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1. Introduction

In a recent paper [1], by applying a fixed-point index theorem in cones, Jiang and Weng
studied the existence of positive solutions for the boundary value problems described by
second-order functional differential equations of the form

y'(x)+r(x)f(y(w(x))) =0, 0<x<1,
ay(x) - Py'(x) =¢(x), a<x<0, (1.1)
Yy(x) +6y'(x) =n(x), 1<x<b.

Aykut [2] applied a cone fixed-point index theorem in cones and obtained sufficient
conditions for the existence of positive solutions of the boundary value problems of
functional difference equations of the form

-A*y(n-1) = f(n,y(wn)), nelab],
ay(n—-1) - pAy(n-1) =é(n), ne[r,a], (1.2)
Yy(n) + 6Ay(n) =n(n), ne [b,m].



2 Advances in Difference Equations

In this article, we are interested in proving the existence and multiplicity of positive
solutions for the boundary value problems of a second-order functional dynamic equation of
the form

-2V () +qt)y () = f(Ly(w(D)), telab],
ay(p(t)) - Py* (p(t)) = &(t), te [m,a], (13)
yy(t) + 6y () = n(t), te b7

Throughout this paper we let T be any time scale (nonempty closed subset of R) and [a, b]
be a subset of T such that [a,b] = {t € T, a <t < b}, and for t € [1y, a], t is not right scattered
and left dense at the same time.

Some preliminary definitions and theorems on time scales can be found in books [3, 4]
which are excellent references for calculus of time scales.

We will assume that the following conditions are satisfied.

(H1) g(t) € C[a,b], q(t) > 0.

(H2) f : [a,b] xR — Ris continuous with respect to y and f(t,y) > 0 for y € R*, where
R* denotes the set of nonnegative real numbers.

(H3) w(t) defined on [a, b] satisfies

c=inf{w(t):a<t<b}<b,

14
d=sup{w(t):a<t<b}>a. (14)

Let Ey :={t € E:a <w(t) < p(b)} be nonempty subset of
E:={te[ab]:a<w(t) <b}. (1.5)

(H4) a,6,y,6 20, a+ >0,y +6>0;

ifq(t)=0(a<t<b), thena+y>0;-y/6 € R* for 6 >0, where R* denotes the set
of all positively regressive and rd-continuous functions.

(H5) §(#) and 7(t) are defined on [71,0(a)] and [b,0(7)], respectively, where 7, :=
min{a,c}, » := max{b, d}; furthermore, é(a) = n(b) = 0;
é(o(t)) > O, for te [Tl,a] as ﬂ = O,
f é(s)es/p)(s,00Vs >0, forte [r,a] as p>0;
t
1.6
n(t) >0, forte [b,n] asé=0; (1.6)

t
e_y/g(t,O)J 1(s)es(—y/5)(0(s),0)As >0, for t € [b, 1] as 6 > 0.
b
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There have been a number of works concerning of at least one and multiple positive
solutions for boundary value problems recent years. Some authors have studied the problem
for ordinary differential equations, while others have studied the problem for difference
equations, while still others have considered the problem for dynamic equations on a time
scale [5-10]. However there are fewer research for the existence of positive solutions of
the boundary value problems of functional differential, difference, and dynamic equations
[1,2,11-13].

Our problem is a dynamic analog of the BVPs (1.1) and (1.2). But it is more general
than them. Moreover, conditions for the existence of at least one positive solution were
studied for the BVPs (1.1) and (1.2). In this paper, we investigate the conditions for the
existence of at least one or three positive solutions for the BVP (1.3). The key tools in our
approach are the following fixed-point index theorem [14], and Leggett-Williams fixed-point
theorem [15].

Theorem 1.1 (see [14]). Let E be Banach space and K C E be a cone in E. Let v > 0, and define

Q, ={xeK:|x|| <r}. Assume A : Q, — K is a completely continuous operator such that Ax # x
for x € 0Q,.

(1) If ||Au|| < ||u|| for u € 0, then i(A, Q,, K) = 1.

(ii) If || Aull > ||ull for u € B, then i(A,Q,, K) = 0.

Theorem 1.2 (see [15]). Let D be a cone in the real Banach space E. Set

D= {xep:xl<r,

(1.7)
D(y,p,q) ={xepP:p<e), x| <q).

