) − x2(ω)

∥
∥
∥

2
= 0, (3.7)

By (3.6),

0 ≤
∫ω

0
2ρ
∥
∥
∥x1(t) − x2(t)

∥
∥
∥

2
dt ≤
∫ω

0

d

dt

(

−
∥
∥
∥x1(t) − x2(t)

∥
∥
∥

2
)

dt = 0. (3.8)

Hence ‖x1 − x2‖ = 0. It follows x1 = x2. This shows that L is one to one.
Let f(·) ∈ L1([0, ω], Rn). In order to verify that L is surjective, in the following, we will

prove that there exists x(·) ∈W1,1
p ([0, ω], Rn) such that

Lx = f, (3.9)

that is, we will prove that there exists a solution for the differential equation

ẋ(t) = −Ax(t) + f(t),

x(0) = x(ω).
(3.10)

Consider Cauchy problem

ẋ(t) = −Ax(t) + f(t),

x(0) = ξ.
(3.11)

It is easily checked that

x(t) = e−At
(

ξ +
∫ t

0
f(s)eAsds

)

(3.12)

is the solution of (3.11). By (3.12), we want ξ = x(ω), then

e−Aω
(

ξ +
∫ω

0
f(s)eAsds

)

= ξ, (3.13)

that is,

(
I − e−Aω

)
ξ = e−Aω

∫ω

0
f(s)eAsds. (3.14)
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By the assumption H2, I − e−Aω is a nonsingular matrix, where I is a unit matrix. Thus, by
(3.14), if we take ξ as

ξ =
(
I − e−Aω

)−1
e−Aω
∫ω

0
f(s)eAsds (3.15)

in (3.12), then (3.12) is the solution of (3.10). This shows that L is surjective. This completes
the proof.

By the Banach inverse operator theorem, L−1 : L1([0, ω], Rn) → W1,1
p ([0, ω], Rn) ⊆

L1([0, ω], Rn) is a bounded linear operator.
For any x(·) ∈ L1([0, ω], Rn), define the set-valued mapN as

N(x) =
{
v(·) ∈ L1([0, ω], Rn) | v(t) ∈ ψ(t, x(t)), for a.e. t ∈ [0, ω]

}
. (3.16)

ThenN has the following properties.

Proposition 3.3. N(·) : L1([0, ω], Rn) ↪→ 2L
1([0,ω],Rn)w has nonempty closed convex values in

L1([0, ω], Rn) and is also upper semicontinuous from L1([0, ω], Rn) into L1([0, ω], Rn) endowed
with the weak topology.

Proof. The closedness and convexity of values of N(·) are clear. Next, we verify the
nonemptiness. In fact, for any x ∈ L1([0, ω], Rn), there exists a sequence of step functions
{sn}n≥1 such that sn(t) → x(t) and ‖sn(t)‖ ≤ ‖x(t)‖ a.e. on [0, ω]. By the assumption H1(1)
and the continuity of I(t), we can get that (t, x) → ψ(t, x) is graph measurable. Hence, for
any n ≥ 1, t → ψ(t, sn(t)) admits a measurable selector fn(t). By the assumption H1(2),
{fn(·)}n≥1 is uniformly integrable. So by Dunford-Pettis theorem, there exists a subsequence
{fnk(·)}k≥1 ⊆ {fn(·)}n≥1 such that fnk → f weakly in L1([0, ω], Rn). Hence, from [21,
Theorem 3.1], we have

f(t) ∈ K
[
w − lim

{
fnk(t)

}
k≥1

]
⊆ K
[
w − limψ(t, snk(t))

]
, a.e. on [0, ω]. (3.17)

Noting that ψ(t, ·) is an upper semicontinuous set-valued map with nonempty closed convex
values on x for a.e. t ∈ [0, ω], K[w − limψ(t, snk(t))] ⊆ ψ(t, x(t)). Therefore, f ∈ N(x). This
shows thatN(x(·)) is nonempty.

