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The initial-boundary value problem for a class of linear and nonlinear equations in Hilbert space
is considers. We prove the existence and uniqueness of solution of this problem. The results of
this investigation are applied to solvability of initial-boundary value problems for quasilinear
impulsive hyperbolic equations with non-stationary transmission and boundary conditions.

1. Abstract Model Initial Boundary Value Problem with
Non Stationary Boundary and Transmission Conditions for
the Impulsive Linear Hyperbolic Equations

In paper [1] there is given an abstract scheme of investigation of mixed problems for
hyperbolic equations with non stationary boundary conditions. In this direction, some results
were obtained in [2].

In this paper, we offer the analogues abstract model of investigation of mixed
problem with non stationary boundary and transmission conditions for impulsive linear and
semilinear hyperbolic equations.

1.1. Statement of the Problem and Main Theorem

Let Hi,Hi
0, X

i
ν, Y

j
μ (ν = 1, 2, . . . , si; i = 1, 2, . . . , m; μ = 1, 2, . . . , rj ; j = 1, 2, . . . , m) be Hilbert

Spaces. Consider the following abstract initial-boundary value problem:
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üi(t) +Ai(t)ui(t) = fi(t),
(
hyperbolic equations

)
, (1.1)

Biνüi(t) +
m∑

k=1

Ci
kν(t)uk(t) = giν(t),

(
non stationary boundary and transmission conditions

)
,

m∑

k=1

Di
kμuk(t) = 0,

(
stationary boundary and transmission conditions

)
,

ui(0) = u0i , u̇i(0) = u1i , (initial conditions),
(1.2)

where t ∈ [0, T], üi = d2ui/dt2, u̇i = dui/dt, Ai(t) are the linear closed operators inHi; Biν are
the linear operators fromHi to Xi

ν ; C
i
kν
(t) are the linear operators fromHk to Xi

ν;D
j

kμ
are the

linear operators fromHkto Yj
μ; ν = 1, . . . , si, i = 1, . . . , m, μ = 1, . . . , rj , j = 1, . . . , m, k = 1, . . . , m.

We will investigate this problem under the following conditions.

(i) Let Hi
0 ⊂ Hi, and let Hi

0 be densely in Hi and continuously imbedded into it, i =
1, 2, . . . , m.

In the Hilbert spaceHi, it was defined the system of the inner products (·, ·)Hi(t), which
generate uniform equivalent norms, that is,

c−11 ‖u‖2Hi ≤ ‖u‖2Hi(t) ≤ c1‖u‖2Hi , c1 > 0,

‖u‖2Hi(t) = (u, u)Hi(t), t ∈ [0, T], i = 1, 2, . . . , m.
(1.3)

For each u ∈ Hi, the function t → ‖u‖2Hi(t) : [0, T] → R+ is continuously differentiable,
i = 1, 2, . . . , m.

In the Hilbert space Xi
ν, it was defined the system of the inner products (·, ·)Xνi

, which
generate uniform equivalent norms, that is,

c−12 ‖v‖2
Xi
ν
≤ ‖v‖2

Xi
ν(t)

≤ c2‖v‖2Xi
ν
, c2 > 0,

‖v‖2
Xi
ν(t)

= (v, v)Xi
ν(t), t ∈ [0, T], ν = 1, 2, . . . , si, i = 1, 2, . . . , m.

(1.4)

For each v ∈ Xi
ν, the function t → ‖v‖2

Xi
ν(t)

: [0, T] → R+ is continuously differentiable.

(ii) For each t ∈ [0, T] and i = 1, 2, . . . , m, Ai(t) is a linear closed operator inHi whose
domain is Hi

0; Ai(t) acts boundedly from Hi
0 to H

i; Ai(t) is strongly continuously
differentiable.

(iii) The linear operators Biν , that act from Hi
1/2 to Xi

ν , bounded, where Hi
1/2 =

[Hi
0,H

i]1/2 is interpolation space betweenHi
0 andH

i of order 1/2 (ν = 1, . . . , si, i =
1, . . . , m) (see [3]).

(iv) For each t ∈ [0, T], the linear operators Ci
kν
(t), that act from Hk to Xi

ν, are
bounded; Ci

kν(t) is strongly continuously differentiable (ν = 1, . . . , si, i = 1, . . . , m;
k = 1, . . . , m).
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(v) The linear operators Dj

kμ, from Hk
1/2 into Y

j
μ, act boundedly (μ = 1, . . . , rj , j =

1, . . . , m; k = 1, . . . , m).

Let us introduce the following designations:

Ĥ = H1 ⊕ · · · ⊕Hm,

Ĥ0 =

{

u : u = (u1, . . . , um), ui ∈Hi
0, i = 1, . . . , m;

m∑

k=1

D
j

kμ
uk = 0, μ = 1, . . . , rj , j = 1, . . . , m

}

,

Ĥ1/2 =

{

u : u = (u1, . . . , um), ui ∈Hi
1/2, i = 1, . . . , m;

m∑

k=1

D
j

kμuk = 0, μ = 1, . . . , rj , j = 1, . . . , m

}

,

H1 =
{
w : w = (w1, . . . , wm), wi = (ui, Bi1ui, . . . , Bisiui), i = 1, . . . , m,

where (u1, . . . , um) ∈ Ĥ0

}
,

Hi = Hi ⊕Xi
1 ⊕ · · · ⊕Xi

si , H =
m⊕

i=1

Hi, H1/2 = [H1,H]1/2.

(1.5)

From condition (v), it follows that the space Ĥ1/2 with the norm

‖u‖Ĥ1/2
=

m∑

i=1

‖ui‖Hi
1/2

(1.6)

is a subspace of

H1/2 =
{
u : u = (u1, . . . , um), ui ∈Hi

1/2, i = 1, . . . , m
}
= H1

1/2 × · · · ×Hm
1/2. (1.7)

(vi) Let the linear manifold Ĥ0 be dense in Ĥ1/2, and let linear manifoldH1 be dense in
H.