Suppose that A : P, — P, is a completely continuous operator and ¢ is a nonnegative continuous

concave functional on P with ¢(x) < ||x|| for all x € P,. If there exists 0 < p < q < s < r such that
the following conditions hold:

(i) {(x € Py, q,s) : ¢p(x) > g} #{} and ¢(Ax) > g forall x € P(y, q,5);
(i) [|Ax|| < p for |Ix|| < p;

(iii) ¢ (Ax) > g for x € P(g,q,r) with || Ax|| > s.
Then A has at least three fixed points x1, x», and x3 in /3r satisfying

lxill <p, @(x2) >q, p<l|xsll with ¢g(x3) <gq. (1.8)
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2. Preliminaries

First, we give the following definitions of solution and positive solution of BVP (1.3).

Definition 2.1. We say a function y(t) is a solution of BVP (1.3) if it satisfies the following.

(1) y(t) is nonnegative on [p(71), o(T2)].
(2) y(t) = y(mi;t) as t € [p(T1), a], where y(71;t) : [p(T1),a] — [0, o) is defined as

ea/p(t, 0) [%f é(s)ea/p) (s,0)Vs + esrp)(a,0)y(a)|, if p>0,
y(Ti;t) = : ' 2.1)
;é(o(f))f if p=0.

(3) y(t) = y(m;t) ast € [b,0(12)], where y(1;t) : [b,0(T2)] — [0, o) is defined as

1" .
e—y/5(t,0) [EI 1(s)ec(-y/s)(0(s),0)As + ec(—y/6) (b, 0)y(b)|, if 6>0,
b
y(2t) = . (2.2)
- (t)/ if 6=0.
Y’T

(4) y is A-differentiable, y* : [p(a),b] — R is V-differentiable on [a,b] and (yA)v :
[a,b] — R is continuous.

(5) —y*V (1) +q()y(t) = f(t, y(w(t)), for t € [a,b].

Furthermore, a solution y(t) of (1.3) is called a positive solution if y(t) > O for t € [a, b].
Denote by ¢(t) and () the solutions of the corresponding homogeneous equation

~y*7(t) +q()y(t) =0, telab], (2.3)

under the initial conditions

¢(p(a)) =B, ‘PAA (p(@) = a, 2.4
p) =06 ¢=(b)=-y.

Set
D = Wiy, 9) = g(H)e™ () — g (Do (t). (2.5)

Since the Wronskian of any two solutions of (2.3) is independent of ¢, evaluating at t =
p(a), t = b and using the initial conditions (2.4) yield

D = ay(p(a)) - Py (p(a)) = yp(b) + 59" (b). (2.6)
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Using the initial conditions (2.4), we can deduce from (2.3) for ¢(t) and ¢ (t), the following
equations:

t T
o(t) =+ at - pla) + [ ( )f L AEp(Vsar @7)
p(a)/ p(a

b b
pt)=6+ylb-1t)+ J‘tf q(s)p(s)Vs Ar. (2.8)

(See [8].)

Lemma 2.2 (see [8]). Under the conditions (H1) and the first part of (H4) the solutions ¢(t) and
@ (t) possess the following properties:

p(t) >0, te[p(a),o®)], ¢t) >0, te[p(a)b],
@(t) >0, te(p(a),od)], w(t) >0, te[p(a)b), (2.9)
() >0, telp(a)b], ¢*(t)<0, te [p(a),b].

Let G(t, s) be the Green function for the boundary value problem:

—y*V () +qt)y() =0, telab],
ay(p(a)) - By* (p(a)) =0, (2.10)
yy(b) + 6y*(b) =0,

given by

G(t,s) =

1 {tp(t)tp(s), if p(a) s <t<ob), (2.11)

D {¢(s)e(t), if p(a)<t<s<o(b),

where ¢(t) and ¢ (t) are given in (2.7) and (2.8), respectively. It is obvious from (2.6), (H1)
and (H4), that D > 0 holds.

Lemma 2.3. Assume the conditions (H1) and (H4) are satisfied. Then

(i) 0< G(t,s) <G(s,s) fort,s € [p(a),b],
(ii) G(t,5) >TG(s,s) fort € [a,p(b)] and s € [p(a),b],

where

I = min {I}, I}, (2.12)
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in which
b b -1
L={6+(b-p®)[y+6q(b)(b-p®))]}- {6 +y(b-p(a)) + I I g(s)g(s)Vs AT} ,
pla)/ =

b T -1
L= (p+a(a=p(@)) - {p+ (b~ p(@) +L( )f ( )q(s)q»(swsm} .
a)Y p(a
(2.13)