At last we will prove that N(·) is upper semicontinuous from L1([0, ω], Rn) into
L1([0, ω], Rn)w. Let C be a nonempty and weakly closed subset of L1([0, ω], Rn), then we
need only to prove that the set

N−1(C) =
{
x ∈ L1([0, ω], Rn) :N(x)

⋂
C/= ∅

}
(3.18)

is closed. Let {xn}n≥1 ⊆ N−1(C) and assume xn → x in L1([0, ω], Rn), then there exists a
subsequence {xnk}k≥1 ⊆ {xn}n≥1 such that xnk(t) → x(t) a.e. on [0, ω]. Take fk ∈ N(xnk)

⋂
C,

n ≥ 1, then By the assumption H1(2) and Dunford-Pettis theorem, there exists a subsequence
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{fkm(t)}m≥1 ⊆ {fk(t)}k≥1 such that fkm → f ∈ C weakly in L1([0, ω], Rn). As before we have

f(t) ∈ K
[
w − lim

{
fkm(t)

}
m≥1

]
⊆ K
[
w − limψ

(
t, xnkm (t)

)]
⊆ ψ(t, x(t)), a.e. on [0, ω]. (3.19)

This implies f ∈ N(x)
⋂
C, that is,N−1(C) is closed in L1([0, ω], Rn). The proof is complete.

Theorem 3.4. Under the assumptions H1 and H2, there exists a solution for the boundary-value
problem (2.5), that is, the neural network (2.1) has an ω-periodic solution.

Proof. Consider the set-valued map L−1 ◦ N. Since L−1 is continuous and N is upper
semicontinuous, the set-valued map L−1 ◦N is upper semicontinuous. Let K ⊂ L1([0, ω], Rn)
be a bounded set, then

N(K) =
⋃

x∈K
N(x) (3.20)

is a bounded subset of L1([0, ω], Rn). Since L−1 is a bounded linear operator, L−1(N(K)) is
a bounded subset of W1,1

p ([0, ω], Rn). Noting that W1,1
p ([0, ω], Rn) is compactly embedded

in L1([0, ω], Rn), L−1(N(K)) is a relatively compact subset of L1([0, ω], Rn). Hence by
Proposition 3.3, L−1 ◦ N : L1([0, ω], Rn) → Pkc(L1([0, ω], Rn)) is the upper semicontinuous
set-valued map which maps bounded sets into relatively compact sets.

For any r(x) ∈ K[g(x)], when x /= 0, λ ∈ (0, 1), by (3.1) and the Cauchy inequality,

〈x,−Ax + λBr(x) + λI(t)〉 = −〈x,Ax〉 + 〈x, λBr(x) + λI(t)〉

≤ −ρ‖x‖2 + λ
∥
∥ψ(t, x)

∥
∥ ‖x‖

≤ −ρ‖x‖2 +
[
c‖B‖
(
1 + ‖x‖α

)
+ I
]
‖x‖

=

(

−ρ +
c‖B‖
(
1 + ‖x‖α

)
+ I

‖x‖

)

‖x‖2.

(3.21)

Arguing as (3.2), we can choose a constant K0 > 0, such that when ‖x‖ > K0,

c‖B‖
(
1 + ‖x‖α

)
+ I

‖x‖ <
ρ

2
. (3.22)

Therefore, when ‖x‖ > K0, by (3.21),

〈x,−Ax + λBr(x) + λI(t)〉 < −
ρ

2
‖x‖2, ∀r(x) ∈ K

[
g(x)
]
. (3.23)

Set

Γ =
{
x ∈ L1([0, ω], Rn) : x ∈ λL−1 ◦N(x), λ ∈ (0, 1)

}
. (3.24)
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In the following, we will prove that Γ is a bounded subset of L1([0, ω], Rn). Let x ∈ Γ, then
x ∈ λL−1 ◦ N(x), that is, Lx ∈ λN(x). By the definition of N(·), there exists a measurable
selection v(t) ∈ K[g(x(t))], such that

ẋ(t) +Ax(t) = λBv(t) + λI(t). (3.25)

By (3.23) and (3.25), maxt∈[0,ω]‖x(t)‖ ≤ K0. Otherwise, maxt∈[0,ω]‖x(t)‖ > K0. By L−1 :
L1([0, ω], Rn) → W1,1

p ([0, ω], Rn), we have x(0) = x(ω). Since x(·) is continuous, we can
choose t0 ∈ (0, ω], such that

‖x(t0)‖ = max
t∈[0,ω]

‖x(t)‖ > K0. (3.26)

Thus, there exists a constant δt0 > 0, such that when t ∈ (t0 − δt0 , t0], ‖x(t)‖ > K0. By (3.23)
and (3.25),

0 ≤ 1
2
‖x(t0)‖2 − 1

2
‖x(t)‖2 =

1
2

∫ t0

t

d

ds

(
‖x(s)‖2

)
ds =

∫ t0

t

〈x(s),

ẋ(s)〉ds =
∫ t0

t

〈x(s),

−Ax(s) + λBv(s) + λI(s)〉ds < −
ρ

2

∫ t0

t

‖x(s)‖2ds < 0,

for t ∈ (t0 − δt0 , t0].