(vii) (Green’s Identity). For arbitrary u, v ∈ Ĥ0 and t ∈ [0, T], the following identity is
valid:

m∑

i=1

⎡

⎣(Ai(t)ui, vi)Hi(t) +
si∑

ν=1

(
m∑

k=1

Ci
kν(t)uk, Biνvi

)

Xi
ν(t)

⎤

⎦

=
m∑

i=1

⎡

⎣(ui, Ai(t)vi)Hi(t) +
si∑

ν=1

(

Biνui,
m∑

k=1

Ci
kν(t)vk

)

Xi
ν(t)

⎤

⎦.

(1.8)
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(viii) For all u = (u1, . . . , um) ∈ Ĥ0, the following inequality is fulfilled:

c1
m∑

i=1

(

‖ui‖2Hi +
si∑

ν=1

‖Biνui‖2Xi
ν

)

≤
m∑

i=1

⎡

⎣(Ai(t)ui, ui)Hi(t) +
si∑

ν=1

(
m∑

k=1

Ci
kν(t)uk, Biνui

)

Xi
ν(t)

⎤

⎦ ≤ c2
m∑

i=1

‖ui‖2Hi
1/2
,

(1.9)

where c1 ∈ R, c2 > 0.

(ix) For each t ∈ [0, T], an operator pencil

Lt(λ) : u = (u1, . . . , um) −→ Lt(λ)u

=
(
Lt10(λ)u, L

t
11(λ)u, . . . , L

t
1s1(λ)u, . . . , L

t
m0(λ)u, L

t
m1(λ)u, . . . , L

t
msm(λ)u

)
,

(1.10)

which acts boundedly from Ĥ0 to H, has a regular point λ = λ0 ∈ R, where

Lti0(λ)u = λui +Ai(t)ui, i = 1, 2, . . . , m,

Ltiν(λ)u = λBiνui +
m∑

k=1

Ci
kν(t)uk, ν = 1, 2, . . . , si, i = 1, 2, . . . , m.

(1.11)

(x) u0i ∈Hi
0, u

1
i ∈ Hi

1/2,
∑m

k=1D
j

kμ
u0
k
= 0,

∑m
k=1D

j

kμ
u1
k
= 0

(
i = 1, 2, . . . , m, μ = 1, 2, . . . , rj , j = 1, 2, . . . , m

)
. (1.12)

(xi) fi(·) ∈W1
p(0, T ;Hi), p ≥ 1, i = 1, . . . , m,

giν(·) ∈W1
p

(
0, T ;Xi

ν

)
, p ≥ 1, ν = 1, . . . , si, i = 1, . . . , m. (1.13)

Definition 1.1. The function t → (u1(t), . . . , um(t)) is called a solution of problem (1.1)-(1.2) if
the function t → u(t) = (u1(t), . . . , um(t)) from [0, T] to Ĥ0 is continuous, and the function

t −→ (u1(t), B11u1(t), . . . , B1s1u1(t), . . . , um(t), Bm1um(t), . . . , Bmsmum(t)) (1.14)

from [0, T] toH is twice continuously differentiable and (1.1)-(1.2) are satisfied.

Theorem 1.2. Let conditions (i)–(xi) are satisfied, then the problem (1.1)-(1.2) has a unique solution.
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Proof. We define the operatorA(t) in the Hilbert spaceH in the following way:

D(A(t)) = H1,

A(t)w =

(

A1(t)u1,
m∑

k=1

C1
k1(t)uk, . . . ,

m∑

k=1

C1
ks1

(t)uk, . . . , A(t)mum,

m∑

k=1

Cm
k1(t)uk, . . . ,

m∑

k=1

Cm
ksm

(t)uk

)

, t ∈ [0, T], w ∈ H1.

(1.15)

Then the problem (1.1)-(1.2) is represented as the Cauchy problem

ẅ +A(t)w = Φ(t),

w(0) = w0, ẇ(0) = w1,
(1.16)

where w(t) = (u1(t), B11u1(t), . . . , B1s1u1(t), . . . , um(t), Bm1um(t), . . . , Bmsmum(t)),

Φ(t) =
(
f1(t), g11(t), . . . , g1s1(t), . . . , fm(t), gm1(t), . . . , gmsm(t)

)
,

w0 =
(
u01, B11u

0
1, . . . , B1s1u

0
1, . . . , u

0
m, Bm1u

0
m, . . . , Bmsmu

0
m

)
,

w1 =
(
u11, B11u

1
1, . . . , B1s1u

1
1, . . . , u

1
m, Bm1u

1
m, . . . , Bmsmu

1
m

)
.

(1.17)

It is obvious that if (u1(t), . . . , um(t)) is the solution of problem (1.1)-(1.2), then w(t) is
the solution of the problem (1.16). On the contrary, if

w(t) ∈ C2([0, T];H) ∩ C1([0, T]; [H1,H]1/2
) ∩ C([0, T]; H1) (1.18)

is the solution of problem (1.16), then w(t) = (u1(t), B11u1(t), . . . , B1s1u1(t), . . . , um(t),
Bm1um(t), . . . , Bmsmum(t)) and (u1(t), . . . , um(t)) is the solution of problem (1.1)-(1.2).

Let us define the system of inner product in Hilbert spaceH in the following way:

(
w1, w2

)

H(t)
=

m∑

i=1

(
w1
i , w

2
i

)

Hi(t)
+

m∑

i=1

si∑

ν=1

(
Biνu

1
i , Biνu

2
i

)

Xi
ν(t)
, t ∈ [0, T], (1.19)

where wl = (wl
1, . . . , w

l
m), w

l
i = (uli, Bi1u

l
i, . . . , Bisiu

l
i), i = 1, 2, . . . , m,(ul1, . . . , u

l
m) ∈ Ĥ0, l = 1, 2.

