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1. Introduction

In this paper, we will characterize the stability region of the null solution for the following
class of linear delay difference systems:

x(n + 1) = ax(n) + Bx(n − k) ∀n ≥ k, (1.1)

where a ∈ (0, 1), B is a p × p real matrix, and k is a positive integer.
Similar linear difference systems have been recently investigated by Levitskaya [1]

(focusing on the special case a = 1) and by Kipnis and Komissarova [2] (studying the special
case a = −1). Two-dimensional systems of this form have been thoroughly investigated by
Matsunaga, in the case a = 1 [3, 4] and in the general case a ∈ R [5]. The common starting
point of all these results is the well-known papers of Kuruklis [6] and Papanicolaou [7],
which focus on the scalar difference equation

x(n + 1) − ax(n) + bx(n − k) = 0, (1.2)
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where a, b ∈ R and k ∈ N
∗. A more recent discussion of the stability properties of this scalar

difference equation, based on relatively simple arguments, is presented in [8]. As for the
nondelayed case k = 0, we refer to the recent paper in [9] and the references therein.

System (1.1) can be regarded as the linearization (at the origin) of the following
nonlinear delay difference system:

x(n + 1) = F(x(n), x(n − k)) ∀n ≥ k, (1.3)

where the function F : Ω ×Ω → Ω (with 0 ∈ Ω ⊂ R
p) satisfies F(0, 0) = 0, Dx1F(0, 0) = a · Id

(where Id denotes the p-dimensional identity matrix), and Dx2F(0, 0) = B.
In particular, discrete-time delayed Hopfield-type neural networks described by

x(n + 1) = ax(n) + Tg(x(n − k)) ∀n ≥ k (1.4)

belong to the class of nonlinear difference systems (1.3). In this context, a ∈ (0, 1) is the self-
regulating parameter of the neurons, T ∈ R

p×p is the interconnection matrix, gi : R → R,
i ∈ {1, 2, . . . , p} are the neuron input-output activation functions satisfying gi(0) = 0, and
g : R

p → R
p is defined by g(x) = (g1(x1), g2(x2), . . . , gp(xp))

T . In this framework, stability
and bifurcation results have been obtained in [10] for the two-dimensional case, in [11] for
the case of a single-directional ring of four neurons, and in [12] for a bidirectional ring of p
neurons. Moreover, coexistence of chaos and periodic orbits for a network of this type with
two identical neurons and no self-connections has been observed in [13].

The stability of the null solution of system (1.1) will be investigated by analyzing the
distribution of the roots of the corresponding characteristic equation with respect to the unit
circle. Based on [2, Corollary 2.2], (1.1) is asymptotically stable if and only if all roots of the
equation

det
[
B − zk(z − a)I

]
= 0 (1.5)

lie inside the unit disk. This means that z is a root of the characteristic equation of (1.1) if and
only if zk(z − a) is an eigenvalue of the matrix B.

In the followings, we will denote by λi, i ∈ {1, 2, . . . , p} the eigenvalues of B. Based on
the previous remark, we obtain that the characteristic equation of (1.1) is

p∏
i=1

(
zk(z − a) − λi

)
= 0. (1.6)

The null solution of (1.1) is asymptotically stable if and only if all the roots of the characteristic
equation (1.6) are inside the unit circle. Therefore, in order to characterize the asymptotic
stability of the null solution of (1.1), we first need to analyze the distribution of the roots of
the polynomial Pλ(z) = zk(z−a)−λ, where λ is a complex parameter, with respect to the unit
circle. This requires a generalization of the results first obtained by Kuruklis [6], for the case
when λ is a real parameter.
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2. The Roots of the Polynomial Pλ(z) = zk(z − a) − λ, λ ∈ C

In the followings, we will consider the following two important functions:

ca,k(θ) = cos(k + 1)θ − a cos kθ,

sa,k(θ) = sin(k + 1)θ − a sin kθ,
(2.1)

and the curve Γ in the complex plane given by the following parametric equation:

Γ : u(θ) = ca,k(θ) + isa,k(θ), θ ∈ [−π,π]. (2.2)

Lemma 2.1. Let k ∈ N and a ∈ (0, 1). The function sa,k has exactly k + 2 roots in the interval [0, π],
more precisely, as follows:

(i) θ0
a,k = 0 is a root,

(ii) if k ≥ 1, then there is one root θja,k in every interval ((2j − 1)π/(2k + 1), jπ/(k + 1)) ⊂
((j − 1)π/k, jπ/k), j ∈ {1, 2, . . . , k},

(iii) θk+1
a,k = π is a root.

Moreover, (−1)jsa,k(θ) > 0 for any θ ∈ (θj
a,k
, θ

j+1
a,k

), j ∈ {0, 1, . . . , k}.

Proof. Obviously, 0 and π are solutions of the equation sa,k(θ) = 0 for any k ∈ N.
Considering k ≥ 1, on the interval ((j − 1)π/k, jπ/k), j ∈ {1, 2, . . . , k}, the equation

sa,k(θ) = 0 becomes

sin(k + 1)θ
sin kθ

= a. (2.3)

The function h : ((j−1)π/k, jπ/k) → R defined by h(θ) = sin(k+1)θ/ sin kθ is differentiable
and

h′(θ) = (k + 1) cos(k + 1)θ sin kθ − k cos kθ sin(k + 1)θ

sin2kθ

=
(k + 1)[sin(2k + 1)θ − sin θ] − k[sin(2k + 1)θ + sin θ]

2sin2kθ

=
sin(2k + 1)θ − (2k + 1) sin θ

2sin2kθ
.

(2.4)

Therefore, the sign of h′(θ) depends on the sign of g(θ) = sin(2k+1)θ− (2k+1) sin θ. We have

g ′(θ) = (2k + 1)[cos(2k + 1)θ − cos θ] = −2(2k + 1) sin(k + 1)θ sin kθ. (2.5)

One can easily verify that the only root of g′ in the interval ((j − 1)π/k, jπ/k) is θ� = jπ/(k +
1). Moreover, g′(θ) < 0 for any θ < θ� and g′(θ) > 0 for any θ > θ�. Therefore, the function g
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is decreasing on the interval ((j −1)π/k, θ�) and increasing on (θ�, jπ/k). As g((j −1)π/k) =
−2k sin((j − 1)π/k) ≤ 0 and g(jπ/k) = −2k sin(jπ/k ≤ 0), it results that g(θ) < 0 for any
θ ∈ ((j − 1)π/k, jπ/k).

Hence, the function h is strictly decreasing on the interval ((j − 1)π/k, jπ/k). Hence,
the equation sa,k(θ) = 0 has a single root θja,k in the interval ((j − 1)π/k, jπ/k). Moreover, as

h((2j − 1)π/(2k + 1)) = 1, h(jπ/(k + 1)) = 0 and a ∈ (0, 1), we obtain that this single root θj
a,k

belongs to the interval ((2j − 1)π/(2k + 1), jπ/(k + 1)).
Moreover, for j ∈ {0, 1, . . . , k}we have

sa,k

(
jπ

k + 1

)
= −a sin

(
jkπ

k + 1

)
= −a sin

(
jπ −

jπ

k + 1

)
= a(−1)j sin

(
jπ

k + 1

)
. (2.6)

Since sa,k has constant sign on the interval (θja,k, θ
j+1
a,k ) and θ

j

a,k < jπ/(k + 1) < θj+1
a,k , it follows

that, for any θ ∈ (θj
a,k
, θ

j+1
a,k

), we have

sign[sa,k(θ)] = sign
[
sa,k

(
jπ

k + 1

)]
= sign

[
a(−1)j sin

(
jπ

k + 1

)]
= (−1)j . (2.7)

Lemma 2.2. Let k ∈ N and a ∈ (0, 1). The function c′a,k has exactly k+2 roots in the interval [0, π],
namely

(i) ϕ0
a,k

= 0 is a root;

(ii) if k ≥ 1, then there is one root ϕja,k in every interval (θja,k, jπ/(k + 1)) ⊂ ((j −
1)π/k, jπ/k), j ∈ {1, 2, . . . , k};

(iii) ϕk+1
a,k

= π is a root.