(3.27)

This is a contradiction. Thus, for any x ∈ Γ, maxt∈[0,ω]‖x(t)‖ ≤ K0. Furthermore, we have

‖x‖L1 =
∫ω

0
‖x(s)‖ds ≤ ωK0, ∀x ∈ Γ. (3.28)

This shows that Γ is a bounded subset of L1([0, ω], Rn).
By Lemma 2.3, the set-valued map L−1 ◦ N has a fixed point, that is, there exists x∗ ∈

L1([0, ω], Rn) such that x∗ ∈ L−1 ◦ N(x∗), Lx∗ ∈ N(x∗). Hence there exists a measurable
selection η∗(t) ∈ K[g(x∗(t))], such that

ẋ∗(t) +Ax∗(t) = Bη∗(t) + I(t). (3.29)

By the definition of L−1, x∗ ∈ W1,1
p ([0, ω], Rn). Moreover, by Definition 2.1 and (3.29), x∗(·)

is a solution of the boundary-value problem (2.5), that is, the neural network (2.1) has an
ω-periodic solution. The proof is completed.

4. Global Asymptotical Stability of Periodic Solution

Theorem 4.1. Suppose thatH1 and the following assumptions are satisfied.
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H3: for each i ∈ 1, . . . , n, there exists a constant li > 0, such that for all two different numbers
u, v ∈ R, for all γi ∈ K[gi(u)] and for all ζi ∈ K[gi(u)]

γi − ζi
u − v ≥ −li. (4.1)

H4:A = diag(a1, . . . , an) > 0 is a diagonal matrix, and there exists a positive diagonal matrix
P = diag(p1, . . . , p2) > 0 such that P(−B) + (−B′)P > 0 and

lipi‖B‖2 <
1
2
λma, (4.2)

where λm is the minimum eigenvalues of symmetric matrix P(−B) + (−B′)P , a = min1≤i≤nai, for
all i = 1, . . . , n. Then the neural network (2.1) has a unique ω-periodic solution which is globally
asymptotically stable .

Proof. By the assumptions H3 and H4, there exists a positive constant β such that

γi − ζi
u − v ≥ −

1
2βpi

, (4.3)

for all γi ∈ K[gi(u)], ζi ∈ K[gi(u)], i = 1, . . . , n, and

‖B‖2

βλm
< a. (4.4)

In fact, from (4.2), we have

‖B‖2

aλm
<

1
2lipi

. (4.5)

Choose β ∈ (‖B‖2/aλm, 1/2lipi), then −li > −(1/2βPi), which implies that (4.3) holds from
(4.1), and (4.4) is also satisfied. By the assumption H4, it is easy to get that the assumption
H2 is satisfied. By Theorem 3.4, the neural network (2.1) has an ω-periodic solution. Let x∗(·)
be an ω-periodic solution of the neural network (2.1). Consider the change of variables z(t) =
x(t) − x∗(t), which transforms (2.4) into the differential equation

ż(t) = −Az(t) + Bη̃(t), (4.6)

where η̃(t) ∈ K[G(z(t))], G(z) = (G1(z1), . . . , Gn(zn))
′, and Gi(zi) = gi(zi + x∗i ) − η

∗
i , η

∗
i ∈

K[g(x∗)]. Obviously, z = 0 is a solution of (4.6).
Consider the following Lyapunov function:

V (z) = z′z + 2β
n∑

i=1

pi

∫zi

0
Gi

(
ρ
)
dρ. (4.7)
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By (4.3),

z2
i + 2βpi

∫zi

0
Gi

(
ρ
)
dρ ≥ 1

2
z2
i , (4.8)

and thus V ≥ (1/2)‖z‖2. In addition, it is easy to check that V is regular in Rn and V (0) = 0.
This implies that V is C-regular. Calculate the derivative of V (z) along the solution z(t) of
(4.6). By Lemma 2.4, (4.3), and (4.4),

dV (z)
dt

=
(
2z′(t) + 2βη̃′(t)P

)(
−Az(t) + Bη̃(t)