We denote spaceH with inner product (1.19) by H(t).

We will prove later the following auxiliary results.

Statement 1.3. There exists such c3 > 0, that

c−13 ‖w‖2H ≤ ‖w‖2H(t) ≤ c3‖w‖2H, t ∈ [0, T], (1.20)
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and the function t → ‖w‖2H(t) : [0, T] → R+ is continuously differentiable, where ‖w‖2H(t) =
(w,w)H(t).

Statement 1.4. A(t) is a symmetric operator in H(t) for each t ∈ [0, T].

Statement 1.5. A(t) has a regular point for each t ∈ [0, T] in R.
A(t) is symmetric and R(A(t) + λI) = H(t), for some λ ∈ R; therefore, for each t ∈

[0, T], A(t) is a selfadjoint operator inH(t) (see [4, chapter x]).

Taking into account (viii) and Statement 1.3, we get

(A(t)w,w)H(t) =
m∑

i=1

⎡

⎣(Ai(t)ui, ui)Hi(t) +
si∑

ν=1

(
m∑

k=1

Ci
kν(t)uk, Biνui

)

Xi
ν(t)

⎤

⎦

≥ c1‖w‖2H(t),

(1.21)

that is, A(t) is a lower semibounded selfadjoint operator inH(t).
Thus, the operatorA0(t) = A(t)+λ0I is selfadjoint and positive definite, where λ0 > c1.
Problem (1.16) can be rewritten as

ẅ(t) +A0(t)w(t) − λ0w(t) = F(t),

w(0) = w0, ẇ(0) = w1.
(1.22)

It is known that if w0 ∈ H1 and w1 ∈ H1/2, then the problem (1.22) has a unique
solution w ∈ C2([0, T];H) ∩ C1([0, T];H1/2) ∩ C([0, T];H1) (see [5, 6]).

To complete the proof of the theorem, we need to show that w0 ∈ H1 and w1 ∈ H1/2.
By conditions of the theorem u0i ∈ Hi

0,
∑m

k=1D
j

kμu
0
k = 0(i = 1, 2, . . . , m; μ = 1, 2, . . . , rj ,

j = 1, 2, . . . , m) and Biν are bounded operators from Hi
1/2 to X

i
ν, ν = 1, 2, . . . , si, i = 1, 2, . . . , m.

Therefore,

w0 =
(
u01, B11u

0
1, . . . , B1s1u

0
1, . . . , u

0
m, Bm1u

0
m, . . . , Bmsmu

0
m

)
∈ H1. (1.23)

On the other hand, u1i ∈ Hi
1/2 and

∑m
k=1D

j

kμ
u1
k
= 0 (i = 1, 2, . . . , m, μ = 1, 2, . . . , rj , j =

1, 2, . . . , m), therefore, Biνu1i ∈ Xi
ν (ν = 1, 2, . . . , si, i = 1, 2, . . . , m). Consequently,

w1 =
(
u11, B11u

1
1, . . . , B1s1u

1
1, . . . , u

1
m, Bm1u

1
m, . . . , Bmsmu

1
m

)
∈ J,

J =

{

w : w = (w1, . . . , wm), wi = (ui, Bi1ui, . . . , Bisiui), ui ∈Hi
1/2,

m∑

k=1

D
j

kμuk = 0, i = 1, . . . , m, μ = 1, . . . , rj , j = 1, . . . , m

}

.

(1.24)
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From the definition of interpolation spaces (see [3, chapter 1], [7, chapter 1]), we get
the following inclusion:

H1 ⊂ H1/2 ⊂ H̃1/2 =
m⊕

i=1

(
Hi

1/2 ⊕Xi
1 ⊕ · · · ⊕Xi

si

)
. (1.25)

By virtue of definition, the powers of positive selfadjoint operator (see [8, chapter 2],
[7, chapter 1]), we have that D(A1/2

0 (t)) = H1/2 and

c−1‖w‖H1/2
≤
∥∥∥A1/2

0 (t)w
∥∥∥
H(t)

≤ c‖w‖H1/2
, c > 0. (1.26)

Assume that w ∈ D(A0) = H1, then

∥
∥∥A1/2

0 (t)w
∥
∥∥
2

H(t)
= (A0(t)w,w)H(t)

=
m∑

i=1

⎡

⎣(Ai(t)ui, ui)Hi(t) +
si∑

ν=1

(
m∑

k=1

Ci
kν(t)uk, Biνui

)

Xi
ν(t)

⎤

⎦

+ λ0
m∑

i=1

[

(ui, ui)Hi(t) +
si∑

ν=1

(Biνui, Biνui)Xi
ν(t)

]

.

(1.27)

By virtue of conditions (ii), (viii), (1.26), and (1.27), we get

‖w‖2H1/2
≤ c

m∑

i=1

‖ui‖2Hi
1/2
. (1.28)

Let w1 ∈ J. By virtue of condition (vi), Ĥ0 is dense in Ĥ1/2; therefore, there exists a
sequence u(p) = (u(p)1 , . . . , u

(p)
m ), such that u(p) ∈ Ĥ0 and

∥
∥∥u(p) − u1

∥
∥∥
H1

1/2⊕···⊕Hm
1/2

−→ 0, at p −→ ∞. (1.29)

Hence it follows, that

∥∥
∥u(p) − u(q)

∥∥
∥
H1

1/2⊕···⊕Hm
1/2

−→ 0 at p, q −→ ∞. (1.30)

Then from (1.28) and (1.30) it follows that {w(p)} is fundamental in H1/2, that is,

∥
∥∥w(p) −w(q)

∥
∥∥
H1/2

−→ 0, at p, q −→ ∞, (1.31)

where w(p) = (u(p)1 , B11u
(p)
1 , . . . , B1s1u

(p)
1 , . . . , u

(p)
m , Bm1u

(p)
m , . . . , Bmsmu

(p)
m ), p = 1, 2,. . ..