Proof. ¢(t) > O, for t € [p(a),o(b)], and ¢(t) > O, for t € [p(a),b]. Besides, ¢(t) is

nondecreasing and ¢ (t) is nonincreasing, for ¢ € [p(a), b]. Therefore, we have

1 {tp(t)rp(s), itp@sssisot) -
D\ gs)et), if pla) <t <s<o)

So statement (i) of the lemma is proved. If G(s, s) = 0, for a given s € [p(a), b], then statement
(ii) of the lemma is obvious for such values. Now, s € [p(a),b] and G(s, s) #0. Consequently,
G(s,s) > 0, for all such s. Let us take any ¢ € [a, p(b)]. Then we have for s € [p(a),t],

Gis) _ o) _ y(p®)
G(s,s)  ¢(s) ~ ¢(p(a))
= {6+ (b-p(®)) [y +649(b)(b-p(b))] } (2.15)

{5 +r@-pta) + f:(a)fims)qf(s)% Ar}lf

and we have for s € [t,b],

G(t,s) o) _opla) ~ ' B boopT 1
G(s,s)  ¢(s) 2 o) {B+a(a-p(a))} {ﬁ+a(b p(a)) +Jp(a)fp(u)q(s)¢(s)Vs AT} )

(2.16)

Let B = C[p(m1),0(12)] be endowed with maximum norm |[|y|| := max,()<t<o () |V (t)]
for y € B, and let K C B be a cone defined by

K={yeB: min v >Tivl}, (217)

where I'is as in (2.12).
Suppose that y(t) is a solution of (1.3), then it can be written as

y(mi;t), if p(m) <t<a,
b
y(t) = f G(t,s)f(s,y(w(s)))Vs, ifa<t<bp, (2.18)
p(a)

y(12t), if b<t<o(m),
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where
1(° )
easp(t,0) H £(5)eata/p) (5,0) Vs + eorp (@, O)y(a)], i p(r)<t<a, p>0,
y(Tl;t) = 1 16 t
Eé(o(t)), if p(r1) <t<a, p=0,
1 t
e-116(t,0) |5 [ 1(6)estym(0(5), 0088
y(Tz; t) = + e@(—}’/ﬁ)(bfo)y(b)]/ iftb<t< G(TZ)/ 6> 0,
%ﬂ(t), if b<t<o(m), 6=0.

(2.19)

Throughout this paper we assume that uy(t) is the solution of (1.3) with f = 0. Clearly,
uy(t) can be expressed as follows:

up(ri;t), if p(m) <t<a,
ug(t) =40, ifa<t<b, (2.20)

up(mp;t), ifb<t<o(m),

where
1 a .
Bea/ﬂ(t,O)J é(s)es/p)(s,0)Vs, if p(r1) <t<a, p>0,
uo(Tl,'t) = t

1 .
Litotn), it p(r) <t<a =0,

: t (2.21)

Se,y/é(t,O)I 1n(s)es(—y/5)(0(s),0)As, if b<t<o(r), 6§>0,

ug(m;t) = b

;U(t), ifb<t<o(m), 6=0.

Let y(t) be a solution of (1.3) and u(t) = y(t) — uo(t). Noting that u(t) = y(t) for
t € [a,b], we have

u(ti;t), if p(r1) <t<a,
b
u(t) = I G(t,s)f(s,u(w(s)) +up(w(s)))Vs, ifa<t<b, (2.22)
p(a)

u(m;t), ifb<t<o(m),
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where
a 7 7 f S S 7 7
oy = [0 o<t
, 1 Ti)st=sa p=y,
PR (2.23)
e_ys(t,b)y(b), ifb<t<o(m), 6>0,
u(m;t) = .
0, ifb<t<o(m), 6=0.
Define an operator A : K — K as follows:
(Aiu) (1), if p(m1) <t<a,
b
(Au)(t) = J‘ G(t,s)f(s,u(w(s)) +ug(w(s)))Vs, ifa<t<b, (2.24)
p(a)
(Azu)(t), ifb<t<o(m),
where
b
exsp(t, a)j G(a,s)f(s,u(w(s)) +up(w(s)))Vs, if p(r1) <t<a,p>0,
ity = | D @ (s u(els) +uo(we) Vs, it p(m) <tsap
0, if p(r1) <t<a, p=0,
b
e /5(t,b)J‘ G(b,s)f(s,u(w(s)) +ug(w(s)))Vs, ifb<t<o(m), 6§>0,
(A2u) (t) = Y (@) f( ( ) 0( )) ( 2)
0, if b<t<o(m), 6=0.
(2.25)
It is easy to derive that y is a positive solution of BVP (1.3) if and only if u = y — ug is
a nontrivial fixed point u of A : K — K, where 1 be defined as before. O

Lemma 2.4. A(K) C K.