)

≤ −z′(t)Az(t) + 2z′(t)Bη̃(t) + 2βη̃′(t)PBη̃(t)

≤ −az′(t)z(t) + 2z′(t)Bη̃(t) − βλmη̃′(t)η̃(t)

≤ −az′(t)z(t) + 1
βλm

z′(t)B′Bz(t)

−
(

1
√
βλm

Bz(t) −
√
βλmη̃

′(t)

)′(
1

√
βλm

Bz(t) −
√
βλmη̃

′(t)

)

≤ −
(

a − ‖B‖
2

βλm

)

‖z(t)‖2

= −δ‖z(t)‖2,

(4.9)

where δ = a − (‖B‖2/βλm) > 0. Thus, the solution z = 0 of (4.6) is globally asymptotically
stable, so is the periodic solution x∗(·) of the neural network (2.1). Consequently, the periodic
solution x∗(·) is unique. The proof is completed.

Remark 4.2. (1) If gi is nondecreasing, then the assumption H3 obviously holds. Thus the
assumption H3 is more general.

(2) In [14], Forti et al. considered delayed neural networks modelled by the differential
equation

ẋ(t) = −Dx(t) + Bg(x(t)) + Bτg(x(t − τ)) + I, (4.10)

where D is a positive diagonal matrix, and Bτ is an n × n constant matrix which
represents the delayed neuron interconnection. When gi satisfies the assumptionH1(1) and is
nondecreasing and bounded, [14] investigated the existence and global exponential stability
of the equilibrium point, and global convergence in finite time for the neural network (4.10).
At last, Forti conjectured that the neural network

ẋ(t) = −Dx(t) + Bg(x(t)) + Bτg(x(t − τ)) + I(t) (4.11)

has a unique periodic solution and all solutions converge to the asymptotically stable limit
cycle when I(·) is a periodic function. When Bτ = 0, the neural network (4.11) changes as



12 Advances in Difference Equations

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x
(t
)

0 5 10 15 20

t

x1

x2

x3

Figure 1: Time-domain behavior of the state variables x1, x2, and x3.

the neural network (2.1) without delays. Thus, without assumptions of the boundedness and
the monotonicity of the activation functions, Theorem 4.1 obtained in this paper shows that
Forti’s conjecture for discontinuous neural networks with nonlinear growth activations and
without delays is true.

5. Illustrative Example

Example 5.1. Consider the three-dimensional neural network (2.1) defined by A =
diag(2, 2.4, 2.8),

B =

⎛

⎜
⎜
⎝

−0.25 −0.1 0.15

0.1 −0.25 0

0 0.2 −0.25

⎞

⎟
⎟
⎠, I(t) =

⎛

⎜
⎜
⎝

sin t

− cos t

sin t

⎞

⎟
⎟
⎠,

gi(θ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

√
θ + 1, θ > 0,

0, θ = 0, i = 1, 2, 3.

0.5 cos θ − 0.25, θ < 0,

(5.1)

It is easy to see that gi is discontinuous, unbounded, and nonmonotonic and satisfies the
assumptions H1 and H3. ‖B‖2 = 0.1712, a = 2. Take li = 1 and P = diag(1, 1, 1), then pi =
1, λm = 0.25, and we have

lipi‖B‖2 = 0.1715 < 0.25 =
1
2
λma. (5.2)
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Figure 2: Phase-plane behavior of the state variables x1, x2, and x3.

All the assumptions of Theorem 4.1 hold and the neural network in Example has a unique
2π-periodic solution which is globally asymptotically stable.

Figures 1 and 2 show the state trajectory of this neural network with random initial
value (−0.5, 0.5, 0.3). It can be seen that this trajectory converges to the unique periodic
solution of this neural network. This is in accordance with the conclusion of Theorem 4.1.

Acknowledgments

The authors are extremely grateful to anonymous reviewers for their valuable comments and
suggestions, which help to enrich the content and improve the presentation of this paper. This
work is supported by the National Science Foundation of China (60772079) and the National
863 Plans Projects (2006AA04z212).