Moreover, the function (−1)jca,k(θ) is strictly decreasing on the interval (ϕja,k, ϕ
j+1
a,k ), j ∈ {0, 1, ..., k},

and

ca,k
(
θ
j

a,k

)
= (−1)j

√
1 + a2 − 2a cos θja,k ∀j ∈ {0, 1, . . . , k + 1}. (2.8)

Proof. The first part of the proof is similar to the proof of Lemma 2.1. Since c′
a,k

(θ) = −(k +
1) sin(k + 1)θ + ak sin kθ, the equation c′

a,k
(θ) = 0 becomes

h(θ) =
ak

k + 1
, (2.9)

where h is the function defined in the proof of Lemma 2.1. We have shown that h is strictly
decreasing on the interval ((j − 1)π/k, jπ/k); hence, the equation c′a,k(θ) = 0 has a single

root on the interval ((j − 1)π/k, jπ/k). Moreover, as h(θj
a,k

) = a, h(jπ/(k + 1)) = 0 and

ak/(k+1) ∈ (0, a), we obtain that this single root ϕj
a,k

belongs to the interval (θj
a,k
, jπ/(k+1)).
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Moreover, for j ∈ {0, 1, . . . , k}we have

c′a,k

(
jπ

k + 1

)
= ak sin

(
jkπ

k + 1

)
= ak sin

(
jπ −

jπ

k + 1

)
= ak(−1)j+1 sin

(
jπ

k + 1

)
. (2.10)

Since c′a,k has constant sign on the interval (ϕja,k, ϕ
j+1
a,k ) and ϕ

j

a,k < jπ/(k + 1) < ϕj+1
a,k , it follows

that, for any θ ∈ (ϕj
a,k
, ϕ

j+1
a,k

), we have

sign
[
c′a,k(θ)

]
= sign

[
c′a,k

(
jπ

k + 1

)]
= sign

[
ak(−1)j+1 sin

(
jπ

k + 1

)]
= (−1)j+1, (2.11)

and hence, the function (−1)jca,k(θ) is strictly decreasing on the interval (ϕj
a,k
, ϕ

j+1
a,k

).

From ca,k(θ)
2 + sa,k(θ)

2 = 1 + a2 − 2a cos θ, we easily obtain that ca,k(θ
j

a,k
)2 = 1 + a2 −

2a cos θja,k. We also observe that ca,k(θ)
2 + sa,k(θ)

2 is strictly increasing on [0, π], and hence,

ca,k(θ)c′a,k(θ) + sa,k(θ)s
′
a,k(θ) > 0 ∀θ ∈ (0, π). (2.12)

It follows that ca,k(θ
j

a,k
)c′
a,k

(θj
a,k

) > 0. Since θ
j

a,k
∈ (ϕj−1

a,k
, ϕ

j

a,k
) for any j ∈ {1, 2, . . . , k +

1} and (−1)j−1ca,k(θ) is strictly decreasing on the interval (ϕj−1
a,k
, ϕ

j

a,k
), we obtain that

(−1)j−1c′a,k(θ
j

a,k) < 0, and hence, (−1)jca,k(θ
j

a,k) > 0. Taking into account that ca,k(θ
j

a,k)
2 =

1 + a2 − 2a cos θj
a,k

, it follows that ca,k(θ
j

a,k
) = (−1)j

√
1 + a2 − 2a cos θj

a,k
.

