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We obtain new oscillation criteria for second-order forced dynamic equations on time scales
containing mixed nonlinearities of the form (r(t)Φα(xΔ))Δ + f(t, xσ) = e(t), t ∈ [t0,∞)

T
with

f(t, x) = q(t)Φα(x) +
∑n

i=1qi(t)Φβi(x), Φ∗(u) = |u|∗−1u, where [t0,∞)
T
is a time scale interval with

t0 ∈ T, the functions r, q, qi, e : [t0,∞)
T
→ R are right-dense continuouswith r > 0, σ is the forward

jump operator, xσ(t) := x(σ(t)), and β1 > · · · > βm > α > βm+1 > · · · βn > 0. All results obtained are
new even for T = R and T = Z. In the special case when T = R and α = 1 our theorems reduce
to (Y. G. Sun and J. S. W. Wong, Journal of Mathematical Analysis and Applications. 337 (2007),
549–560). Therefore, our results in particular extend most of the related existing literature from
the continuous case to arbitrary time scale.
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1. Introduction

Let T be a time scale which is unbounded above and t0 ∈ T a fixed point. For some basic facts
on time scale calculus and dynamic equations on time scales, one may consult the excellent
texts by Bohner and Peterson [1, 2].

We consider the second-order forced nonlinear dynamic equations containing mixed
nonlinearities of the form

(
r(t)Φα(xΔ)

)Δ
+ f(t, xσ) = e(t), t ∈ [t0,∞)

T
, (1.1)

with

f(t, x) = q(t)Φα(x) +
n∑

i=1

qi(t)Φβi(x), Φ∗(u) = |u|∗−1u, (1.2)
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where [t0,∞)
T
denotes a time scale interval, the functions r, q, qi, e : [t0,∞)

T
→ R are right-

dense continuous with r > 0, σ is the forward jump operator, xσ(t) := x(σ(t)), and

β1 > · · · > βm > α > βm+1 > · · · βn > 0. (1.3)

By a proper solution of (1.1) on [t0,∞)
T
we mean a function x ∈ C1

rd[t0,∞)
T
which

is defined and nontrivial in any neighborhood of infinity and which satisfies (1.1) for all
t ∈ [t0,∞)

T
, where C1

rd[t0,∞)
T
denotes the set of right-dense continuously differentiable

functions from [t0,∞)
T
to R. As usual, such a solution x(t) of (1.1) is said to be oscillatory if

it is neither eventually positive nor eventually negative. The equation is called oscillatory if
every proper solution is oscillatory.

In a special case, (1.1) becomes

(
r(t)Φα(xΔ)

)Δ
+ c(t)Φβ(xσ) = e(t), (1.4)

which is called half-linear for β = α, super-half-linear for β > α, and sub-half-linear for 0 <
β < α. If T = R, (1.4) takes the form

(
r(t)Φα(x′)

)′ + c(t)Φβ(x) = e(t). (1.5)

The oscillation of (1.5) has been studied by many authors, the interested reader is referred
to the seminal books by Došlý and Řehák [3] and Agarwal et al. [4, 5], where in addition
to mainly oscillation theory, the existence, uniqueness, and continuation of solutions are also
discussed. In [3], one may also find several results related to the oscillation of (1.4) when
T = Z, that is, for

Δ(r(k)Φα(Δx(k))) + c(k)Φβ(x(k + 1)) = e(k), (1.6)

where Δ is the forward difference operator.
There are several methods in the literature for finding sufficient condition for

oscillation of solutions in terms of the functions appearing in the corresponding equation, and
almost all such conditions involve integrals or sums on infinite intervals [3–19]. The interval
oscillation method is different in a sense that the conditions make use of the information of
the functions on a union of intervals rather than on an infinite interval. Following El-Sayed
[20], many authors have employed this technique in various works [20–30]. For instance, Sun
et al. [26], Wong [28], and Nasr [25] have studied (1.5) when α = 1 and β ≥ 1, while the case
α = 1 and 0 < β < 1 is taken into account by Sun and Wong in [16]. The results in [25, 28]
have been extended by Sun [27] to superlinear delay differential equations of the form

x′′(t) + c(t)|x(τ(t))|β−1x(τ(t)) = e(t). (1.7)

Further extensions of these results can be found in [30, 31], where the authors have studied
some related super-half-linear differential equations with delay and advance arguments.