References

[1] M. Di Marco, M. Forti, and A. Tesi, “Existence and characterization of limit cycles in nearly symmetric
neural networks,” IEEE Transactions on Circuits and Systems I, vol. 49, no. 7, pp. 979–992, 2002.

[2] B. Chen and J. Wang, “Global exponential periodicity and global exponential stability of a class of
recurrent neural networks,” Physics Letters A, vol. 329, no. 1-2, pp. 36–48, 2004.

[3] J. Cao, “New results concerning exponential stability and periodic solutions of delayed cellular neural
networks,” Physics Letters A, vol. 307, no. 2-3, pp. 136–147, 2003.

[4] Z. Liu, A. Chen, J. Cao, and L. Huang, “Existence and global exponential stability of periodic solution
for BAM neural networks with periodic coefficients and time-varying delays,” IEEE Transactions on
Circuits and Systems I, vol. 50, no. 9, pp. 1162–1173, 2003.

[5] H. Wu and Y. Li, “Existence and stability of periodic solution for BAM neural networks with
discontinuous neuron activations,” Computers &Mathematics with Applications, vol. 56, no. 8, pp. 1981–
1993, 2008.

[6] H. Wu, X. Xue, and X. Zhong, “Stability analysis for neural networks with discontinuous neuron
activations and impulses,” International Journal of Innovative Computing, Information and Control, vol. 3,
no. 6B, pp. 1537–1548, 2007.

[7] H. Wu, “Stability analysis for periodic solution of neural networks with discontinuous neuron
activations,” Nonlinear Analysis: Real World Applications, vol. 10, no. 3, pp. 1717–1729, 2009.

[8] H. Wu and C. San, “Stability analysis for periodic solution of BAM neural networks with
discontinuous neuron activations and impulses,” Applied Mathematical Modelling, vol. 33, no. 6, pp.
2564–2574, 2009.



14 Advances in Difference Equations

[9] D. Papini and V. Taddei, “Global exponential stability of the periodic solution of a delayed neural
network with discontinuous activations,” Physics Letters A, vol. 343, no. 1–3, pp. 117–128, 2005.

[10] H. Wu and X. Xue, “Stability analysis for neural networks with inverse Lipschitzian neuron
activations and impulses,” Applied Mathematical Modelling, vol. 32, no. 11, pp. 2347–2359, 2008.

[11] H. Wu, J. Sun, and X. Zhong, “Analysis of dynamical behaviors for delayed neural networks with
inverse Lipschitz neuron activations and impulses,” International Journal of Innovative Computing,
Information and Control, vol. 4, no. 3, pp. 705–715, 2008.

[12] H. Wu, “Global exponential stability of Hopfield neural networks with delays and inverse Lipschitz
neuron activations,” Nonlinear Analysis: Real World Applications, vol. 10, no. 4, pp. 2297–2306, 2009.

[13] M. Forti and P. Nistri, “Global convergence of neural networks with discontinuous neuron
activations,” IEEE Transactions on Circuits and Systems I, vol. 50, no. 11, pp. 1421–1435, 2003.

[14] M. Forti, P. Nistri, and D. Papini, “Global exponential stability and global convergence in finite time
of delayed neural networks with infinite gain,” IEEE Transactions on Neural Networks, vol. 16, no. 6,
pp. 1449–1463, 2005.

[15] M. Forti, M. Grazzini, P. Nistri, and L. Pancioni, “Generalized Lyapunov approach for convergence
of neural networks with discontinuous or non-Lipschitz activations,” Physica D, vol. 214, no. 1, pp.
88–99, 2006.

[16] F. H. Clarke, Optimization and Nonsmooth Analysis, Canadian Mathematical Society Series of
Monographs and Advanced Texts, John Wiley & Sons, New York, NY, USA, 1983.

[17] A. F. Filippov, Differential Equations with Discontinuous Right-Hand Side, Mathematics and Its
Applications (Soviet Series), Kluwer Academic Publishers, Boston, Mass, USA, 1984.

[18] J.-P. Aubin and A. Cellina, Differential Inclusions: Set-Valued Maps and Viability Theory, vol. 264 of
Grundlehren der Mathematischen Wissenschaften, Springer, Berlin, Germany, 1984.

[19] J.-P. Aubin and H. Frankowska, Set-Valued Analysis, vol. 2 of Systems and Control: Foundations and
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