Proof. For u € K, we have Au(t) >0, t € [p(11),0(12)]. Moreover, we have from definition of
A that Au(t) < Au(a) and Au(t) < Au(b), for t € [p(m1),a] and t € [b,0(m)], respectively.
Thus, ||Au|l = ||Aull[ap), Wwhere ||Aull[ap; = max{|Au(t)] : a < t < b}. It follows from the
definition K and Lemma 2.3 that

b
asrgipr}b)(Au)(t) = asntgr(lb)fp(a)G(t, s)f(s,u(w(s)) +uo(w(s)))Vs

b
>T|  G(s,8)f(s,u(w(s)) +ug(w(s)))Vs
)

pla (226)

b
> Fmaxj ( )G(t, s)f(s,u(w(s)) +uo(w(s)))Vs
pla

a<t<b

2 Il|Aulliap) =Tl Aull, t€[a,b].

Thus, A(K) C K. O
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Lemma 2.5. A: K — K is completely continuous.

Lemma 2.6. If

tim L8 _ g g L0

v—0* [4] U —+00 (%

= oo, (2.27)

forall t € [a,b], then there exist 0 < ry < Ry < oo such that i(A,K,,K) =0, for 0 < r < ry and
i(A,Kg, K) =0, for R> Ry.

Proof. Choose M > 0 such that

M| G(s,s)Vs> 1. (2.28)
Eq

By using the first equality of (2.27), we can choose ry > 0 such that

ft,v)>Mv, 0<v<r. (2.29)

If u € 0K, (0 < r < 1p), then for £y € [a, p(b)], we have

b

(Au)(to) = f )G(to, s)f(s,u(w(s)) +ug(w(s)))Vs

pla

> Ffb )G(s, s)f (s, u(w(s)) + up(w(s)))Vs

P

G 4 7
> I"J‘E1 (s,5)f(s,u(w(s)))Vs (2.30)
>TM| G(s,s)u(w(s))Vs

Ey

2F2||u||MI G(s,s)Vs
Ey

> [fae]l-
Therefore we get

|Aull > [lull, VYue€oK,. (2.31)

Thus, we have from Theorem 1.1, i(A,K,,K) = 0, for 0 < r < ry. On the other hand, the

second equality of (2.27) implies for every M > 0, there is an Ry > ry, such that

f(t,v)>Mv, v>TIR,. (2.32)
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Here we choose M > 0 satisfying (2.28). For u € 0Kg, R > Ry, we have definition of K that
u(t) 2Tlul| =TR, te€[a pb)] (2.33)

It follows from (2.32) that

b
(Au)(ty) = )G(to, s)f (s, u(w(s)) +uo(w(s)))Vs

pla

b
> FI ( )G(s,s)f(s,u(w(s)) +up(w(s)))Vs
pla

>T| G(s,8)f(s,u(w(s)))Vs
| G(5,9)f (5 u(w()) -
ZFMI G(s,s)u(w(s)))Vs
Ey
ZszRI G(s,s)Vs
Eq
> R = |ju]|.
This shows that
|Aull > [lull, VYu € Kkg. (2.35)

Thus, by Theorem 1.1, we conclude that i(A, Kg, K) = 0 for R > Ry. The proof is therefore
complete. O

3. Existence of One Positive Solution

In this section, we investigate the conditions for the existence of at least one positive solution
of the BVP (1.3).

In the next theorem, we will also assume that the following condition on f (¢, v).

(Hé):

t,v . t,v
lim inf min M > k), lim sup max M
v—0* telab] D v—+oo tElab] O

< q./\l, (31)
where k > 0 is large enough such that

b
kI'| ¢i(s)Vs > f p1(s)Vs, (3.2)
E; p(a)
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and g > 0 is small enough such that
p(b) b
tf pevszaf pievs, (33)
p(a) p(a)

where @1 (t) (p1(t) > 0,t € [a,b]) is the eigenfunction related to the smallest eigenvalue
A1 (A1 > 0) of the eigenvalue problem:
~p7 () + g () = Apr (B),

A N (3.4)
api(p(a)) - Por (p(a)) =0, yop1(b) + 607 (b) = 0.