Recently, there have been also numerous papers on second-order forced dynamic
equations on time scales, unifying particularly the discrete and continuous cases and
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handling many other possibilities. For a sampling of the work done we refer in particular
to [6, 8, 9, 12, 13, 22, 32, 33] and the references cited therein. In [22] Anderson and Zafer have
extended the above mentioned interval oscillation criteria to second-order forced super-half-
linear dynamic equations with delay and advance arguments including

(
r(t)Φα(xΔ(t))

)Δ
+ c(t)Φβ(x(τ(t))) = e(t). (1.8)

Ourmotivation in this study stems from the work contained in [34], where the authors
have derived interval criteria for oscillation of second-order differential equations withmixed
nonlinearities of the form

x′′ + f(t, x) = e(t), t ≥ t0, (1.9)

with

f(t, x) = q(t)x +
m∑

i=1

qi(t)Φβi(x) (1.10)

by using a Riccati substitution and an inequality of geometric-arithmetic mean type. As it is
indicated in [34], further research on the oscillation of equations of mixed type is necessary
as such equations arise in mathematical modeling, for example, in the growth of bacteria
population with competitive species. We aim to make a contribution in this direction for a
class of more general equations on time scales of the form (1.1) by combining the techniques
used in [22, 34]. Notice that when α = 1, r(t) ≡ 1, and T = R, (1.1) coincides with (1.9), and
therefore our results provide new interval oscillation criteria even for T = R when α/= 1.
Moreover, for the special case T = Z we obtain interval oscillation criteria for difference
equations with mixed nonlinearities of the form

Δ(r(k)Φα(Δx(k))) + q(k)Φα(x(k + 1)) +
n∑

i=1

qi(k)Φβi(x(k + 1)) = e(k), (1.11)

for which almost nothing is available in the literature.

2. Lemmas

We need the following preparatory lemmas. The first two lemmas are given by Wong and
Sun as a single lemma [34, Lemma 1] for α = 1. The proof for the case α/= 1 is exactly the
same, in fact one only needs to replace the exponents αi by βi/α in their proof. Lemma 2.3 is
the well-known Young inequality.

Lemma 2.1. For any given n-tuple {β1, β2, . . . , βn} satisfying

β1 > · · · > βm > α > βm+1 > · · · > βn > 0, (2.1)
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there corresponds an n-tuple {η1, η2, . . . , ηn} such that

n∑

i=1

βiηi = α,
n∑

i=1

ηi < 1, 0 < ηi < 1. (2.2)

If n = 2 and m = 1 (cf. [34] for the case α = 1) one may take

η1 =
α − β2

(
1 − η0

)

β1 − β2
, η2 =

β1
(
1 − η0

) − α

β1 − β2
, (2.3)

where η0 is any positive number with β1η0 < β1 − α.

Lemma 2.2. For any given n-tuple {β1, β2, . . . , βn} satisfying

β1 > · · · > βm > α > βm+1 > · · · > βn > 0, (2.4)

there corresponds an n-tuple {η1, η2, . . . , ηn} such that

n∑

i=1

βiηi = α,
n∑

i=1

ηi = 1, 0 < ηi < 1. (2.5)

If n = 2 and m = 1, it turns out that

η1 =
α − β2
β1 − β2

, η2 =
β1 − α

β1 − β2
. (2.6)

Lemma 2.3 (Young’s Inequality). If p > 1 and q > 1 are conjugate numbers (1/p + 1/q = 1), then

|u|p
p

+
|v|q
q

≥ |uv|, ∀u, v ∈ R, (2.7)

and equality holds if and only if u = |v|q−2v.

Let γ > δ. Put u = Aδ/γ , p = γ/δ, and v = (Bα)1−δ/γ(γ − δ)δ/γ−1. It follows from
Lemma 2.3 that

Axγ + B ≥ γδ−δ/γ(γ − δ)(δ/γ)−1Aδ/γB1−δ/γxδ (2.8)

for all A,B, x ≥ 0. Rewriting the above inequality we also have

Cxδ −D ≤ δ−γ/δδ(γ − δ)(γ/δ)−1Cγ/δD1−γ/δxγ (2.9)

for all C, x ≥ 0 and D > 0.
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3. The Main Results

Following [21, 22, 30], denote for a, b ∈ [t0,∞)
T
with a < b the admissible set

A(a, b) :=
{
u ∈ C1

rd[a, b]T
: u(a) = 0 = u(b), u /≡ 0

}
. (3.1)

The main results of this paper are contained in the following three theorems. The
arguments used in the proofs have common features with the ones developed in [22, 30, 34].

Theorem 3.1. Suppose that for any given T ∈ [t0,∞)
T
there exist subintervals [a1, b1]T

and
[a2, b2]T

of [T,∞)
T
such that

qi(t) ≥ 0 for t ∈ [a1, b1]T
∪ [a2, b2]T

, (i = 1, 2, . . . , n),

(−1)ke(t) ≥ 0 (/≡ 0) for t ∈ [ak, bk]T
, (k = 1, 2).

(3.2)

Let {η1, η2, . . . , ηn} be an n-tuple satisfying (2.2) in Lemma 2.1. If there exists a function u ∈
A(ak, bk), (k = 1, 2), such that

∫bk

ak

{

|uσ(t)|α+1
[

q(t) + η|e(t)|η0
n∏

i=1

q
ηi
i (t)

]

− |uΔ(t)|α+1r(t)
}

Δt ≥ 0 (3.3)

for k = 1, 2, where

η0 = 1 −
n∑

i=1

ηi, η =
n∏

i=0

η
−ηi
i , (3.4)

then (1.1) is oscillatory.