Remark 2.3. Properties of the curve Γ defined by (2.2):

(a) we can easily see that

|u(θ)|2 = ca,k(θ)
2 + sa,k(θ)

2 = 1 + a2 − 2a cos θ (2.13)

and hence, |u(θ)| is strictly decreasing on the interval [−π, 0] and increasing on the
interval [0, π]. The curve pieces Γ|[−π,0] and Γ|[0,π] are, therefore, simple curves;

(b) moreover

d

dθ

[
tan

(
arg(u(θ))

)]
=

d

dθ

[
sa,k(θ)
ca,k(θ)

]
=
k
(
1 + a2 − 2a cos θ

)
+ 1 − a cos θ

ca,k(θ)
2

> 0. (2.14)

Therefore, as θ increases from −π to π , the corresponding point u(θ) from the curve
Γ moves anticlockwise around the origin;

(c) the curve pieces Γ|[−π,0] and Γ|[0,π] are symmetrical with respect to the real axis, that

is, u(θ) ∈ Γ|[0,π] if and only if u(θ) = u(−θ) ∈ Γ|[−π,0];
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(d) the curve Γ intersects the real axis at the points

u
(
θ
j

a,k

)
= ca,k

(
θ
j

a,k

)
= (−1)j

√
1 + a2 − 2a cos θj

a,k
, j ∈ {0, 1, . . . , k + 1}, (2.15)

which are at the same time the intersection points of the curve pieces Γ|[−π,0] and
Γ|[0,π].

In what follows, we will consider the following curve pieces:

Γj
a,k

= Γ|[−θj
a,k
,−θj−1

a,k
]∪[θj−1

a,k
,θ
j

a,k
], j ∈ {1, 2, . . . , k + 1}. (2.16)

Based on the previous remarks, one can easily see that these are closed curves.
For every j ∈ {1, 2, . . . , k + 1}, let Δj

a,k
denote the domain (open and connected set,

containing the origin) of the complex plane inclosed by the curve Γja,k.

Remark 2.4. For the curves Γj
a,k

and the inclosed domains Δj

a,k
, the following properties hold:

(a) Γj
a,k
∩ Γj+1

a,k
= {ca,k(θ

j

a,k
)} for any j ∈ {1, 2, . . . , k},

(b) ∂Δj

a,k = Γja,k for any j ∈ {1, 2, . . . , k + 1} (here, ∂S denotes the boundary of the set S);

(c) Δ1
a,k ⊂ Δ2

a,k ⊂ · · · ⊂ Δk+1
a,k .

Using all these preliminary notations and results, the following proposition is
obtained.

Proposition 2.5. Considering the polynomial Pλ(z) = zk(z − a) − λ, λ ∈ C, the following hold.

(a) If λ ∈ Δ1
a,k

, then all roots of the polynomial Pλ(z) are inside the unit circle.

(b) If λ ∈ Δj

a,k \Δ
j−1
a,k (with j ∈ {2, 3, . . . , k+1}), then the polynomial Pλ(z) has exactly k−j+2

roots inside the unit circle and j − 1 roots outside the unit circle.

(c) If λ ∈ C \Δk+1
a,k

, then all roots of the polynomial Pλ(z) are outside the unit circle.

(d) If λ ∈ Γj
a,k
\ {ca,k(θ

j−1
a,k

), ca,k(θ
j

a,k
)} (with j ∈ {1, 2, . . . , k + 1}), then the polynomial Pλ(z)

has exactly one simple root on the unit circle, k − j + 1 roots inside the unit circle and j − 1
roots outside the unit circle.

(e) If λ = ca,k(θ
j

a,k
), j ∈ {1, 2, . . . , k}, then the polynomial Pλ(z) has exactly two simple roots

on the unit circle, k − j roots inside the unit circle, and j − 1 roots outside the unit circle.

