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We investigate the global behavior of the second-order difference equation xn+1 = xn−1((αxn +
βxn−1)/(Axn+Bxn−1)), where initial conditions and all coefficients are positive. We find conditions
on A,B, α, β under which the even and odd subsequences of a positive solution converge, one to
zero and the other to a nonnegative number; as well as conditions where one of the subsequences
diverges to infinity and the other either converges to a positive number or diverges to infinity.
We also find initial conditions where the solution monotonically converges to zero and where it
diverges to infinity.
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1. Introduction and Preliminaries

There are a number of studies published on second-order rational difference equations (see,
e.g., [1–9]). We investigate the global behavior of the second-order difference equation

xn+1 = xn−1

(
αxn + βxn−1
Axn + Bxn−1

)
, (1.1)

where the numerator is quadratic and the denominator is linear with A,B, α, β ∈ (0,∞).
Under various hypotheses on the parameters, we establish the existence of different behaviors
of even and odd subsequences of solutions of (1.1). Our results are summarized below.

(i) Let α < A and β > B, then we have the following.

(a) There are infinitely many solutions, {xn}∞n=−1, such that for each, one of its
subsequences, {x2n}∞n=0, {x2n−1}∞n=0, converges to zero and the other diverges
to infinity.
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(b) There exist solutions, {xn}∞n=0, which

(1) converge to zero if A + B > α + β;
(2) diverge to infinity if A + B < α + β;
(3) are constant if A + B = α + β.

(i) Let α = A and β > B. Then for each positive solution {xn}∞n=−1, one of the
subsequences, {x2n}∞n=0, {x2n−1}∞n=0, diverges to infinity and the other to a positive
number that can be arbitrarily large depending on initial values. Further there,
are positive initial values for which the corresponding solution, {xn}∞n=−1, increases
monotonically to infinity.

(ii) Let α < A and β = B. Then for each positive solution {xn}∞n=−1, one of the
subsequences, {x2n}∞n=0, {x2n−1}∞n=0, converges to zero and the other to a nonnegative
number. Further, there are positive initial values for which the corresponding
solution, {xn}∞n=−1, decreases monotonically to zero.

We note that the following results address and solve the first five conjectures posed by
Sedaghat in [10].

2. Results

In order to establish this first result, we reduce (1.1) to a first-order equation by means of the
substitution rn = xn/xn−1. This transforms (1.1) to

rn+1 =
αrn + β

Ar2n + Brn
. (2.1)

Theorem 2.1. Let α < A and β > B in (1.1). Then one has the following.

(i) There are infinitely many solutions, {xn}∞n=−1, such that for each, one of its subsequences,
{x2n}∞n=0, {x2n−1}∞n=0, converges to zero and the other to infinity.

(ii) There exist solutions, {xn}∞n=−1, which

(a) converge to zero if A + B > α + β;
(b) diverge to infinity if A + B < α + β;
(c) are constant if A + B = α + β.

Proof. Starting with (2.1), let the function g : (0,∞) → (0,∞) be defined as g(r) = (αr +
β)/(Ar2 + Br). Note that for r ∈ (0,∞), g(r) is a decreasing function since g ′(r) = −(Aαr2 +
2Aβr +Bβ)/(Ar2 + Br)2 < 0. Also note that limr→ 0+ (g(r)− r) = +∞ and limr→+∞ (g(r)− r) =
−∞. Hence g has a unique positive fixed point r.

We next compute the expression g2(r) − r and simplify, it including canceling the
common factor (Ar + B)r from the numerator and denominator, thereby obtaining the
following:

g2(r) − r =
a4r

4 + a3r
3 + a2r

2 + a1r

b3r3 + b2r2 + b1r + b0
, (2.2)
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where

a1 = β
(
Bα −Aβ

)
, b0 = Aβ2,

a2 = α
(
Bα −Aβ

)
, b1 = 2Aαβ + B2β,

a3 = B
(
Aβ − Bα

)
, b2 = Aα2 +ABβ + B2α,

a4 = A
(
Aβ − Bα

)
, b3 = ABα.

(2.3)

Note that sinceAβ > Bα, a1, a2 < 0 and a3, a4 > 0. Thus the numerator of g2(r)− r = 0 has one
and only one sign change. Therefore, by Descartes’ rule of signs, the numerator of g2(r)−r = 0
has exactly one positive root, r.