Proof. To arrive at a contradiction, let us suppose that x is a nonoscillatory solution of (1.1).
First, we assume that x(t) is positive for all t ∈ [t1,∞)

T
, for some t1 ∈ [t0,∞)

T
.

Let t ∈ [a1, b1]T
, where a1 ∈ [t1,∞)

T
is sufficiently large. Define

w(t) = −r(t)Φα

(
xΔ(t)

)

Φα(x(t))
. (3.5)

It follows that

wΔ(t) =
f(t, xσ)

Φα(xσ(t))
− e(t)
Φα(xσ(t))

+
r(t)Φ

(
xΔ(t)

)
(Φα(x(t)))

Δ

Φα(x(t))Φα(xσ(t))
, (3.6)

and hence

wΔ(t) = q(t) +
n∑

i=1

qi(t)Φβi−α(x
σ(t)) +

|e(t)|
Φα(xσ(t))

+
r(t)Φ

(
xΔ(t)

)
(Φα(x(t)))

Δ

Φα(x(t))Φα(xσ(t))
. (3.7)
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By our assumptions (3.2)we have qi(t) ≥ 0 and e(t) ≤ 0 for t ∈ [a1, b1]T
. Set

ui =
1
ηi
qi(t)Φβi−α(x

σ(t)), u0 =
1
η0

|e(t)|
Φα(xσ(t))

. (3.8)

Then (3.7) becomes

wΔ(t) = q(t) +
n∑

i=0

ηiui +
r(t)Φ

(
xΔ(t)

)
(Φα(x(t)))

Δ

Φα(x(t))Φα(xσ(t))
. (3.9)

In view of the arithmetic-geometric mean inequality, see [35],

n∑

i=0

ηiui ≥
n∏

i=0

u
ηi
i , (3.10)

and equality (3.9) we obtain

wΔ(t) ≥ q(t) + η|e(t)|η0
n∏

i=1

q
ηi
i (t) +

r(t)Φ
(
xΔ(t)

)
(Φα(x(t)))

Δ

Φα(x(t))Φα(xσ(t))
. (3.11)

Multiplying both sides of inequality (3.11) by |uσ |α+1 and then using the identity

(uΦα(u)w)Δ = uσΦα(uσ)wΔ + (|u|α+1)Δw (3.12)

result in

(uΦα(u)w)Δ ≥ |uσ |α+1Q − |uΔ|α+1r +G(u,w), (3.13)

where

Q(t) = q(t) + η|e(t)|η0
n∏

i=1

q
ηi
i (t),

G(u,w) = |uΔ|α+1r + (|u|α+1)Δ w + |uσ |α+1 r Φα

(
xΔ)(Φα(x))

Δ

Φα(x)Φα(xσ)
.

(3.14)

As demonstrated in [7, 12], we know that G(u,w) ≥ 0, and that G(u,w) = 0 if and only if

uΔ = Φ−1
α

(

−w
r

)

u, (3.15)

where Φ−1
α stands for the inverse function. In our case, since 1 + μΦ−1

α (−w/r) = xσ/x > 0,
dynamic equation (3.15) has a unique solution satisfying u(a1) = 0. Clearly, the unique
solution is u ≡ 0. Therefore, G(u,w) > 0 on [a1, b1]T

.
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For the benefit of the reader we sketch a proof of the fact that G(u,w) ≥ 0. Note that if
t is a right-dense point, then we may write

G(u,w) =
α + 1
Φ−1

α (r)

{
|Φ−1

α (r)uΔ|α+1
α + 1

+wΦα(u)Φ−1
α (r)uΔ +

|wΦα(u)|(α+1)/α
(α + 1)/α

}

. (3.16)

Applying Young’s inequality (Lemma 2.3)with

p = α + 1, u = Φ−1
α (r)uΔ, v = wΦα(u), (3.17)

we easily see that G(u,w) ≥ 0 holds. If t is a right-scattered point, then G can be written as a
function of u = μ(t)uΔ and v = u as

G(u, v) =
1
μ

{
r

μα
|u|α+1 + wr

Φα

(
Φ−1

α (r) + μΦ−1
α (w)

) |u + v|α+1 −w |v|α+1
}

. (3.18)

Using differential calculus, see [7], the result follows.
Now integrating the inequality (3.13) from a1 to b1 and using G(u,w) > 0 on [a1, b1]T

we obtain

∫b1

a1

{
|uσ(t)|α+1Q(t) − |uΔ(t)|α+1r(t)

}
Δt < 0, (3.19)

which of course contradicts (3.3). This completes the proof when x(t) is eventually positive.
The proof when x(t) is eventually negative is analogous by repeating the arguments on the
interval [a2, b2]T

instead of [a1, b1]T
.

A close look at the proof of Theorem 3.1 reveals that one cannot take e(t) ≡ 0. The
following theorem is a substitute in that case.