(f) If λ = ca,k(θ0
a,k

) = 1 − a, then the polynomial Pλ(z) has the simple root z = 1 on the unit
circle and k roots inside the unit circle.

(g) If λ = ca,k(θk+1
a,k

) = (−1)k+1(1 + a), then the polynomial Pλ(z) has the simple root z = −1
on the unit circle and k roots outside the unit circle.

Here, S denotes the closure of the set S.
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Proof. The polynomial Pλ(z) has a root z = eiθ, θ ∈ [−π,π] on the unit circle if and only if

λ = eikθ
(
eiθ − a

)
= ca,k(θ) + isa,k(θ), (2.17)

that is, if and only if λ ∈ Γ.
Furthermore, due to the properties of the curve Γ stated in Remark 2.3, we easily

obtain that the polynomial Pλ(z) has a unique root on the unit circle if and only if λ ∈
Γ \ {ca,k(θ1

a,k
), ca,k(θ2

a,k
), . . . , ca,k(θka,k)}. We also obtain that if λ = ca,k(θ

j

a,k
), j ∈ {1, 2, . . . , k},

then the polynomial Pλ(z) has exactly two roots on the unit circle, namely, z = eiθ
j

a,k and

z = e−iθ
j

a,k .
Moreover, if the polynomial Pλ(z) has a root on the unit circle, then this root is simple.

Indeed, assuming that there exists θ ∈ [−π,π] such that z = eiθ is a root of Pλ(z) and P ′
λ
(z) =

(k + 1)zk − akzk−1 = 0, we obtain that s′a,k(θ) = c
′
a,k(θ) = 0. But we can easily see that

s′a,k(θ)
2 + c′a,k(θ)

2 = (k + 1)2 + a2k2 − 2ak(k + 1) cos θ ≥ (k + 1)2 + a2k2 − 2ak(k + 1)

= (k + 1 − ak)2 > 0,
(2.18)

and hence, a contradiction is obtained.
To prove (a), we will use the argument principle for the investigation of the roots of the

polynomial Pλ(z) = zk(z − a) − λ. In other words, we will study the increase of the argument
of Pλ(z) along the unit circle. Consider the function

G(θ, λ) = Pλ
(
eiθ

)
= eikθ

(
eiθ − a

)
− λ = u(θ) − λ, (2.19)

where u(θ) = ca,k(θ) + isa,k(θ). We will estimate the increase of the argument of G(θ, λ) as θ
increases from −π to π .

From Remark 2.3, we know that |u(θ)| is strictly decreasing on the interval [−π, 0] and
increasing on the interval [0, π], and as θ increases from −π to π , the corresponding point
u(θ) moves anticlockwise around the origin. Moreover, Remark 2.3 provides that the locus of
u(θ) intersects the real axis 2(k + 1) times as θ increases on the interval (−π,π]. Hence, the
increase of the argument of u(θ) as θ increases from −π to π is 2(k + 1)π (see Figure 1).

The locus of G(θ, λ) is obtained by the translation of the locus of u(θ) by the vector
(−Re(λ),−Im(λ)). If λ lies inside the domain Δ1

a,k
, then the increase of the argument ofG(θ, λ)

is the same as the increase of the argument of u(θ), that is, it is equal to 2(k + 1)π . The
argument principle provides that all the roots of the polynomial Pλ(z) are inside the unit
circle, and (a) is proved.

Let j ∈ {1, 2, . . . , k + 1}. The next step of the proof is to show that when the complex
parameter λ = λ1 + iλ2 leaves the domain Δj

a,k
by crossing its boundary Γj

a,k
at a value λ� =

ca,k(θ)+ isa,k(θ), with θ ∈ [−θj
a,k
,−θj−1

a,k
]∪[θj−1

a,k
, θ

j

a,k
], the root z = z(λ) of the polynomial Pλ(z),

which is equal to eiθ when λ = λ�, crosses the unit circle.
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Im

Re

Figure 1: The curve Γ defined by (2.2) for k = 3 and a = 2/3. The blue part represents the curve piece
Γ|[−π,0] and the red part represents the curve piece Γ|[0,π].