8 Advances in Difference Equations

Thus, there exists w̃ ∈ H1/2 such that

∥∥
∥w(p) − w̃

∥∥
∥
H1/2

−→ 0, at p −→ ∞. (1.32)

On the other hand,H1/2 ⊂ H̃1/2, therefore,

∥∥∥w(p) − w̃
∥∥∥
H̃1/2

−→ 0, at p −→ ∞. (1.33)

Hence,

∥
∥∥u(p) − u

∥
∥∥
H1

1/2⊕···⊕Hm
1/2

−→ 0, at p −→ ∞, (1.34)

where u = (ũ1, . . . , ũm). From this, by virtue of (1.29), u = u1, that is,

w̃ =
(
u11, B11u

1
1, . . . , B1s1u

1
1, . . . , u

1
m, Bm1u

1
m, . . . , Bmsmu

1
m

)
= w1. (1.35)

Thus, w1 ∈ H1/2. The theorem is proved.

1.2. Proof of Auxiliary Results

Validity of Statement 1.3 follows from condition (i), the Statement 1.4 from condition (vii).

Proof of Statement 3. Consider in Hilbert spaceH the equation

λw +A(t)w = F, t ∈ [0, T], (1.36)

where F = (f1, f11, . . . , f1s1 , . . . , fm, fm1, . . . , fmsm) ∈ H, λ ∈ R.
Equation (1.36) is equivalent to the following system of differential-operator

equations:

Lti0(λ)u = λui +Ai(t)ui = fi, t ∈ [0, T], i = 1, 2, . . . , m,

Ltiν(λ)u = λBiνui +
m∑

k=1

Ci
kν(t)uk = giν, t ∈ [0, T], ν = 1, 2, . . . , si, i = 1, 2, . . . , m,

m∑

k=1

D
j

kμ
uk = 0, μ = 1, 2, . . . , rj , j = 1, 2, . . . , m.

(1.37)

By virtue of (ix), problem (1.37) has a solution u = (u1, . . . , um) ∈ Ĥ0 for some λ ∈ R. Thus,
for each t ∈ [0, T],

R(λI +A(t)) = H(t), (1.38)

where I is an identity operator in H(t), that is, A has a regular point.
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2. Abstract Model of Initial Boundary Value Problem with
Non Stationary Boundary and Transmission Conditions for
the Impulsive Semilinear Hyperbolic Equations

Consider the following initial boundary value problem:

üi(t) +Ai(t)ui(t) = fi
(
t, u(t), u̇(t)

)
,

Biνüi(t) +
m∑

k=1

Ci
kν(t)uk(t) = giν

(
t, u(t), ü(t)

)
,

m∑

k=1

Di
kμuk(t) = 0,

ui(0) = u0i , u̇i(0) = u1i ,

(2.1)

where t ∈ [0, T], ν = 1, . . . , si, μ = 1, . . . , ri, i = 1, . . . , m, u̇ = (u1, . . . , um), ü = (u̇1, . . . , u̇m),Ai(t),
Biν , Ci

kν
(t) andDi

kμ
satisfy all conditions of Theorem 1.2.

Assume, that the nonlinear operators fi and giν satisfy the following conditions.

(xi′) Suppose that the nonlinear operators

(
t, u, u̇

)
−→ fi

(
t, u, u̇

)
: [0, T] ×

(
m⊕

i=1

Hi
1/2

)

×
(

m⊕

i=1

Hi

)

−→ Hi,

(
t, u, u̇

)
−→ giν

(
t, u, u̇

)
: [0, T] ×

(
m⊕

i=1

Hi
1/2

)

×
(

m⊕

i=1

Hi

)

−→ Xi
ν

(2.2)

satisfy the local Lipschitz conditions in the following sense: for arbitrary t1, t2 ∈
[0, T], (u1, v1), (u2, v2) ∈ Ĥ1/2 × Ĥ,

∥∥
∥fi
(
t1, u

1, v1
)
− fi

(
t2, u

2, v2
)∥∥
∥
Hi

≤ ci(r)
[

|t1 − t2| +
m∑

i=1

(∥
∥∥u1i − u2i

∥
∥∥
Hi

1/2

+
∥
∥∥v1i − v2i

∥
∥∥
Hi

)]

,

∥
∥∥giν

(
t1, u

1, v1
)
− giν

(
t2, u

2, v2
)∥∥∥

Xi
ν

≤ ciν(r)
[

|t1 − t2| +
m∑

i=1

(∥∥
∥u1i − u2i

∥∥
∥
Hi

1/2

+
∥∥
∥v1i − v2i

∥∥
∥
Hi

)]

,

(2.3)

where ci(·), ciν ∈ C(R+, R+), ν = 1, . . . , si, i = 1, . . . , m,

r =
m∑

i=1

2∑

l=1

(∥∥
∥uli
∥∥
∥
Hi

1/2

+
∥∥
∥vli
∥∥
∥
Hi

)
. (2.4)
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Theorem 2.1. Let conditions (i)–(x) and (xi′) be satisfied, then there exists T ′ ∈ (0, T], such that the
problem (2.1) has a unique solution

u = (u1, . . . , um) ∈ C
([

0, T ′), Ĥ0

)
∩ C1

([
0, T ′), Ĥ1/2

)
∩ C2

([
0, T ′), Ĥ

)
. (2.5)

Additionally, if

E(t) =
m∑

i=1

[
‖ui(t)‖Hi

1/2
+ ‖u̇i(t)‖Hi

]
≤ ϕ
(

m∑

i=1

[∥∥∥u0i
∥∥∥
Hi

1/2

+
∥∥∥u1i
∥∥∥
Hi

])