Theorem 3.1. If (H1)-(H6) are satisfied, then the BVP (1.3) has at least one positive solution.

Proof. Fix0 <m <1 < my and let fi(u) = u™+u™ for u > 0. Then, fi(u) satisfies (2.27). Define
A:K - K by

(Aqu)(t), if p(r1) <t<a,
- b
(Au)(t) = J‘ G(t,s) fr(u(w(s)) +up(w(s)))Vs, if a<t<bp, (3.5)

(a)

(1%23() (1), ifb<t<o(m),

where
b
(Alu)(t) _ ea/p(t, a)fp(a)G(a, s) f1(u(w(s)) +uo(w(s)))Vs, if p(r) <t<a, p>0,

0, if p(m1) <t<a, p=0,
b

(Azu) (") = e_y/s(t,b) P(a)G(b, s) f1(u(w(s)) +ug(w(s)))Vs, ifb<t<o(m), 6>0,

0, ifb<t<o(m), 6=0.
(3.6)

Then A isa completely continuous operator. One has from Lemma 2.6 that there exist 0 < 7y <
Ry < oo such that

0 <7 <7y implies i(A, K,,K) =0, (3.7)
R > Ry implies i(A, Kg, K) =0. (3.8)

Define H : [0,1] x K — Kby H(t,u) = (1 -t)Au + tAu then H is a completely continuous
operator. By the first equality in (H6) and the definition of f;, therearee >0and 0 <r; <1y
such that

ft,u) > (kM +e)u, Vielab],0<u<n,
<u<rnm.

fiw) > (kM +€)u, 0 (3.9)
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We now prove that H(t,u) #u for all t € [0,1] and u € 0K,,. In fact, if there exists ty € [0,1]
and u; € 0K,, such that H (tp, u1) = uy, then u; (t) satisfies the equation

—ubV(t) + g (t)

= (1—to) f(t,ur (w(t)) + ug(w(t))) +tof1(ur(w(t)) +up(w(t))), a<t<b (3.10)
and the boundary conditions
s (p(1)) - pud (p(1) =0, € [ry,a], o)

yur(t) +6uf(t) =0, te[bm].

Multiplying both sides of (3.10) by ¢ (¢), then integrating from a to b, and using integration
by parts in the left-hand side two times, we obtain

b

M p1(s)uy(s)Vs
p(a)

b
= J. [(1-t0) f(s,ur(w(s)) +uo(w(s))) +tof1(ur(w(s)) +uo(w(s)))]gi(s)Vs
S (3.12)
=(1-t) ( )f(s,ul (w(s)) +uo(w(s)))pi(s)Vs
pla

b

+1o ( )fl (u1(w(s))) +ug(w(s)))pi(s)Vs.
pla

Combining (3.9) and (3.12), we get

b

A p1(s)ur(s)Vs > (1 - to)f f(s,u1(w(s)))pi(s)Vs + tof fi(u(w(s)))pi(s)Vs
pla) E; E;
> (1-to)(kAs + e)jE u1 (w(s))pi(s)Vs
+to (kA + e)fE u1 (w(s))gi(s)Vs
= (M + %)kJE1¢1(s)u1 (w(s))Vs
> ()q + %)kf||u1||JE ¢1(s)Vs

B b
> (.)Ll + E) ||z || ¢1(5)Vs.
pla)

(3.13)
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We also have

b

b
A ¢1(s)u1(s)Vs < Aq||ua ||f 1(s)Vs. (3.14)
p(a) p(a)

Equations (3.13) and (3.14) lead to

A > A+ % (3.15)

This is impossible. Thus H (t,u) #u for u € 0K,, and t € [0,1]. By (3.7) and the homotopy
invariance of the fixed-point index (see [11]), we get that

i(A K, K)=i(H(©,"),K,,K)=i(H(,),K,,K) =i(A, K, K) =0. (3.16)

On the other hand, according to the second inequality of (H6), there exist € > 0 and R’ > Ry
such that

ftu)<(gh—€e)u, u>R, teab] (3.17)
We define

C:= max |f(t,u)-(gh —e)u|+1, (3.18)

a<t<b,0<u<R’
then it follows that

fu)<(ghi—e)u+C, u>0, telab]. (3.19)

Define H; : [0,1] x K — K by H;(t,u) = tAu, then H; is a completely continuous operator.
We claim that there exists R; > R’ such that

