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1. Introduction

Let T be a time scale, that is, T is a nonempty closed subset of R. Let T > 0 be fixed and 0, T
be points in T, an interval (0, T)T denoting time scales interval, that is, (0, T)T := (0, T) ∩ T.
Other types of intervals are defined similarly. Some definitions concerning time scales can be
found in [1–5].

In this paper, we are concerned with the existence of positive solutions for the
following nonlinear first-order periodic boundary value problem on time scales:

xΔ (t) + p (t)x (σ (t)) = λf (t, x (σ (t))) , t ∈ J := [0, T]T, t /= tk, k = 1, 2, . . . , m,

x
(
t+k
) − x

(
t−k
)
= Ik

(
x
(
t−k
))

, k = 1, 2, . . . , m,

x (0) = x (σ (T)) ,

(1.1)

where λ > 0 is a positive parameter, f ∈ C(J × [0,∞), [0,∞)), Ik ∈ C([0,∞), [0,∞)), p :
[0, T]T → (0,∞) is right-dense continuous, tk ∈ (0, T)T, 0 < t1 < · · · < tm < T, and for each
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k = 1, 2, . . . , m, x(t+k) = limh→ 0+x(tk + h) and x(t−k) = limh→ 0−x(tk + h) represent the right and
left limits of x(t) at t = tk.

The theory of impulsive differential equations is emerging as an important area of
investigation, since it is a lot richer than the corresponding theory of differential equations
without impulse effects. Moreover, such equationsmay exhibit several real world phenomena
in physics, biology, engineering, and so forth, (see [6–8]). At the same time, the boundary
value problems for impulsive differential equations and impulsive difference equations
have received much attention [9–19]. On the other hand, recently, the theory of dynamic
equations on time scales has become a new important branch (see, e.g., [1–5]). Naturally,
some authors have focused their attention on the boundary value problems of impulsive
dynamic equations on time scales [20–27]. In particular, for the first-order impulsive dynamic
equations on time scales

yΔ (t) + p (t)y (σ (t)) = f
(
t, y (t)

)
, t ∈ J := [a, b] , t /= tk, k = 1, 2, . . . , m,

y
(
t+k
)
= Ik

(
y
(
t−k
))

, k = 1, 2, . . . , m,

y (a) = η,

(1.2)

where T is a time scale which has at least finitely-many right-dense points, [a, b] ⊂ T, p is
regressive and right-dense continuous, f : T × R → R is given function, Ik ∈ C(R,R). The
paper [21] obtained the existence of one solution to problem (1.2) by using the nonlinear
alternative of Leray-Schauder type.

In [22], Benchohra et al. considered the following impulsive boundary value problem
on time scales

−yΔΔ (t) = f
(
t, y (t)

)
, t ∈ J := [0, 1]T, t /= tk,

y
(
t+k
) − y

(
t−k
)
= Ik

(
y
(
t−k
))

,

yΔ (t+k
) − yΔ (t−k

)
= Ik

(
y
(
t−k
))

,

y (0) = y (1) = 0.

(1.3)

They proved the existence of one solution to the problem (1.3) by applying Schaefer’s fixed
point theorem and the nonlinear alternative of Leray-Schauder type.

In [26], Li and Shen studied the problem (1.3). Some existence results to problem (1.3)
are established by using a fixed point theorem, which is due to Krasnoselskii and Zabreiko,
and the Leggett-Williams fixed point theorem.

In [27], the first author studied the problem (1.1)when λ = 1. The existence of positive
solutions to the problem (1.1) was obtained by means of the well-known Guo-Krasnoselskii
fixed point theorem.

Recently, Sun and Li [28] considered the following periodic boundary value problem:

xΔ (t) + p (t)x (σ (t)) = λf (x (t)) , t ∈ [0, T]T,

x (0) = x (σ (T)) .
(1.4)
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By using the fixed point index, some existence, multiplicity and nonexistence criteria of
positive solutions to the problem (1.4)were obtained for suitable λ > 0.

Motivated by the results mentioned above, in this paper, we shall show that the
problem (1.1) has at least three positive solutions for suitable λ > 0 by using the Leggett-
Williams fixed point theorem [29]. We note that for the case λ = 1 and Ik(x) ≡ 0, k =
1, 2, . . . , m, problem (1.1) reduces to the problem studied by [30].

In the remainder of this section, we state the following theorem, which are crucial to
our proof.