, t ∈ [0, T ′), (2.6)

where ϕ(·) ∈ C(R+, R+), then T ′ = T . Otherwise, there exists T0 ∈ (0, T), such that

lim
t→ T0−0

E(t) = +∞. (2.7)

In the Hilbert spaceH, the problem (2.1) is represented as the Cauchy problem

ẅ +A0(t)w = F(t, w, ẇ),

w(0) = w0, ẇ(0) = w1,
(2.8)

where w = (u1, B11u1, . . . , B1s1u1, . . . , um, Bm1um, . . . , Bmsmum),

w0 =
(
u01, B11u

0
1, . . . , B1s1u

0
1, . . . , u

0
m, Bm1u

0
m, . . . , Bmsmu

0
m

)
,

w1 =
(
u11, B11u

1
1, . . . , B1s1u

1
1, . . . , u

1
m, Bm1u

1
m, . . . , Bmsmu

1
m

)
,

F(t, w, ẇ) = λ0w +F1(t, w, ẇ),

F1(t, w, ẇ) =
(
f1
(
t, u, u̇

)
, g11

(
t, u, u̇

)
, . . . , g1s1

(
t, u, u̇

)
, . . . ,

fm
(
t, u, u̇

)
, gm1

(
t, u, u̇

)
, . . . , gmsm

(
t, u, u̇

))
.

(2.9)

From (xi’), it follows that, for arbitrary t1, t2 ∈ [0, T], w1, w2 ∈ H1/2, z1, z2 ∈ H,

∥∥∥F
(
t1, w

1, z1
)
− F
(
t2, w

2, z2
)∥∥∥

H
≤ c(r)

[
|t1 − t2| +

∥∥∥w1 −w2
∥∥∥
H1/2

+
∥∥∥z1 − z2

∥∥∥
H

]
, (2.10)

where c(·) ∈ C(R+, R+), r =
∑2

l=1(‖wl‖H1/2
+ ‖zl‖H).
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Thus, the nonlinear operatorF satisfies the condition of local solvability of the Cauchy
problem for the quasilinear hyperbolic equations in Hilbert space (see [6, 9]). Taking this into
account, the problem (2.8) has a unique solution

w ∈ C2([0, T ′);H) ∩ C1([0, T ′);H1/2
) ∩ C([0, T ′);H1

)
. (2.11)

3. Initial Boundary Value Problem with
Non Stationary Boundary and Transmission Condition for
the Impulsive Semilinear Hyperbolic Equations

Let a1 < a2 < · · · < am+1. We consider in the domain [0, T] ×
m⋃

i=1
[ai, ai+1] the following mixed

problem

üi(t, x) − pi(t)u′′i (t, x) = fi
(
t, x, ui(t, x), u′i(t, x), u̇i(t, x), ϕi

(
u, u̇
))
,

(t, x) ∈ [0, T] × [ai, ai+1], i = 1, 2, . . . , m,

ui(t, ai+1) = ui+1(t, ai+1), i = 1, 2, . . . , m − 1, t > 0,

ü1(t, a1) − q0(t)u′1(t, a1) = g0
(
t, ψ0

(
u, u̇
))
, t > 0,

üi(t, ai+1) + qi(t)
[
u′i(t, ai+1) − u′i+1(t, ai+1)

]
= gi

(
t, ψi

(
u, u̇
))
,

i = 1, 2, . . . , m − 1, t > 0,

üm(t, am+1) + qm(t)u′m(t, am+1) = gm
(
t, ψm

(
u, u̇
))
, t > 0,

ui(0, x) = u0i (x), u̇i(0, x) = u1i (x), x ∈ [ai, bi], i = 1, 2, . . . , m,

(3.1)

where u̇i = ∂ui/∂t, u
′
i = ∂ui/∂x, üi = ∂2ui/∂t2, u

′′
i = ∂2ui/∂x2, u = (u1, . . . , um), u̇ =

(u̇1, . . . , u̇m), pi, qj , fi, gj , u0i , u
1
i are some functions, ϕi and ψj are some functionals, which will

be specified below, i = 1, . . . , m, j = 0, 1, . . . , m.
Recently, differential equations with impulses are great interest because of the

needs of modern technology, where impulsive automatic control systems and impulsive
computing systems are very important and intensively develop broadening the scope of their
applications in technical problems, heterogeneous by their physical nature and functional
purpose (see [10, chapter 1]).

Assume that the following conditions are held:

(10) pi(t) ∈ C1[0, T], qj(t) ∈ C1[0, T]; pi(t) > 0, qj(t) > 0, t ∈ [0, T], i = 1, . . . , m, j =
0, 1, . . . , m,

(20) fi(·) ∈ C1([0, T] × [ai, ai+1] × R4), i = 1, 2, . . . , m,

(30) gj(·) ∈ C1([0, T], R), j = 0, 1, . . . , m,
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(40) ϕi(·) are nonlinear functionals acting from

m⊕

k=1

(
W1

2 (ak, ak+1) × L2(ak, ak+1)
)

(3.2)

to R and for arbitrary (u1, v1), (u2, v2) ∈ ⊕m
k=1(W

1
2 (ak, ak+1) × L2(ak, ak+1)) the following

inequality holds

∣∣
∣ϕi
(
u1, v1

)
− ϕi

(
u2, v2

)∣∣
∣

≤ ci(r)
m∑

k=1

[∥∥∥u1k − u2k
∥∥∥
W1

2 (ak,ak+1)
+
∥∥∥v1k − v2k

∥∥∥
L2(ak,ak+1)

]
,

i = 1, 2, . . . , m,

(3.3)

where r =
∑m

k=1[‖u1k‖W1
2 (ak,ak+1)

+ ‖u2
k
‖
W1

2 (ak,ak+1)
+ ‖v1

k
‖
L2(ak,ak+1)