In the following computations, we rely on the fact that the roots of the polynomial
Pλ(z) which lie on the unit circle are simple.

As zk+1 − azk = λ1 + iλ2 and zk+1 − azk = λ1 − iλ2, differentiating with respect to λ1 and
then with respect to λ2, we obtain

∂z

∂λ1
=

1
P ′λ(z)

;
∂z

∂λ1
=

1

P ′
λ
(z)

;
∂z

∂λ2
=

i

P ′λ(z)
;

∂z

∂λ2
=
−i

P ′
λ
(z)

. (2.20)

Now we can evaluate that

∂|z|2

∂λ1
= z

∂z

∂λ1
+ z

∂z

∂λ1
=

z

P ′
λ
(z)

+
z

P ′λ(z)
=

2 Re
(
zP ′

λ(z)
)

∣∣P ′
λ(z)

∣∣2
,

∂|z|2

∂λ2
= z

∂z

∂λ2
+ z

∂z

∂λ2
=
−iz
P ′
λ
(z)

+
iz

P ′
λ(z)

=
2Im

(
zP ′λ(z)

)
∣∣P ′λ(z)

∣∣2
.

(2.21)

Given the positive parametrization of the curve Γ, we obtain that T(θ) = c′
a,k

(θ) + is′
a,k

(θ)

is tangent to Γj
a,k

at the point λ� = ca,k(θ) + isa,k(θ) in the counterclockwise direction. Hence,

N(θ) = s′a,k(θ)−ic
′
a,k(θ) is an outward-pointing normal vector to Γja,k at the point λ� = ca,k(θ)+

isa,k(θ).
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We compute the directional derivative of |z|2 at λ� = ca,k(θ) + isa,k(θ) in the direction
w = w1 + iw2 (|w| = 1) as

∇w|z|2(λ�) = w1
∂|z|2

∂λ1
(λ�) +w2

∂|z|2

∂λ2
(λ�)

= w1
2 Re

(
eiθP ′λ

(
eiθ

))
∣∣P ′λ

(
eiθ

)∣∣2
+w2

2Im
(
eiθP ′λ

(
eiθ

))
∣∣P ′λ

(
eiθ

)∣∣2

=
2
(
w1s

′
a,k(θ) −w2c

′
a,k(θ)

)

∣∣P ′λ
(
eiθ

)∣∣2

=
2 Re(w ·N(θ))∣∣P ′

λ

(
eiθ

)∣∣2

=
2|N(θ)| cos(�(w,N(θ)))∣∣P ′

λ

(
eiθ

)∣∣2
.

(2.22)

When λ crosses the curve Γj
a,k

through the point λ�, from the inside of the domain Δj

a,k
to the

outside, in the direction w, we have cos(�(w,N(θ))) > 0, and hence,

∇w|z|2(λ�) > 0, (2.23)

that is, |z(λ)| increases and the root z(λ) crosses the unit circle. This, together with the
continuous dependence of the roots of the polynomial Pλ(z) on the parameter λ, guarantees
the validity of the statements (b)–(g) and completes the proof.

3. Stability Results

3.1. Characterization of the Stability Domain

Based on the results presented in the previous section and the characteristic equation (1.6),
the following main result is obtained.