Theorem 3.2. Suppose that for any given T ∈ [t0,∞)
T
there exists a subinterval [a1, b1]T

of [T,∞)
T

such that

qi(t) ≥ 0 for t ∈ [a1, b1]T
, (i = 1, 2, . . . , n). (3.20)

Let {η1, η2, . . . , ηn} be an n-tuple satisfying (2.5) in Lemma 2.2. If there exists a function u ∈
A(a1, b1) such that

∫b1

a1

{

|uσ(t)|α+1
[

q(t) + η
n∏

i=1

q
ηi
i (t)

]

− |uΔ(t)|α+1r(t)
}

Δt ≥ 0, (3.21)
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where

η =
n∏

i=1

η
−ηi
i , (3.22)

then (1.1) with e(t) ≡ 0 is oscillatory.

Proof. We proceed as in the proof of Theorem 3.1 to arrive at (3.7) with e(t) ≡ 0, that is,

wΔ(t) = q(t) +
n∑

i=1

qi(t)Φβi−α(x
σ(t)) +

r(t)Φ
(
xΔ(t)

)
(Φα(x(t)))

Δ

Φα(x(t))Φα(xσ(t))
. (3.23)

Setting

ui =
1
ηi
qi(t)Φβi−α(x

σ(t)), (3.24)

and using again the arithmetic-geometric mean inequality

n∑

i=1

ηiui ≥
n∏

i=1

u
ηi
i , (3.25)

we have

wΔ(t) ≥ q(t) + η
n∏

i=1

q
ηi
i (t) +

r(t)Φ
(
xΔ(t)

)
(Φα(x(t)))

Δ

Φα(x(t))Φα(xσ(t))
. (3.26)

The remainder of the proof is the same as that of Theorem 3.1.

As it is shown in [34] for the sublinear terms case, we can also remove the sign
condition imposed on the coefficients of the sub-half-linear terms to obtain interval criterion
which is applicable for the case when some or all of the functions qi(t), i = m + 1, . . . , n, are
nonpositive. We should note that the sign condition on the coefficients of super-half-linear
terms cannot be removed alternatively by the same approach. Furthermore, the function e(t)
cannot take the value zero on intervals of interest in this case. We have the following theorem.

Theorem 3.3. Suppose that for any given T ∈ [t0,∞)
T
there exist subintervals [a1, b1]T

and
[a2, b2]T

of [T,∞)
T
such that

qi(t) ≥ 0 for t ∈ [a1, b1]T
∪ [a2, b2]T

, (i = 1, 2, . . . , m),

(−1)ke(t) > 0 for t ∈ [ak, bk]T
, (k = 1, 2).

(3.27)
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If there exist a function u ∈ A(ak, bk), (k = 1, 2), and positive numbers λi and μi with

m∑

i=1

λi +
n∑

i=m+1

μi = 1, (3.28)

such that

∫bk

ak

{

|uσ(t)|α+1
[

q(t) +
m∑

i=1

Pi(t) −
n∑

i=m+1

Ri(t)

]

− |uΔ(t)|α+1r(t)
}

Δt ≥ 0 (3.29)

for k = 1, 2, where

Pi(t) = βi(βi − α)α/βi−1α−α/βiλ1−α/βii q
α/βi
i (t)|e(t)|1−α/βi ,

Ri(t) = βi(α − βi)
α/βi−1α−α/βiμ1−α/βi

i (−q+i )α/βi(t)|e(t)|1−α/βi ,
(3.30)

with

(−qi
)+(t) = max

{−qi(t), 0
}
, (3.31)

then (1.1) is oscillatory.

Proof. Suppose that (1.1) has a nonoscillatory solution. Wemay assume that x(t) is eventually
positive on [a1, b1]T

when a1 is sufficiently large. If x(t) is eventually negative, then one can
repeat the proof on the interval [a2, b2]T

. Rewrite (1.1) as follows:

(
r(t)Φα(xΔ)

)Δ
+ q(t)Φα(xσ) + g(t, xσ) = 0, t ∈ [a1, b1]T

, (3.32)

with

g(t, x) =
m∑

i=1

[
qi(t)xβi + λi|e(t)|

]
−

n∑

i=m+1

[
−qi(t)xβi(x) − μi|e(t)|

]
. (3.33)

Clearly,

g(t, x) ≥
m∑

i=1

[
qi(t)xβi + λi|e(t)|

]
−

n∑

i=m+1

[
(−qi)+(t)xβi − μi|e(t)|

]
, (3.34)

where

(−qi)+(t) = max
{−qi(t), 0

}
. (3.35)
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Applying (2.8) and (2.9) to each summation on the right side with

A = qi(t), B = λi|e(t)|, γ = βi, δ = α,

C = (−qi)+(t), D = μi|e(t)|, δ = βi, γ = α,
(3.36)

we see that

g(t, x) ≥
[

m∑

i=1

Pi(t) −
n∑

i=m+1

Ri(t)

]

xα, (3.37)

where

Pi(t) = βi(βi − α)α/βi−1α−α/βiλ1−α/βii q
α/βi
i (t)|e(t)|1−α/βi ,

Ri(t) =
(
βi
α

)(
1 − βi
α

)α/βi−1
μ
1−α/βi
i (−q+i )α/βi(t)|e(t)|1−α/βi .