+ ‖v1
k
‖
L2(ak,ak+1)

],

ci(·) ∈ C(R+, R+), R+ = [0,∞), i = 1, 2, . . . , m, (3.4)

( 50 ) ψj(·) are nonlinear functionals acting from

m⊕

k=1

(
W1

2 (ak, ak+1) × L2(ak, ak+1)
)

(3.5)

to R and for arbitrary (u1, v1), (u2, v2) ∈ ⊕m
k=1(W

1
2 (ak, ak+1) × L2(ak, ak+1)) the following

inequality holds

∣∣
∣ψj
(
u1, v1

)
− ψj

(
u2, v2

)∣∣
∣ ≤ cj(r)

m∑

k=1

[∥∥
∥u1k − u2k

∥∥
∥
W1

2 (ak,ak+1)
+
∥∥
∥v1k − v2k

∥∥
∥
L2(ak,ak+1)

]
, (3.6)

where cj(·) ∈ C(R+, R+), j = 0, 1, . . . , m, and r—is defined as in (3.3),

( 60 ) u0i ∈W2
2 (ai, ai+1), u

1
i ∈ W1

2 (ai, ai+1), i = 1, 2, . . . , m, where

u0j
(
aj+1

)
= u0j+1

(
aj+1

)
,

u1j
(
aj+1

)
= u1j+1

(
aj+1

)
, j = 1, 2, . . . , m − 1.

(3.7)

By applying Theorem 2.1, we obtain the following result.
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Theorem 3.1. Let conditions (10)–(60) be held, then there exists a T ′ ∈ (0, T], such that the problem
(3.1) has a unique solution u = (u1, . . . , um), where

ui ∈ C2([0, T ′);L2(ai, ai+1)
) ∩C1

([
0, T ′);W1

2 (ai, ai+1)
)
∩ C
([

0, T ′);W2
2 (ai, ai+1)

)
,

ui(t, ai), ui(t, ai+1) ∈ C2([0, T ′), R
)
, i = 1, 2, . . . , m.

(3.8)

Proof. Let us denote Hi = L2(ai, ai+1), Hi
0 = W2

2 (ai, ai+1), X
i
ν = � ,Yj

μ = � , ν = 1, 2, . . . , si, i =
1, 2, . . . , m, μ = 1, 2, . . . , rj , j = 1, 2, . . . , m, where si = 2,rj = 1.

In spaceHi and Xi
ν are defined the following inner products:

(u, v)Hi(t) = p
−1
i (t)

∫ai+1

ai

uv dx,

(h1, h2)X1
1(t)

= q−10 (t)h1h2, (h1, h2)Xi
2(t)

= q−1i (t)h1h2,

h1, h2 ∈ � , i = 1, 2, . . . , m.

(3.9)

From differentiability of the functions pi(t), i = 1, 2, . . . , m, and qj(t), j = 0, 1, . . . , m it
follows that the condition (i) is satisfied.

Let us define the following operators:

Ai(t)ui = −pi(t)u′′i , ui ∈ D(Ai(t)) =W2
2 (ai, ai+1),

B11u1 = u1(a1), Bj1 = 0, B2iui = ui(ai+1), i = 1, 2, . . . , m, j = 2, . . . , m,

C1
11(t)u1 = −q0(t)u′1(a1), Cm

m1(t)um = qm(t)u′m(am+1),

Ci
k1(t) = 0, for all other i, k,

Ci
i2(t)ui = qi(t)u

′
i(ai+1), i = 1, 2, . . . , m,

C
j

j2(t)uj+1 = −qj(t)u′j+1(aj+1), j = 1, 2, . . . , m − 1,

Ci
k2(t) = 0, for all other i, k,

Di
i1ui = −ui(ai+1), Di

i+1,1ui+1 = ui+1(ai+1), i = 1, 2, . . . , m − 1,

Di
k1 = 0, k /= i, k /= i + 1.

We also define the nonlinear operators as follows:

Fi(t, u, v) = fi(t, x, ui(x), u′i(x), vi(x), ϕi(u, v)), i = 1, 2, . . . , m,

G11(t, u, v) = g0(t, ψ0(u, v)),

Gi2(t, u, v) = gi(t, ψi(u, v)), i = 1, 2, . . . , m,

Gi1(t, u, v) = 0, i = 2, 3, . . . , m.
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It is easy to verify that linear operatorsAi(t), Biν, Ck
iν(t), and Dk

iμ and the nonlinear operators
Fi, Gi1, and Gi2, i = 1, . . . , m satisfy the conditions of Theorem 2.1, and the problem (3.1) is
represented as an abstract initial boundary-value problem in the following way:

üi(t) +Ai(t)ui(t) = Fi
(
t, u, u̇

)
,

B11ü1(t) + C1
11(t)u1(t) = G0

(
t, u, u̇

)
,

Bi2üi(t) +Ci
i2(t)ui(t) +C

i
i+2,2(t)ui(t) = Gi

(
t, u, u̇

)
,

Bm2üm(t) + Cm
m2(t)um(t) = Gm

(
t, u, u̇

)
,

Di
i1ui +D

i
i1ui+1 = 0, i = 1, 2, . . . , m − 1.

(3.10)

We will show that conditions of Theorem 2.1 are satisfied. Conditions (i)–(v) follow
immediately from definitions of spaces Hi,Xi

ν, and Y
j
μ and operators Ai(t), Biν, Ci

kν(t),

and D
j

kμ, and traces theorems (see [3, chapter 2]), where k = 1, 2, . . . , m; ν = 1, 2, . . . , si;
i = 1, 2, . . . , m; μ = 1, 2, . . . , rj ; j = 1, 2, . . . , m.