Hy(t,u)#u, forte[0,1], ue K, |lu|| > R;. (3.20)
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In fact, if Hq(tp,u1) = u; for some u; € K and 0 <ty <1, then

b

b
Alf m(s)qu(s)Vssj Flo1a(@9) + (@ )gr(5)7s

pla) pla
. b b
< q()q - —> ||ze1 + 0| ¢1(s)Vs+C ¢1(s)Vs (3.21)
q pla) pla)
. b b
<a(i-ull[ pvsraf pevs
q p(a) p(a)
b p(b)
N ICICI IR O PIELE
pla) p(@)

)

p(b
>MO||wa|[|  ¢1(s)Vs (3.22)
)

pla

b
> hglll[ )7,
p(a)

where Cq = g(A1 — €/q)|luoll + C. Combining (3.21) with (3.22), we have

Ci  ~
||| < ?1 = Ri. (3.23)

Let Ry = max{R, fil} + 1. Then we get

Hi(t,u)#u, forte[0,1],uek, |ul|>R;. (3.24)

Consequently, by the homotopy invariance of the fixed-point index, we have

i(A/KRUK) = i(Hl(ll')/KRuK) = i(Hl(O/')/KRUK) = i(e/KRuK) =1, (325)

where © is zero operator. Use (3.16) and (3.25) to conclude that

i(A,Kg, \ Ky, K) =i(A, Kg, K) —i(A K, K)=1-0=1. (3.26)

Hence, A has a fixed point in (Kg, \ K,).

Let y(t) = u(t) + uo(t). Since y(t) = u(t) fort € [a,b] and 0 < 11 < ||u|| = ||lulljap =
¥lliap < Ru.

(H7)

, f(t,0)
lim sup max
00+ lelabl U

t,v
lim inf min f(t,)
v—+oo telab] O

< q.)»l,
(3.27)

>kl ¢&()=0,7(t)=0.
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Theorem 3.2. If (H1)-(H5) and (H7) are satisfied, then the BVP (1.3) has at least one positive
solution.

Proof. Define H; : [0,1] x K — K by Hi(t,u) = tAu, then H; is a completely continuous
operator. By the first inequality in (H7), there exist € > 0 and 0 < r; < rg such that

ft,v) < (ghi—€)v, Vie[abl,0<v<m. (3.28)

We claim that Hi(t,u)#u for 0 < t < 1 and u € 0K,,. In fact, if there exist 0 < tp < 1 and
u; € 0K,, such that Hy(to, u1) = ui, then u(t) satisfies the boundary condition (3.11). Since
&) =0,n(t) =0, we have uy(t) = 0. Then we have

—ufV () + gt (t) = tof (L ur (w(t))), a<t<b. (3.29)

Multiplying the last equation by ¢ (t) integrating from a to b, by (3.28), we obtain

b b
M p1(s)ur(s)Vs = tg f(s,u1(w(s)))pi(s)Vs
p(@ p(@
b
< j f(s,ur1(w(s)))pi(s)Vs (3.30)
p(a)

b
<(@m-e)ml]  @i(s)Vs,
p(a)

then we have

p(b)

b
Alf m(s)«,ol(swslef 11(5)p1(5) Vs

pla) p(a)
)

p(b
>MO||wa|[|  ¢1(s)Vs (3.31)
)

pla
b

>Mgllm||  ¢1(s)Vs.
p(a)

Equations (3.30) and (3.31) lead to

)qq < )lq] — €. (3.32)
This is impossible. By homotopy invariance of the fixed-point index, we get that

i(A K, K)=i(H:i(1,-),K,,K) =i(H1(0,-),K;,,K) =i(©,K,,,K) = 1. (3.33)
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Define H : [0,1] x K — Kby H(t,u) = (1 -t)Au + tAu, then H is a completely continuous

operator. By the second inequality in (H7), and definition of f;, there exist ¢ > 0 and R' > Ry
such that

ft,u) > (kA +e)u, u>R,telab],

fi(w) > (kA1 +€)u, u>R. (334)
We define
C:= astgrg}gngRJf(t, u) — (kA +e)u| + Orgr:g)}gjfl(u) - (kM +e)u|+1, (3.35)
then, it is obvious that
ft,u) > (kM +e)u—-C, Vie[ab],u>0, (3.36)
fi(w) > (kA +e)u-C, u>0.
We claim that there exists R; > R’ such that
H(t,u)#u, forte[0,1], ueK, |lu|| > R;. (3.37)