(3.38)

From (3.32) and inequality (3.37) we obtain

(
r(t)Φα(xΔ)

)Δ
+Q(t)Φα(xσ) ≤ 0, t ∈ [a1, b1]T

, (3.39)

where

Q(t) = q(t) +
m∑

i=1

Pi(t) −
n∑

i=m+1

Ri(t). (3.40)

Set

w(t) = −r(t)Φα

(
xΔ(t)

)

Φα(x(t))
. (3.41)

In view of inequality (3.39) it follows that

wΔ(t) ≥ Q(t) +
r(t)Φ

(
xΔ(t)

)
(Φα(x(t)))

Δ

Φα(x(t))Φα(xσ(t))
. (3.42)

The remainder of the proof is the same as that of Theorem 3.1, hence it is omitted.



Advances in Difference Equations 11

4. Applications

To illustrate the usefulness of the results we state the corresponding theorems for the special
cases T = R, T = Z, and T = qN, (q > 1). One can easily provide similar results for other
specific time scales of interest.

4.1. Differential Equations

Let T = R, then we have fΔ = f ′, σ(t) = t, and

(
r(t)Φα(x′)

)′ + q(t)Φα(x) +
n∑

i=1

qi(t)Φβi(x) = e(t), t ∈ [t0,∞), (4.1)

where r, q, qi, e : [t0,∞) → R are continuous functions with r > 0, and β1 > · · · > βm > α >
βm+1 > · · · βn > 0. Let A1(a, b) := {u ∈ C1[a, b] : u(a) = 0 = u(b), u /≡ 0}.

Theorem 4.1. Suppose that for any given T ∈ [t0,∞) there exist subintervals [a1, b1] and [a2, b2] of
[T,∞) such that

qi(t) ≥ 0 for t ∈ [a1, b1] ∪ [a2, b2], (i = 1, 2, . . . , n),

(−1)ke(t) ≥ 0 (/≡ 0) for t ∈ [ak, bk], (k = 1, 2).
(4.2)

Let {η1, η2, . . . , ηn} be an n-tuple satisfying (2.2) in Lemma 2.1. If there exists a function u ∈
A1(ak, bk), (k = 1, 2), such that

∫bk

ak

{

|u(t)|α+1
[

q(t) + η|e(t)|η0
n∏

i=1

q
ηi
i (t)

]

− |u′(t)|α+1r(t)
}

dt ≥ 0 (4.3)

for k = 1, 2, where

η0 = 1 −
n∑

i=1

ηi, η =
n∏

i=0

η
−ηi
i , (4.4)

then (4.1) is oscillatory.

Theorem 4.2. Suppose that for any given T ∈ [t0,∞) there exists a subinterval [a1, b1] of [T,∞)
such that

qi(t) ≥ 0 for t ∈ [a1, b1], (i = 1, 2, . . . , n). (4.5)

Let {η1, η2, . . . , ηn} be an n-tuple satisfying (2.5) in Lemma 2.2. If there exists a function u ∈
A1(a1, b1) such that

∫b1

a1

{

|u(t)|α+1
[

q(t) + η
n∏

i=1

q
ηi
i (t)

]

− |u′(t)|α+1r(t)
}

dt ≥ 0, (4.6)
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where

η =
n∏

i=1

η
−ηi
i , (4.7)

then (4.1) with e(t) ≡ 0 is oscillatory.

Theorem 4.3. Suppose that for any given T ∈ [t0,∞) there exist subintervals [a1, b1] and [a2, b2] of
[T,∞) such that

qi(t) ≥ 0 for t ∈ [a1, b1] ∪ [a2, b2], (i = 1, 2, . . . , m),

(−1)ke(t) > 0 for t ∈ [ak, bk], (k = 1, 2).
(4.8)

If there exist a function u ∈ A(ak, bk), (k = 1, 2), and positive numbers λi and μi with

m∑

i=1

λi +
n∑

i=m+1

μi = 1, (4.9)

such that

∫bk

ak

{

|uσ(t)|α+1
[

q(t) +
m∑

i=1

Pi(t) −
n∑

i=m+1

Ri(t)

]

− |u′(t)|α+1r(t)
}

dt ≥ 0 (4.10)

for k = 1, 2, where

Pi(t) = βi(βi − α)α/βi−1α−α/βiλ1−α/βii q
α/βi
i (t)|e(t)|1−α/βi ,

Ri(t) = βi(α − βi)
α/βi−1α−α/βiμ1−α/βi

i (−q+i )α/βi(t)|e(t)|1−α/βi ,
(4.11)

with

(−qi
)+(t) = max

{−qi(t), 0
}
, (4.12)

then (4.1) is oscillatory.