The linear manifolds Ĥ0 and H1 are defined in the following way:

Ĥ0 =
{
u, u = (u1, . . . , um), ui ∈ W2

2 (ai, ai+1), i = 1, . . . , m,

uj
(
aj+1

)
= uj+1

(
aj+1

)
, j = 1, . . . , m − 1

}
,

H1 =
{
w,w = (w1, . . . , wm), w1 = (u1, u1(a2), u1(a1)),

wi = (ui, ui(ai+1)), i = 2, . . . , m, u ∈ Ĥ0

}
.

(3.11)

We also define the spaces

H1/2 =
{
u, u = (u1, . . . , um), ui ∈ W1

2 (ai, ai+1), i = 1, . . . , m
}
,

Ĥ1/2 =
{
u, u = (u1, . . . , um), ui ∈ W1

2 (ai, ai+1), i = 1, . . . , m,

uj
(
aj+1

)
= uj+1

(
aj+1

)
, j = 1, . . . , m − 1

}
.

(3.12)

Statement 3.2. H1 is dense in

H = (L2(a1, b1) ⊕ � ⊕ � )⊕
m⊕

i=2
(L2(ai, bi) ⊕ � ). (3.13)
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Proof. Assume that (u1, α1, α0, u2, α2, . . . , um, αm) ∈ H. Consider the following functions:

u0i (x) =
ai+1 − x
ai+1 − ai αi−1 +

x − ai
ai+1 − ai αi, x ∈ [ai, ai+1], i = 1, . . . , m. (3.14)

From definitions of u0i (x), i = 1, . . . , m, we can see that

u0i (ai+1) = u
0
i+1(ai+1) = αi, i = 1, 2, . . . , m − 1. (3.15)

Let u = (u1, . . . , um) ∈ Ĥ . Consider the function

z = (z1, . . . , zm) =
(
u1 − u01, . . . , um − u0m

)
. (3.16)

It is obvious that z ∈ ⊕m
i=1L2(ai, ai+1). On the other hand,

⊕m
i=1D(ai, ai+1, ai+1) =⊕m

i=1L2(ai, ai+1), where D(ai, ai+1)(i = 1, . . . , m) is a space of infinitely differentiable finite
functions. Therefore, for an arbitrary ε > 0, there exist the functions hi ∈ D(ai, ai+1),
i = 1, . . . , m, such that

m∑

i=1

‖zi − hi‖ < ε. (3.17)

By denoting h̃i = u0i + hi from (3.17), we get

m∑

i=1

∥∥∥ui − h̃i
∥∥∥
L2(ai,ai+1)

< ε, (3.18)

where h̃i ∈ C∞[ai, ai+1], h̃i(ai) = αi−1, i = 1, . . . , m.
Thus,

‖(u1, u1(a2), u1(a1), u2, u2(a2), . . . , um, um(am+1) − (h1, α1, α0, h2, α1, . . . , hm, αm)‖H < ε.
(3.19)

The following statement is proved in the same way.

Statement 3.3. Ĥ0 is dense Ĥ1/2.
Now, we prove that the condition (vi) holds.
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Let u = (u1, . . . , um), v = (v1, . . . , vm) ∈ Ĥ0, then

m∑

i=1

⎡

⎣(Ai(t)ui, vi)Hi(t) +
si∑

ν=1

(
m∑

k=1

Ci
kν(t)uk, Biνvi

)

Xi
ν(t)

⎤

⎦

=
m∑

i=1

[

−
∫ai+1

ai

u′′i vidx +
(−u′1(a1), v1(a1)

)

+
m∑

i=1

(
u′i(ai+1) − u′i+1(ai+1), vi(ai+1)

)
+
(
u′m(am+1), vm(am)

)
]

=
m∑

i=1

[(
u′i(ai), vi(ai)

) − (u′i(ai+1), vi(ai+1)
)]

−
m∑

i=1

ai+1∫

ai

u′iv
′
idx − (u′1(a1), v1(a1)

)
+
m−1∑

i=1

u′i(ai+1)v
′
i(ai+1)

−
m−1∑

i=1

u′i+1(ai+1)vi(ai+1) + u
′
m(am+1)vm(am+1)

=
m∑

i=1

(
u′i(ai)vi(ai) − u′i(ai+1)v′i(ai+1)

) − u′1(a1)v1(a1) +
m−1∑

i=1

u′i(ai)vi(ai) −
m∑

i=2

u′i(ai)vi(ai)

+ u′m(am+1)vm(am+1) +
m∑

i=1

∫ai+1

ai

u′iv
′
idx =

m∑

i=1

∫ai+1

ai

u′iv
′
idx.

(3.20)

Similary, we obtain the following identity:

m∑

i=1

⎡

⎣(ui, Ai(t)vi)Hi(t) +
si∑

ν=1

(

Biννi,
m∑

k=1

Ci
kν(t)uk

)

Xi
ν(t)

⎤

⎦ =
m∑

i=1

∫ai+1

ai

u′iv
′
idx. (3.21)

Thus, by virtue of (3.20)-(3.21), the condition (vi) holds.
From (3.20) or (3.21), putting vi = ui, we also obtain the identity

m∑

i=1

∫ai+1

ai

u2i
′
dx =

m∑

i=1

⎡

⎣(Ai(t)ui, ui)Hi(t) +
si∑

ν=1

(
m∑

k=1

Ci
kν(t)uk, Biνui

)

Xi
ν(t)

⎤

⎦, (3.22)

that is, condition (viii) is satisfied, c1 = c2 = 1.
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Now, we verify fulfillment of condition (ix). To that end, we consider the mixed
problem

λui − pi(t)u′′i = hi(x), i = 1, 2, . . . , m, (3.23)

λu1(a1) − q0(t)u′1(a1) = h10,
λui(ai+1) + qi(t)

[
u′i(ai+1) − u′i+1(ai+1)