In fact, if H(tp,u1) = u; for some u; € K and 0 < fy < 1, then using (3.36), it is analogous to
the argument of (3.13) and (3.14) that

b b

A ¢1(8)u1(s)Vs = f [(1T-to) f(s,u1(w(s)) +tof1(ur(w(s))))]pi(s)Vs

p(a) p(a)

> [ 10-10) £ (@) + tof (11 ()] (5) Vs

> IE {(Q=to) [(kh1 + €)ur(w(s)) — C] +to[(kAi + €)ur (w(s)) — C]}
x p1(s)Vs

= IE [(kA + €)ur (w(s)) = Clgi(s)Vs

> ()q + %)kl"”ul“f ¢1(s)Vs - Cj ¢1(s)Vs,
E1 El

b

b
M| @i(s)ui(s)Vs < A1||u1||f ¢1(s)Vs < A1||u1||kaE ¢1(s)Vs.
p(a) p(a) 1

(3.38)

Equation (3.38) leads to |lu1]| < C/el = R;.Let Ry = max{R, Ry} + 1. Then we get

Hy(t,u)#u, forte0,1], ue K, |lu|| > R;. (3.39)
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Consequently, by (3.8) and the homotopy invariance of the fixed-point index, we have
i(A, Kg, K) =i(H(0,"),Kg, K) =i(H(1,"),Kg,, K) = i(A,Kg,, K) =0. (3.40)

In view of (3.33) and (3.40), we obtain

i(A, Kg, \ K, K) =i(A,Kg,K) —i(A K, ,K)=0-1=-1. (3.41)

Therefore, A has a fixed point in (K, \ K;,). The proof is completed. O

Corollary 3.3. Using the following (H8) or (H9) instead of (H6) or (H7), the conclusions of Theorems
3.1 and 3.2 are true. For t € [a,b],
(H8)

lim (f(t,v)) =400, lim <f(t,v)) =0 (sublinear);

v—0* v (3.42)

(H9)

lim (@) =0, lim <@> =+oo (superlinear), ¢(t) =0, n(t) =0. (3.43)

v—0F U — +00

4, Existence of Three Positive Solutions

In this section, using Theorem 1.2 (the Leggett-Williams fixed-point theorem) we prove the
existence of at least three positive solutions to the BVP (1.3).

Define the continuous concave functional ¢ : K — [0,00) to be ¢(u) :=
MmiNye[q,p(p))%(t), and the constants

p(b) -1
M :=| min G(t,s)Vs] , (4.1)
tela,p®)]) p(a)
b
N := G(s,s)Vs. (4.2)
p(a)

Theorem 4.1. Suppose there exists constants 0 <p < q < q/I < r such that

(D1) f(t,v) <p/N fort € [a,b],v € [0,p];
(D2) f(t,v) 2 gM fort € [a,p(b)], v € [q,4/T];
(D3) one of the following is satisfied:

(a) lim sup,, _, ,,MaXse[q,b] (f(t,v)/v) <1/N,
(b) there exists a constant r > q /T such that f(t,v) <r/N fort € [a,b] and v € [0, 7],
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where I', M, and R, are as defined in (2.12), (4.1), (4.2), respectively. Then the boundary value
problem (1.3) has at least three positive solutions uy, up, and uz satisfying

s || < p. teﬁq,:wf}:)](m)(t) >q, p<||us|| with tefgﬁ}))}(@)(t) <q. (4.3)

Proof. The technique here similar to that used in [5] Again the cone K, the operator A is the
same as in the previous sections. For all u € K we have ¢ (u) < ||u||. If u € K, then |lu]| < r
and the condition (a) of (D3) imply that

t,
lim sup maxf( v) < !

—. 4.4
v telab] O N (44)

Thus there exist a { > 0 and e < 1/R such that if v > ¢, then maxe[a) (f(t,v)/v) < €. For
A:=max{f(t,v) :v e [0,¢], t €[ab]}, wehave f(t,v) <ev+Aforallv >0, forallt € [a,b].
Pick any

q A
r>max{1:,l/N_€}. (4.5)

Then u € K, implies that

b

| Au|| = trr[[az(]f G(t,s)f(s,u(w(s)))Vs
€labl) p(a)
(4.6)

< (ellul| + \)N <erN +r(1-eN) =r.

Thus A: K, — K,.
The condition (b) of (D3) implies that there exists a positive number r such that
f(t,v)<r/Nforte[ablandv e [0,r]. Ifu € K,, then

%

b
-
]f )G(t,s)f(s,u(w(s)))VsS (ﬁ)N <r. 4.7)

|Au|| = max
te[ab pla

Thus A : K, — K,. Consequently, the assumption (D3) holds, then there exist a number r
such thatr > g/T'and A : K, — K,.