Let E be a real Banach space and K ⊂ E be a cone. A function α : K → [0,∞) is called
a nonnegative continuous concave functional if α is continuous and

α
(
tx + (1 − t)y

) ≥ tα (x) + (1 − t)α
(
y
)

(1.5)

for all x, y ∈ K and t ∈ [0, 1].
Let a, b > 0 be constants, Ka = {x ∈ K : ‖x‖ < a}, K(α, a, b) = {x ∈ K : a ≤ α(x), ‖x‖ ≤

b}.

Theorem 1.1 (see [29]). Let A : Kc → Kc be a completely continuous map and α be a nonnegative
continuous concave functional onK such that α(x) ≤ ‖x‖, ∀x ∈ Kc. Suppose there exist a, b, d with
0 < d < a < b ≤ c such that

(i) {x ∈ K(α, a, b) : α(x) > a}/=φ and α(Ax) > a∀x ∈ K(α, a, b);

(ii) ‖Ax‖ < d∀x ∈ Kd;

(iii) α(Ax) > a, ∀x ∈ K(α, a, c) with ‖Ax‖ > b.

Then A has at least three fixed points x1, x2, x3 in Kc satisfying

‖x1‖ < d, a < α (x2) , ‖x3‖ > d with α (x3) < a. (1.6)

2. Preliminaries

Throughout the rest of this paper, we always assume that the points of impulse tk are right-
dense for each k = 1, 2, . . . , m.

We define

PC = {x ∈ [0, σ(T)]T −→ R : xk ∈ C (Jk, R) , k = 1, 2, . . . , m and there exist

x
(
t+k
)

and x
(
t−k
)
with x

(
t−k
)
= x (tk) , k = 1, 2, . . . , m

}
,

(2.1)

where xk is the restriction of x to Jk = (tk, tk+1]T ⊂ (0, σ(T)]T, k = 1, 2, . . . , m and J0 =
[0, t1]T, Jm+1 = σ(T).

Let

X = {x (t) : x (t) ∈ PC, x (0) = x (σ (T))} (2.2)

with the norm ‖x‖ = supt∈[0,σ(T)]T |x(t)|. Then X is a Banach space.
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Definition 2.1. A function x ∈ PC ∩ C1(J \ {t1, t2, . . . , tm}, R) is said to be a solution of the
problem (1.1) if and only if x satisfies the dynamic equation

xΔ (t) + p (t)x (σ (t)) = λf (t, x (σ (t))) every where on J \ {t1, t2, . . . , tm} , (2.3)

the impulsive conditions

x
(
t+k
) − x

(
t−k
)
= Ik

(
x
(
t−k
))

, k = 1, 2, . . . , m, (2.4)

and the periodic boundary condition x(0) = x(σ(T)).

Lemma 2.2. Suppose h : [0, T]T → R is rd-continuous, then x is a solution of

x (t) = λ

∫σ(T)

0
G (t, s)h (s)Δs +

m∑

k=1

G (t, tk) Ik (x (tk)) , t ∈ [0, σ(T)]T, (2.5)

where

G (t, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ep (s, t) ep (σ (T) , 0)
ep (σ (T) , 0) − 1

, 0 ≤ s ≤ t ≤ σ (T) ,

ep (s, t)
ep (σ (T) , 0) − 1

, 0 ≤ t < s ≤ σ (T) ,
(2.6)

if and only if x is a solution of the boundary value problem

xΔ (t) + p (t)x (σ (t)) = λh (t) , t ∈ J := [0, T]T, t /= tk, k = 1, 2, . . . , m,

x
(
t+k
) − x

(
t−k
)
= Ik

(
x
(
t−k
))

, k = 1, 2, . . . , m,

x (0) = x (σ (T)) .

(2.7)

Proof. Since the method is similar to that of in [27, Lemma 3.1], we omit it here.

Lemma 2.3. Let G(t, s) be defined as Lemma 2.2, then

1
ep (σ (T) , 0) − 1

≤ G (t, s) ≤ ep (σ (T) , 0)
ep (σ (T) , 0) − 1

∀t, s ∈ [0, σ(T)]T. (2.8)

Proof. It is obvious, so we omit it here.