Proposition 3.1. The null solution of system (1.1) is asymptotically stable if and only if all
eigenvalues of matrix B belong to the domain Δ1

a,k of the complex plane inclosed by the closed curve
Γ1
a,k

given by the parametric equation

Γ1
a,k : u(θ) = ca,k(θ) + isa,k(θ), θ ∈

[
−θ1

a,k, θ
1
a,k

]
. (3.1)

We know from Lemma 2.2 that the function ca,k is strictly decreasing on the interval
[0, θ1

a,k] ⊂ [0, ϕ1
a,k], and hence, invertible, allowing us to state the following remark.
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Remark 3.2. The domain Δ1
a,k can be expressed as

Δ1
a,k =

{
λ ∈ C : ca,k

(
θ1
a,k

)
< Re(λ) < 1 − a , |Im(λ)| < ha,k(Re(λ))

}
, (3.2)

where ha,k = sa,k ◦ c−1
a,k and c−1

a,k denotes the inverse of the restriction of ca,k to the interval
[0, θ1

a,k
].

3.2. Dependence of the Stability Domain on the Delay

Proposition 3.3. As the delay k increases, the stability domain becomes smaller, that is, the domains
Δ1
a,k satisfy

Δ1
a,k+1 ⊂ Δ1

a,k for any k ∈ N. (3.3)

If D(0, 1 − a) denotes the open disk of the complex plane, centered at the origin, of radius 1 − a, one
has

∞⋂
k=0

Δ1
a,k = D(0, 1 − a). (3.4)

Proof. Let k ∈ N. Based on Remark 3.2, the proof of the fact that Δ1
a,k+1 ⊂ Δ1

a,k will consist of
the following steps.

Step 1. We will prove that ca,k(θ1
a,k

) < ca,k+1(θ1
a,k+1). Since ca,k(θ1

a,k
) = −

√
1 + a2 − 2a cos θ1

a,k
,

this reduces to show that θ1
a,k+1 < θ

1
a,k

.
Indeed, assuming the contrary that is, θ1

a,k < θ1
a,k+1 and taking into account that

sa,k+1(θ) > 0 for any θ ∈ (0, θ1
a,k+1), it follows that sa,k+1(θ1

a,k) > 0. On the other hand, we
can easily see that

sa,k+1(θ) = sin(k + 2)θ − a sin(k + 1)θ = sa,k(θ) cos θ + ca,k(θ) sin θ (3.5)

and hence,

sa,k+1

(
θ1
a,k

)
= ca,k

(
θ1
a,k

)
sin θ1

a,k < 0. (3.6)

So the assumption is contradicted. Therefore, it follows that ca,k(θ1
a,k

) < ca,k+1(θ1
a,k+1).
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Step 2. We will prove that ha,k+1(t) < ha,k(t) for any t ∈ (ca,k+1(θ1
a,k+1), 1 − a). Since

ca,k(θ)
2 + sa,k(θ)

2 = 1 + a2 − 2a cos θ, (3.7)

making θ = c−1
a,k(t), it follows that

ha,k(t)2 = 1 + a2 − t2 − 2a cos c−1
a,k(t). (3.8)

Therefore, in order to prove that ha,k+1(t) < ha,k(t), it is sufficient to prove that c−1
a,k+1(t) <

c−1
a,k

(t) for any t ∈ (ca,k+1(θ1
a,k+1), 1−a). Since ca,k is decreasing on (0, θ1

a,k
), this is equivalent to

show that ca,k+1(θ) < ca,k(θ) for any θ ∈ (0, θ1
a,k+1). Indeed, for any θ ∈ (0, θ1

a,k+1) we have

ca,k+1(θ) = cos(k + 2)θ − a cos(k + 1)θ = ca,k(θ) cos θ − sa,k(θ) sin θ < ca,k(θ). (3.9)

Finally, we will prove that
⋂∞
k=0Δ

1
a,k

= D(0, 1 − a).
We remark that D(0, 1 − a) ⊂ Δ1

a,k
, for any k ∈ N. Indeed, it is easy to see that if

λ ∈ ∂Δ1
a,k = Γ1

a,k, there exists θ ∈ [−θ1
a,k, θ

1
a,k] such that λ = ca,k(θ) + isa,k(θ), and hence,

|λ| =
√

1 + a2 − 2a cos θ ≥ 1 − a. Therefore λ/∈D(0, 1 − a) and it follows that D(0, 1 − a) ⊂ Δ1
a,k