4.2. Difference Equations

Let T = Z, then we have fΔ(k) = Δf(k) = f(k + 1) − f(k), σ(k) = k + 1, and

Δ(r(k)Φα(Δx(k))) + q(k)Φα(x(k + 1)) +
n∑

i=1

qi(k)Φβi(x(k + 1)) = e(k), k ∈ [k0,∞)
N
, (4.13)

where [k0,∞)
N
= {k0, k0 + 1, k0 + 2, . . .}, r, q, qi, e : [k0,∞)

N
→ R with r(k) > 0, and β1 > · · · >

βm > α > βm+1 > · · · βn > 0. Let [a, b]
N
= {a, a + 1, a + 2, . . . , b}, and A2(a, b) := {u : [a, b]

N
→

R, u(a) = 0 = u(b), u /≡ 0}.
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Theorem 4.4. Suppose that for any given K ∈ [k0,∞)
N
there exist subintervals [a1, b1]N

and
[a2, b2]N

of [K,∞)
N
such that

qi
(
j
) ≥ 0 for j ∈ [a1, b1]N

∪ [a2, b2]N
, (i = 1, 2, . . . , n),

(−1)ke(j) ≥ 0 (/≡ 0) for j ∈ [ak, bk]N
, (k = 1, 2).

(4.14)

Let {η1, η2, . . . , ηn} be an n-tuple satisfying (2.2) in Lemma 2.1. If there exists a function u ∈
A2(ak, bk), (k = 1, 2), such that

bk−1∑

j=ak

{

|u(j + 1)|α+1
[

q
(
j
)
+ η|e(j)|η0

n∏

i=1

q
ηi
i

(
j
)
]

− |Δu(j)|α+1r(j)
}

≥ 0 (4.15)

for k = 1, 2, where

η0 = 1 −
n∑

i=1

ηi, η =
n∏

i=0

η
−ηi
i , (4.16)

then (4.13) is oscillatory.

Theorem 4.5. Suppose that for any given K ∈ [k0,∞)
N
there exists a subinterval [a1, b1]N

of
[K,∞)

N
such that

qi
(
j
) ≥ 0 for j ∈ [a1, b1]N

, (i = 1, 2, . . . , n). (4.17)

Let {η1, η2, . . . , ηn} be an n-tuple satisfying (2.5) in Lemma 2.2. If there exists a function u ∈
A2(a1, b1) such that

b1−1∑

j=a1

{

|u(j + 1)|α+1
[

q
(
j
)
+ η

n∏

i=1

q
ηi
i

(
j
)
]

− |Δu(j)|α+1r(j)
}

≥ 0, (4.18)

where

η =
n∏

i=0

η
−ηi
i , (4.19)

then (4.13) with e(k) ≡ 0 is oscillatory.

Theorem 4.6. Suppose that for any given K ∈ [k0,∞)
N
there exist subintervals [a1, b1]N

and
[a2, b2]N

of [K,∞)
N
such that

qi
(
j
) ≥ 0 for j ∈ [a1, b1]N

∪ [a2, b2]N
, (i = 1, 2, . . . , m),

(−1)ke(j) > 0 for j ∈ [ak, bk]N
, (k = 1, 2).

(4.20)



14 Advances in Difference Equations

If there exist a function u ∈ A2(ak, bk), (k = 1, 2), and positive numbers λi and μi with

m∑

i=1

λi +
n∑

i=m+1

μi = 1, (4.21)

such that

bk−1∑

j=ak

{

|u(j + 1)|α+1
[

q
(
j
)
+

m∑

i=1

Pi

(
j
) −

n∑

i=m+1

Ri

(
j
)
]

− |Δu(j)|α+1r(j)
}

≥ 0 (4.22)

for k = 1, 2, where

Pi(t) = βi(βi − α)α/βi−1α−α/βiλ1−α/βii q
α/βi
i (t)|e(t)|1−α/βi ,

Ri(t) = βi(α − βi)
α/βi−1α−α/βiμ1−α/βi

i (−q+i )α/βi(t)|e(t)|1−α/βi ,
(4.23)

with

(−qi
)+(t) = max

{−qi(t), 0
}
, (4.24)

then (4.13) is oscillatory.

4.3. q-Difference Equations

Let T = qN with q > 1, then we have σ(t) = qt, fΔ(t) = Δqf(t) = [f(qt) − f(t)]/(qt − t), and

Δq

(
r(t)Φα

(
Δqx(t)

))
+ p(t)Φα

(
x
(
qt
))

+
n∑

i=1

pi(t)Φβi

(
x
(
qt
))

= e(t), t ∈ [t0,∞)q, (4.25)

where [t0,∞)q := {qt0 , qt0+1, qt0+2, . . .} with t0 ∈ N, r, p, pi, e : [t0,∞)q → R with r(t) > 0, and
β1 > · · · > βm > α > βm+1 > · · · βn > 0. Let [a, b]q = {qa, qa+1, qa+2, . . . , qb} with a, b ∈ N, and
A3(a, b) := {u : [a, b]q → R, u(qa) = 0 = u(qb), u /≡ 0}.