Let

K = {x (t) ∈ X : x (t) ≥ δ ‖x‖} , (2.9)

where δ = 1/ep(σ(T), 0) ∈ (0, 1). It is not difficult to verify that K is a cone in X.
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We define an operator Φ : K → X by

(Φx) (t) = λ

∫σ(T)

0
G (t, s) f (s, x (σ (s)))Δs +

m∑

k=1

G (t, tk) Ik (x (tk)) , t ∈ [0, σ(T)]T. (2.10)

By [27, Lemmas 3.3 and 3.4], it is easy to see thatΦ : K → K is completely continuous.

3. Main Result

Notation 1. Let

f0 = lim
x→ 0

sup max
t∈[0,T]T

f (t, x)
x

, I0 = lim
x→ 0

sup
m∑

k=1

Ik (x)
x

,

f∞ = lim
x→∞

sup max
t∈[0,T]T

f (t, x)
x

, I∞ = lim
x→∞

sup
m∑

k=1

Ik (x)
x

,

(3.1)

and for μ > 0, we define I(μ) = minδμ≤x≤μ
∑m

k=1 Ik(x).

Theorem 3.1. Assume that there exists a number b > 0 such that the following conditions:

(H1) f(t, x) > ep(σ(T), 0)x−ep(σ(T), 0)/(ep(σ(T), 0)−1)I(b) ≥ 0 for δb ≤ x ≤ b, t ∈ [0, T]T;

(H2) f0 + I0 < (ep(σ(T), 0) − 1)/ep(σ(T), 0), f∞ + I∞ < (ep(σ(T), 0) − 1)/ep(σ(T), 0) hold.
Then the problem (1.1) has at least three positive solutions for

ep (σ (T) , 0) − 1
σ (T) ep (σ (T) , 0)

< λ <
1

σ (T)
. (3.2)

Proof. Let α(x) = mint∈[0,σ(T)]T x(t), it is easy to see that α(x) is a nonnegative continuous
concave functional on K such that α(x) ≤ ‖x‖, ∀x ∈ Kc.

First, we assert that there exists c > b such thatΦ : Kc → Kc is completely continuous.
In fact, by the condition f∞ + I∞ < (ep(σ(T), 0) − 1)/ep(σ(T), 0) of (H2), there exist

C0 > b, and 0 < ε < ((ep(σ(T), 0) − 1)/ep(σ(T), 0) − (f∞ + I∞))/2 such that

f (t, x) ≤ (ε + f∞)x,
m∑

k=1

Ik (x) ≤ (ε + I∞)x, for x > C0. (3.3)
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Let C1 = C0/δ, if x ∈ K, ‖x‖ > C1, then x > C0 and we have

(Φx) (t) = λ

∫σ(T)

0
G (t, s) f (s, x (σ (s)))Δs +

m∑

k=1

G (t, tk) Ik (x (tk))

≤ λ
ep (σ (T) , 0)

ep (σ (T) , 0) − 1

∫σ(T)

0

(
ε + f∞) ‖x‖Δs +

ep (σ (T) , 0)
ep (σ (T) , 0) − 1

(ε + I∞) ‖x‖

=

[

λ
ep (σ (T) , 0)

ep (σ (T) , 0) − 1
σ (T)

(
ε + f∞) +

ep (σ (T) , 0)
ep (σ (T) , 0) − 1

(ε + I∞)

]

‖x‖

< ‖x‖ .

(3.4)

Take KC1 = {x | x ∈ K, ‖x‖ ≤ C1}, then the set KC1 is a bounded set. According to that
Φ is completely continuous, then Φ maps bounded sets into bounded sets and there exists a
number C2 such that

‖Φx‖ ≤ C2 for any x ∈ KC1 . (3.5)

If C2 ≤ C1, we deduce that Φ : KC1 → KC1 is completely continuous. If C1 < C2, then
from (3.4), we know that for any x ∈ KC2 \ KC1 , ‖x‖ > C1 and ‖Φx‖ < ‖x‖ ≤ C2 hold. Then
we have Φ : KC2 → KC2 is completely continuous. Take c = max{C1, C2}, then c > b and
Φ : Kc → Kc are completely continuous.

Second, we assert that {x ∈ K(α, δb, b) : α(x) > δb}/=φ and α(Ax) > δb for all x ∈
K(α, δb, b).