.
We obtain that D(0, 1 − a) ⊂

⋂∞
k=0Δ

1
a,k

.
On the other hand, if λ ∈

⋂∞
k=0Δ

1
a,k, then it follows from Remark 3.2 that

ca,k
(
θ1
a,k

)
< Re(λ) < 1 − a, |Im(λ)| < ha,k(Re(λ)) ∀k ∈ N. (3.10)

From the first inequality, since c−1
a,k is decreasing (see Lemma 2.2), it follows that 0 <

c−1
a,k

(Re(λ)) < θ1
a,k

. From the second inequality, we obtain

|λ|2 = Re (λ)2 + Im(λ)2 < Re(λ)2 + ha,k(Re(λ))2 = 1 + a2 − 2a cos
[
c−1
a,k(Re(λ))

]

< 1 + a2 − 2a cos θ1
a,k,

(3.11)

and hence

|λ| <
√

1 + a2 − 2a cos θ1
a,k

∀k ∈ N. (3.12)

From Lemma 2.1 we know that 0 < θ1
a,k < π/(k + 1), and hence, limk→∞ θ

1
a,k = 0. Passing to

the limit when k → ∞ in the previous inequality, we obtain that |λ| < 1 − a, and therefore,
λ ∈ D(0, 1 − a). It results that

⋂∞
k=0Δ

1
a,k
⊂ D(0, 1 − a) and the proof is complete.

The results presented in Proposition 3.3 are exemplified in Figure 2.
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0.2

0.2

0.4

−0.2−0.4−0.6−0.8−1

−0.2

−0.4

Im

Re

Figure 2: The stability domains for a = 2/3 and k ∈ {1, 2, . . . , 8}. We have Δ1
a,8 ⊂ Δ1

a,7 ⊂ · · · ⊂ Δ1
a,2 ⊂ Δ1

a,1.

3.3. Some Particular Cases

Corollary 3.4. If all the eigenvalues of the matrix B are real, then the null solution of system
(1.1) is asymptotically stable if and only if all eigenvalues of matrix B belong to the interval

(−
√

1 + a2 − 2a cos θ1
a,k, 1 − a).

For example, the previous corollary covers the case when B is a symmetric matrix.
In particular, for the 1-dimensional case (p = 1) we obtain the result of Kuruklis [6] and
Papanicolaou [7], when a ∈ (0, 1). For the 2-dimensional case (p = 2), if the matrix B has
two real eigenvalues, then we obtain the result of Matsunaga [5], when a ∈ (0, 1). On the
other hand, if the matrix B ∈ R

2×2 has two complex eigenvalues, then we obtain the following
simple formulation.

Corollary 3.5. In the case of a 2-dimensional system of the form (1.1), where the matrix B has two
complex conjugated eigenvalues λ1,2 = β1 ± iβ2, the null solution is asymptotically stable if and only if

−
√

1 + a2 − 2a cos θ1
a,k < β1 < 1 − a,

∣∣β2
∣∣ < ha,k

(
β1
)
, (3.13)

where ha,k = sa,k ◦ c−1
a,k

and c−1
a,k

denotes the inverse of the restriction of ca,k to the interval [0, θ1
a,k

].

4. Conclusions and Future Directions

In this paper, we have characterized the stability domain of the null solution of the linear
delay difference system (1.1), in terms of the eigenvalues of the matrix B. We have also
studied the dependence of the stability domain on the delay, showing that the stability
domain becomes smaller as the delay increases. These results have potential applications
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in the stability analysis of many nonlinear discrete-time dynamical systems arising from
practical problems, such as discrete-time Hopfield neural networks. Investigating the
bifurcations occurring in such nonlinear dynamical systems at the boundary of the stability
domain may constitute a direction for future research.
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