In addition, we see that limr→+∞ [g2(r) − r] = +∞ and so, given that r is the only
positive root of the numerator of g2(r) − r = 0, we have g2(r) − r > 0 for r > r. Thus, since
g2(0) = 0 and g2 is continuous, we must have g2(r) − r < 0 for r < r. Therefore,

[
g2(r) − r

]
(r − r) > 0 for r /= r. (2.4)

We consider two cases depending on the initial value r0 for (2.1).

Case 1 (r0 ∈ (0, r)). Using induction and the fact that g is a decreasing function so that g2 is
an increasing function, we have

0 < · · · < g4(r0) < g2(r0) < r0 < r < g(r0) < g3(r0) < g5(r0) · · · . (2.5)

Thus, limn→∞ g2n(r0) ≥ 0 and limn→∞ g2n+1(r0) ≤ ∞. Since r is the only positive fixed point
of g2, then we must have limn→∞ g2n(r0) = 0 and limn→∞ g2n+1(r0) = ∞.

Case 2 (r0 ∈ (r,∞)). The argument is similar to that in Case 1 in showing limn→∞ g2n(r0) = ∞
and limn→∞ g2n+1(r0) = 0. In both cases, the solution, {rn}∞n=0, of (2.1) is divided into even and
odd subsequences, {r2n}∞n=0 and {r2n+1}∞n=0, where one subsequence converges monotonically
to zero and the other to infinity.

We now go back to (1.1) by inferring the behavior of xn from rn. To do this we
first consider r0 /= r. Without loss of generality, we will assume that 0 < r0 < r and so
limn→∞ g2n(r0) = ∞ and limn→∞ g2n+1(r0) = 0.

Next, observe that

x2n+2

x2n
=

x2n+2

x2n+1
· x2n+1

x2n
= r2n+2r2n+1 =

αr2n+1 + β

Ar22n+1 + Br2n+1
· r2n+1 =

αr2n+1 + β

Ar2n+1 + B
. (2.6)

From this and our assumption with g2n+1, we have

lim
n→∞

x2n+2

x2n
= lim

n→∞
αr2n+1 + β

Ar2n+1 + B
=

β

B
> 1. (2.7)
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Hence, for 0 < ε < β/B − 1, there exists N ≥ 0 such that

1 <
β

B
− ε <

x2n+2

x2n
<

β

B
+ ε (2.8)

for all n ≥ N. We then have

x2(N+1) >

(
β

B
− ε

)1

x2N

x2(N+2) >

(
β

B
− ε

)1

x2(N+1) >

(
β

B
− ε

)2

x2N

x2(N+3) >

(
β

B
− ε

)1

x2(N+2) >

(
β

B
− ε

)3

x2N

(2.9)

and by induction, form ≥ 1,

x2(N+m) >

(
β

B
− ε

)m

x2N. (2.10)

This, in turn, implies that

lim
n→∞

x2n+2 = ∞. (2.11)

The argument is similar in showing that limn→∞ x2n+1 = 0, since

x2n+1

x2n−1
=

x2n+1

x2n
· x2n

x2n−1
= r2n+1r2n =

αr2n + β

Ar22n + Br2n
· r2n =

αr2n + β

Ar2n + B
. (2.12)

Hence, result (i) is true.
Now consider r0 = r. Then rn = r for all n ≥ 1, and so xn/xn−1 = r for all n ≥ 1.

Induction then gives us xn = rn+1x−1 for all n ≥ 1. We thus have one of the following:

(1) If r < 1 (A + B > α + β), then limn→∞ xn = 0.

(2) If r > 1 (A + B < α + β), then limn→∞ xn = ∞.

(3) If r = 1 (A + B = α + β), then {xn}∞n=−1 is a constant solution x−1 = x0 = x1 = · · · .

Thus the result (ii) is true and this completes the proof.

For the next couple of results we rewrite (1.1) in the form

xn+1 = f(xn, xn−1), n = 0, 1, . . . . (2.13)
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Note that if either α ≤ A and β < B, or α < A and β ≤ B, then f satisfies the following
properties:

(P1) f ∈ C[[0,∞)2 − {0, 0}, [0,∞)], with f(u, v) undefined when u = v = 0.

(P2) f ∈ C[[0,∞) × (0,∞), (0,∞)]

(P3) f(u, v) < v if u, v ∈ (0,∞).

If we consider the addition restriction that α < A and β = B, we also obtain

(P4) if f(u, v) = v, then u = 0, v > 0, or u > 0, v = 0.