In fact, take x ≡ (b + δb)/2, so x ∈ {x ∈ K(α, δb, b) : α(x) > δb}. Moreover, for
x ∈ K(α, δb, b), then α(x) ≥ δb and we have

α (Φx) = min
t∈[0,σ(T)]T

[

λ

∫σ(T)

0
G (t, s) f (s, x (σ (s)))Δs +

m∑

k=1

G (t, tk) Ik (x (tk))

]

≥ λ

ep (σ (T) , 0) − 1
· σ (T)

(

ep (σ (T) , 0)α (x) − ep (σ (T) , 0)
ep (σ (T) , 0) − 1

I(b)

)

+
1

ep (σ (T) , 0) − 1
I(b)

> α (x) ≥ δb.

(3.6)

Third, we assert that there exist 0 < d < δb such that ‖Φx‖ < d if x ∈ Kd.
Indeed, by the condition f0 + I0 < (ep(σ(T), 0) − 1)/ep(σ(T), 0) of (H2), there exist

0 < d < δb, and 0 < ε < ((ep(σ(T), 0) − 1)/ep(σ(T), 0) − (f0 + I0))/2 such that

f (t, x) ≤
(
ε + f0

)
x,

m∑

k=1

Ik (x) ≤
(
ε + I0

)
x, for 0 ≤ x ≤ d. (3.7)
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Then x ∈ Kd, we get

(Φx) (t) = λ

∫σ(T)

0
G (t, s) f (s, x (σ (s)))Δs +

m∑

k=1

G (t, tk) Ik (x (tk))

≤ λ
ep (σ (T) , 0)

ep (σ (T) , 0) − 1

∫σ(T)

0

(
ε + f0

)
x (s)Δs +

ep (σ (T) , 0)
ep (σ (T) , 0) − 1

(
ε + I0

)
‖x‖

≤
[

λ
ep (σ (T) , 0)

ep (σ (T) , 0) − 1

(
ε + f0

)
σ (T) +

ep (σ (T) , 0)
ep (σ (T) , 0) − 1

(
ε + I0

)]

‖x‖

<
ep (σ (T) , 0)

ep (σ (T) , 0) − 1

(
f0 + I0 + 2ε

)
‖x‖

< ‖x‖ < d.

(3.8)

Finally, we assert that α(Φx) > δb if x ∈ K(α, δb, c) and ‖Φx‖ > b.
To do this, if x ∈ K(α, δb, c) and ‖Φx‖ > b, then

α (Φx) ≥ (Φx) (t) ≥ δ ‖Φx‖ > δb. (3.9)

To sum up, all the hypotheses of Theorem 1.1 are satisfied by taking a = δb. Hence Φ
has at least three fixed points, that is, the problem (1.1) has at least three positive solutions
x1, x2 and x3 such that

‖x1‖ < d, a < α (x2) , ‖x3‖ > d with α (x3) < a. (3.10)

Corollary 3.2. Using (H3) f0 = I0 = f∞ = I∞ = 0, instead of (H2) in Theorem 3.1, the conclusion of
Theorem 3.1 remains true.

4. Example

Example 4.1. Let T = [0, 1] ∪ [2, 3]. We consider the following problem on T :

xΔ (t) + x (σ (t)) = λf (t, x (σ (t))) , t ∈ [0, 3]T, t /=
1
2
,

x

(
1
2

+)
− x

(
1
2

−)
= I

(
x

(
1
2

))
,

x (0) = x (3) ,

(4.1)
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where λ > 0 is a positive parameter, p(t) ≡ 1, T = 3, m = 1, and

f (t, x) =

⎧
⎨

⎩

9e6 (t + 1)x2, [0, 1] ,

9e6 (t + 1)x1/2, [1,∞) ,

I (x) =

⎧
⎨

⎩

x2, [0, 1] ,

x1/2, [1,∞) .

(4.2)

Taking b = 1, then by δ = 1/(2e2) it is easy to see that I(b) = minδb≤x≤bI(x) = 1/(4e4).
So, ∀x ∈ [δb, b] = [1/(2e2), 1], we have f(t, x) ≥ (9/4e2) > 2e2 − 1/[(2e2 − 1)2e2] ≥ 2e2x −
(2e2)/(2e2 − 1)1/(4e4) = ep(σ(T), 0)x − ep(σ(T), 0)/(ep(σ(T), 0) − 1)I(b). Obviously, we have
f0 = I0 = f∞ = I∞ = 0.

Therefore, together with Corollary 3.2, it follows that the problem (4.1) has at least
three positive solutions for (2e2 − 1)/(6e2) < λ < 1/3.
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