Theorem 4.7. Suppose that for any given T ∈ [t0,∞)q there exist subintervals [a1, b1]q and [a2, b2]q
of [T,∞)q such that

pi(t) ≥ 0 for t ∈ [a1, b1]q ∪ [a2, b2]q, (i = 1, 2, . . . , n),

(−1)ke(t) ≥ 0 (/≡ 0) for t ∈ [ak, bk]q, (k = 1, 2).
(4.26)

Let {η1, η2, . . . , ηn} be an n-tuple satisfying (2.2) in Lemma 2.1. If there exists a function u ∈
A3(ak, bk), (k = 1, 2), such that

bk−1∑

j=ak

qj
{

|u(qj+1)|α+1
[

p
(
qj
)
+ η|e(qj)|η0

n∏

i=1

p
ηi
i

(
qj
)
]

− |Δqu(qj)|α+1r
(
qj
)
}

≥ 0 (4.27)
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for k = 1, 2, where

η0 = 1 −
n∑

i=1

ηi, η =
n∏

i=0

η
−ηi
i , (4.28)

then (4.25) is oscillatory.

Theorem 4.8. Suppose that for any given T ∈ [t0,∞)q there exists a subinterval [a1, b1]q of [T,∞)q
such that

pi(t) ≥ 0 for t ∈ [a1, b1]q, (i = 1, 2, . . . , n). (4.29)

Let {η1, η2, . . . , ηn} be an n-tuple satisfying (2.5) in Lemma 2.2. If there exists a function u ∈
A3(a1, b1) such that

b1−1∑

j=a1

qj
{

|u(qj+1)|α+1
[

p
(
qj
)
+ η

n∏

i=1

p
ηi
i

(
qj
)
]

− |Δqu(qj)|α+1r
(
qj
)
}

≥ 0, (4.30)

where

η =
n∏

i=0

η
−ηi
i , (4.31)

then (4.25) with e(t) ≡ 0 is oscillatory.

Theorem 4.9. Suppose that for any given T ∈ [t0,∞)q there exist subintervals [a1, b1]q and [a2, b2]q
of [T,∞)q such that

pi(t) ≥ 0 for t ∈ [a1, b1]q ∪ [a2, b2]q, (i = 1, 2, . . . , m),

(−1)ke(t) > 0 for t ∈ [ak, bk]q, (k = 1, 2).
(4.32)

If there exist a function u ∈ A3(ak, bk), (k = 1, 2), and positive numbers λi and μi with

m∑

i=1

λi +
n∑

i=m+1

μi = 1 (4.33)

such that

bk−1∑

j=ak

qj
{

|u(qj+1)|α+1
[

p
(
qj
)
+

m∑

i=1

Pi

(
qj
)
−

n∑

i=m+1

Ri

(
qj
)
]

− |Δqu(qj)|α+1r
(
qj
)
}

≥ 0 (4.34)
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for k = 1, 2, where

Pi(t) = βi(βi − α)α/βi−1α−α/βiλ1−α/βii q
α/βi
i (t)|e(t)|1−α/βi ,

Ri(t) = βi(α − βi)
α/βi−1α−α/βiμ1−α/βi

i (−q+i )α/βi(t)|e(t)|1−α/βi
(4.35)

with

(−pi
)+(t) = max

{−pi(t), 0
}
, (4.36)

then (4.25) is oscillatory.

5. Examples

We give three simple examples to illustrate the importance of our results. For clarity, we have
taken n = 2 and e(t) ≡ 0. Then,

η1 =
α − β2
β1 − β2

, η2 =
β1 − α

β1 − β2
, β1 > α > β2 > 0. (5.1)

Example 5.1. Consider the constant coefficient differential equation

(
|x′|α−1x′

)′
+ a|x|α−1x + b|x|β1−1x + c|x|β2−1x = 0, t ≥ 0, (5.2)

where b, c > 0 and a are real numbers.
Let u(t) = sin(t − a1), a1 = m and b1 = m + π , m ∈ N is arbitrarily large. Applying

Theorem 4.2 we see that every solution of (5.2) is oscillatory if

a +
(

b

η1

)η1( c

η2

)η2

≥ 1. (5.3)

Example 5.2. Consider the constant coefficient difference equation

Δ
(
|Δx(k)|α−1Δx(k)

)
+ a|x(k + 1)|α−1x(k + 1) + b|x(k + 1)|β1−1x(k + 1)

+ c|x(k + 1)|β2−1x(k + 1) = 0, k ≥ 1,
(5.4)

where b, c > 0 and a are real numbers.
Let u(j) = 1 − (−1)j , and a1 = 2m and b1 = 2m + 2, m ∈ N is arbitrarily large. It follows

from Theorem 4.5 that every solution of (5.4) is oscillatory if

a +
(

b

η1

)η1( c

η2

)η2

≥ 2. (5.5)
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Example 5.3. Consider the constant coefficient q-difference equation