The remaining conditions of Theorem 1.2 will now be shown to be satisfied.

By (D1) and argument above, we can get that A : Ep — K. Hence, condition (ii) of
Theorem 1.2 is satisfied.

We now consider condition (i) of Theorem 1.2. Choose uk (t) = (s + q) /2 for t € [a, b],
where s = q/I'. Then ux (t) € K(,q,q/T) and ¢(ux) = ¢s((s+q)/2) > g, so that {K(¢,p,q/T) :
¢(u) > q}l#{}. Foru € K(¢,q,9/T), we have g < u(t) < q/T, t € [a, p(b)]. Combining with
(D2), we get

f(t,u) >gM, (4.8)
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fort € [a, p(b)]. Thus, we have

b
¢(Au) = min f G(t,s)f (s,u(w(s)))Vs
te[arp(b)] p(a)
p(b) (4.9)

. qM
> min G(t,s)f(s,u(w(s)))Vs > — =g.
Jmin [ G 9 ue)vs2 G =g

As aresult, u € K(¢, g, s) yields ¢ (Au) > g.
Lastly, we consider Theorem 1.2(iii). Recall that A : K — K.If u € K(¢,q,r) and
||Aul| > g/T, then

. 9
Au) = A >T||A I's=g. 4.1
¢(Au) = min Au(t)> Tl Au| > T = g (410)

Thus, all conditions of Theorem 1.2 are satisfied. It implies that the TPBVP (1.3) has at least
three positive solutions u;, uy, uz with

||| <p, @) >q, p<|us|| with¢(us) <gq. (4.11)

O

5. Examples

Example 5.1. Let T = {(n/2) : n € Ny}. Consider the BVP:

-yAV () +yt) =1\/y2t-1), te€[0,3]CT,
y(p(h) =2y (p(t)) =¥, te[-1,0], (5.1)
3y(t) +4y*(t) =t-3, te[3,5].

Thena=0,b=3,71=-1,1m=5a=1,=2,y=3,06=4and
Q(t) = 1/ ‘;(t) = tzl Tl(t) =t- 3/ f(t/ U) = \/5/ (U(t) =2t-1 (52)

Since limy, o+ (f (t, ) /v) = +oo, limy, .o (f (£, ) /v) = 0. It is clear that (H1)—(H5) and (HS8)
are satisfied. Thus, by Corollary 3.3, the BVP (5.1) has at least one positive solution.

Example 5.2. Let us introduce an example to illustrate the usage of Theorem 4.1. Let

4 2
T = {nz—’ig:neNO}u{zL}. (5.3)
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Consider the TPBVP:
ATl = 500y% (£ +1) [g 2]
y2(£2+1) +300° 571 5.
y(0) =0, '
y2(t) =0, te[2,5].
Thena=2/5b=2,1=2/51%=5a=1,6=0,6=1,y=0,and
2\? 50002
=£2+1 =(t-=% = = . .
wh=f+1, 0= (-3), a0=0  fev-me 65)
The Green function of the BVP (5.4) has the form
s, if0355t§2—4,
Glt,s) = > (5.6)

t, f0<t<s<—.
1 STSSS 5

Clearly, f is continuous and increasing [0, c0). We can also see that a + y > 0. By (2.12), (4.1),
and (4.2), wegetI'=1/5, M = 65/32, and N = 11496/4225.

Now we check that (D1), (D2), and (b) of (D3) are satisfied. To verify (D1), as
f(1/10) = 0.01666611113, we take p = 1/10, then

f(y) < % =0.03675191371, y € [0,p] (5.7)
and (D1) holds. Note that f(3/2) = 3.722084367, when we set g = 3/2,

f(y) 2 gM =3.046875000, y € [gq,59] (5.8)
holds. It means that (D2) is satisfied. Let » = 1500, we have

f(y) <500 < % =551.2787056, y € [0,7], (5.9)

from lim,, ., f(y) = 500, so that (b) of (D3) is met. Summing up, there exist constants p =
1/10, g =3/2, and r = 1500 satisfying

0<p<q<lﬂ"<r' (5.10)
Thus, by Theorem 4.1, the TPBVP (5.4) has at least three positive solutions y1, y», y3 with

1 3 1 . 3
il <5 92 >3, 15 <lysll with g(ys) <. (5:11)
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