Lemma 2.2. Let {xn}∞n=−1 be a positive solution of (1.1) with α < A and β = B. Then there exist
Lo ≥ 0 and Le ≥ 0 such that the following statements are true:

(1) x2n−1 ↓ Lo as n → ∞,

(2) x2n ↓ Le as n → ∞,

(3) Lo = Le = 0, and f(Lo, Le) and f(Le, Lo) are undefined; or if either Lo or Le is not zero,
then (Lo, Le, Lo, Le, . . .) is a solution of (1.1).

(4) Lo · Le = 0.

Proof. Statements 1 and 2 follow from the fact that

0 < x2n+1 = f(x2n, x2n−1) < x2n−1, 0 < x2n+2 = f(x2n+1, x2n) < x2n (2.14)

by properties (P2) and (P3). Statement 3 follows from the fact that either Lo = Le = 0, and so
f(Lo, Le) and f(Le, Lo) are undefined by property (P1); or Lo /=Le and

Lo = lim
n→∞

x2n+1 = lim
n→∞

f(x2n, x2n−1) = f(Le, Lo)

Le = lim
n→∞

x2n+2 = lim
n→∞

f(x2n+1, x2n) = f(Lo, Le),
(2.15)

where Statements 1 and 2 and the continuity of f (Property (P1)) hold. Finally, Statement 4
follows immediately from Statement 3 and Property (P4).

In the first three results, we characterize the convergence of the odd and even
subsequences of solutions of (1.1).

Theorem 2.3. Let α < A and β = B in (1.1). Then for each positive solution, {xn}∞n=−1, one of the
subsequences, {x2n}∞n=0, {x2n−1}∞n=0, converges to zero and the other to a nonnegative number.

Proof. Consider (1.1)with α < A, β = B, and f(u, v) = v((αu+βv)/(Au+Bv)). Then it follows
from Lemma 2.2 that for each positive solution of (1.1), {xn}∞n=−1, one of the subsequences,
{x2n}∞n=0, {x2n−1}∞n=0, converges to zero and the other to a nonnegative number.

Theorem 2.4. Let α = A and β > B in (1.1). Then for each positive solution {xn}∞n=−1, one of the
subsequences, {x2n}∞n=0, {x2n−1}∞n=0, diverges to infinity and the other to a positive number or diverges
to infinity.
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Proof. Consider (1.1)with α = A and β > B. Using the transformation yn = 1/xn, convert (1.1)
to the equation

yn+1 = yn−1

(
Byn +Ayn−1
βyn + αyn−1

)
. (2.16)

Then f(u, v) = v((Av+Bu)/(αv+βu)), and so it follows from Lemma 2.2 that for each positive
solution of (2.16), {yn}∞n=−1, one of the subsequences, {y2n}∞n=0, {y2n−1}∞n=0, converges to zero
and the other to a nonnegative number. Hence, for each positive solution of (1.1), {xn}∞n=−1,
one of the subsequences, {x2n}∞n=0, {x2n−1}∞n=0, diverges to infinity and the other to a positive
number or diverges to infinity.

In the following results, we show the existence of monotonic solutions for (1.1). As
with Theorem 2.1 we use the substitution rn = xn/xn−1.

Theorem 2.5. Let α < A and β = B in (1.1). Then there are positive initial values for which the
corresponding solutions, {xn}∞n=−1, decrease monotonically to zero.

Proof. Note that an equilibrium equation for (2.1) satisfies,

Ar3 + Br2 − αr − β = 0. (2.17)

Set p(r) = Ar3+Br2−αr −β.Given Descartes’ rule of signs, we have that there exists a unique
positive equilibrium, r < 1, where p(0) < 0 and p(1) > 0. Recall that rn = xn/xn−1, and let
rn = r for all n ≥ 0. Then xn/xn−1 = r for all n ≥ 0. It follows from induction that xn = rn+1x−1
for all n ≥ 0. Since r < 1, {xn}∞n=−1, with x0 = rx−1, decreases monotonically to zero.

Theorem 2.6. Let α = A and β > B in (1.1). Then there are positive initial values for which the
corresponding solution, {xn}∞n=−1, increases monotonically to infinity.

Proof. As in the previous proof, an equilibrium equation for (2.1) satisfies (2.17). Setting
p(r) = Ar3+Br2−αr−β,we obtain fromDescartes’ rule of signs, a unique positive equilibrium,
r > 1, where p(0) < 0 and limr→∞ p(r) > 0. Recall that rn = xn/xn−1, and let rn = r for all n ≥ 0.
Then xn/xn−1 = r for all n ≥ 0. It follows from induction that xn = rn+1x−1 for all n ≥ 0. Since
r > 1, {xn}∞n=−1, with x0 = rx−1, increases monotonically to infinity.
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