Δq

(
|Δqx(t)|α−1Δqx(t)

)
+ a|x(qt)|α−1x(qt) + b|x(qt)|β1−1x(qt)

+ c|x(qt)|β2−1x(qt) = 0, t ≥ 1,
(5.6)

where q > 1, b, c > 0 and a are real numbers.
Let u(t) = (qb1 − t)(t − qa1), and a1 = m and b1 = m + 2, m ∈ N is arbitrarily large. In

view of Theorem 4.8, we see that every solution of (5.6) is oscillatory if

a +
(

b

η1

)η1( c

η2

)η2

> 0. (5.7)

6. Remarks

(1) Literature

Equation (1.1) has been studied by Sun and Wong [34] for the case T = R and α = 1.
Our results in Section 4.1 coincide with theirs when α = 1, and therefore the results can
be considered as an extension from α = 1 to α > 0. Since the results in [34] are linked to
many well-known oscillation criteria in the literature, the interval oscillation criteria we have
obtained provide further extensions of these to time scales.

The results in Sections 4.2 and 4.3 are all new for all values of the parameters. Although
there are some results for difference equations in the special case n = 1, there is hardly any
interval oscillation criteria for the q-difference equations case.

Moreover, since our main results in Section 4 are valid for arbitrary time scales, similar
interval oscillation criteria can be obtained by considering other particular time scales.

(2) Generalization

The results obtained in this paper remain valid for more general equations of the form

(
r(t)Φα(xΔ(t))

)Δ
+ q(t)g(xσ) +

n∑

i=1

qi(t)fi(xσ) = e(t), t ∈ [t0,∞)
T
, (6.1)

provided that g, fi : R → R are continuous and satisfy the growth conditions

xg(x) ≥ |x|α+1, xfi(x) ≥ |x|βi+1 ∀x ∈ R. (6.2)

To see this, we note that if x(t) is eventually positive, then taking into account the intervals
where q and qi are nonnegative, the above inequalities result in

(
r(t)Φα(xΔ(t))

)Δ
+ q(t)Φα(xσ) +

n∑

i=1

qi(t)qi(xσ) ≤ e(t), t ∈ [t0,∞)
T
. (6.3)

The arguments afterward follow analogously.
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(3) Forms Related to (1.1)

Related to (1.1) are the dynamic equations with mixed delta and nabla derivatives

(
r(t)Φα(xΔ)

)∇
+ f(t, x) = e(t), t ∈ [t0,∞)

T
, (6.4)

(
r(t)Φα(x∇)

)Δ
+ f(t, x) = e(t), t ∈ [t0,∞)

T
, (6.5)

(
r(t)Φα(x∇)

)∇
+ f(t, xρ) = e(t), t ∈ [t0,∞)

T
, (6.6)

where ρ denotes the backward jump operator and

f(t, x) = q(t)Φα(x) +
n∑

i=1

qi(t)Φβi(x). (6.7)

It is not difficult to see that time scale modifications of the previous arguments give rise
to completely parallel results for the above dynamic equations. For an illustrative example we
provide below the version of Theorem 3.1 for (6.4). The other theorems for (6.4), (6.5), and
(6.6) can be easily obtained by employing arguments developed for (1.1) in this paper.

Theorem 6.1. Suppose that for any given T ∈ [t0,∞)
T
there exist subintervals [a1, b1]T

and
[a2, b2]T

of [T,∞)
T
such that

qi(t) ≥ 0 for t ∈ [a1, b1]T
∪ [a2, b2]T

, (i = 1, 2, . . . , n),

(−1)ke(t) ≥ 0 (/≡ 0) for t ∈ [ak, bk]T
, (k = 1, 2).

(6.8)

Let {η1, η2, . . . , ηn} be an n-tuple satisfying (2.2) in Lemma 2.1. If there exists a function u ∈
B(ak, bk) := {u ∈ C1

ld[a, b]T
: u(a) = 0 = u(b), u /≡ 0}, (k = 1, 2), such that

∫bk

ak

{

|u(t)|α+1
[

q(t) + η|e(t)|η0
n∏

i=1

q
ηi
i (t)

]

− |u∇(t)|α+1rρ(t)
}

Δt ≥ 0 (6.9)

for k = 1, 2, where

η0 = 1 −
n∑

i=1

ηi, η =
n∏

i=0

η
−ηi
i , (6.10)

then (6.4) is oscillatory.

(4) An Open Problem

It is of theoretical and practical interest to obtain interval oscillation criteria when there are
only sub-half-linear terms in (1.1), that is, when βi < α holds for all i = 1, 2, . . . , n. Also, the
open problems stated in [34] for the special case T = R with α = 1 naturally carry over for
(1.1).
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