]
= hi0, i = 1, 2, . . . , m − 1,

λum(am+1) + qm(t)u′m(am+1) = hm0,

(3.24)

where hi ∈ L2(ai, ai+1),i = 1, . . . , m; hj0 ∈ R, j = 0, 1, . . . , m, λ ∈ R.
Let hi(x) be the extend of function hi(x) to R. We consider the system of the differential

equations

λũi − pi(t)ũixx = h̃i(x), i = 1, 2, . . . , m. (3.25)

Hence, we have

λ̂̃ui − k2pi(t)̂̃uixx = ̂̃hi(x), i = 1, 2, . . . , m, (3.26)

where ĝ = F[g] is a Fourier transformation of the function g(x). From (3.26), we obtain
̂̃u = ̂̃hi/(λ + k2pi(t)), then functions ũi = F−1[̂̃ui] = F−1[̂̃hi/(λ + k2pi(t))] satisfy (3.25), and
their constrictions on (ai, ai+1) satisfy the (3.23). It is clear that ũi ∈ W2

2 (ai, ai+1). Considering
linearity of the problem (3.23), (3.24), the solution can be represented in the form

ui = vi + ũi, (3.27)

where vi = ui − ũi is a solution of the following problem:

λvi(x) − pi(t)v′′i (x) = 0, (3.28)

λv1(a1) − q0(t)v′1(a1) = h̃10,

λvi(ai+1) + qi(t)
[
v′i(ai+1) − v′i+1(ai+1)

]
= h̃i0, i = 1, 2, . . . , m − 1,

λvm(am+1) + qm(t)v′m(am+1) = h̃m0,

(3.29)

where h̃10 = h10 − λũ1(a1) + q0(t)ũ′1(a1),

h̃i0 = hi0 − λũi(ai+1) − qi(t)
[
ũ′i(ai+1) − ũ′i+1(ai+1)

]
, i = 1, 2, . . . , m − 1,

h̃m0(0) = hm0 − λũm(am+1) + qm(t)ũ′m(am+1).
(3.30)
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A general solution of a system (3.28) is found in the following form:

vi(x) = ci1e−(x−ai)
√
λ/pi(t) + ci2e−(bi−x)

√
λ/pi(t), i = 1, 2, . . . , m. (3.31)

Then, for determination of ci1, ci2, i = 1, 2, . . . , m, from (3.29), we get the following
system of the algebraic equations:

λ
(
c11 + c12e−(a2−a1)

√
λ/pi(t)

)
− q0(t)

√
λ

pi(t)

(
c11 − c12e−(a2−a1)

√
λ/pi(t)

)
= h̃0,

λ
(
ci1e

−(ai+1−ai)
√
λ/pi(t) − ci2

)
+ qi(t)

√
λ

pi(t)

(
ci1e

−(ai+1−ai)
√
λ/pi(t) + ci2

)

−
√

λ

pi+1(t)

(
ci+1,1 + ci+1,2e−(ai+2−ai+1)

√
λ/pi+1(t)

)
= h̃i0, i = 1, 2, . . . , m − 1,

ci1e
−(ai+1−ai)

√
λ/pi(t) − ci2 −

(
ci+1,1 − ci+1,2e−(ai+2−ai+1)

√
λ/pi+1(t)

)
= 0, i = 1, . . . , m − 1,

λ
(
cm1e

−(am+1−am)
√
λ/pm(t) + cm2

)
+
(
−cm1e

−(am+1−am)
√
λ/pm(t) + cm2

)
= h̃m0 .

(3.32)

Let R(λ) be a matrix of coefficients of system (3.32). From (3.32), it is clear that R(λ) =
R0(λ) + R1(λ), where detR0(λ) → +∞ and detR1(λ) → 0 as λ → +∞. Thus, for sufficiently
large λ, R(λ) is invertible and det R(λ) → +∞. Therefore, the system (3.32) has a unique
solution.

Thus, for sufficiently positive large λ, the problem (3.23)-(3.24) has a unique solution
u = (u1, . . . , um) ∈ H0.

Thus, the condition (ix) is satisfied. The fulfillment of other conditions follows from
(10)–(60).

Now, let us consider a class of nonlinear equations, for which the large solvability
theorem takes place.

Let

fi
(
t, x, ui, u

′
i, u̇i, ϕ

(
u, u̇
))

= −|ui|ρiui + f1i
(
t, x, ui, u

′
i, u̇i, ϕ̃i

(
u, u̇
))
,

g0
(
t, ψ0

(
u, u̇
))

= −|u1(a1)|τ0u1(a1) + g01
(
t, ψ0

(
u, u̇
))
,

gi
(
t, ψi

(
u, u̇
))

= −|ui(ai+1)|τiui(ai+1) + gi1
(
t, ψ̃i

(
u, u̇
))
, i = 1, 2, . . . , m,

(3.33)

where ρi ≥ 0, τj ≥ 0, i = 1, 2, . . . , m; j = 0, 1, . . . , m and

(70) f1i, g1j,ϕ̃i and ψ̃j , i = 1, 2, . . . , m, j = 1, 2, . . . , m satisfy the conditions (20) − −(50).

(80) |fi(t, x, ui, vi, ξi, η)| ≤ c(1 + |ui|(ρi+2)/2 + |vi| + |ξi| + |η|),
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(90) |g0i(t, η)| ≤ c(1 + |η|),
(100) |ϕi(u, v)| ≤ c(1 +

∑n
i=1 |ui|(ρi+2)/2 + |vi|2 + |ui(yi)|(τi+2)/2),

where yi = ai+1, i = 0, 1, . . . , m, ρ = max(mini=1,2,...,m(ρi, 2)).

Theorem 3.4. Let conditions (70)–(100) be held and initial data satisfy the condition (60), then the
problem (3.1) has a unique solution u = (u1, . . . , um), where

ui ∈ C2([0, T]; L2(ai, ai+1)) ∩ C1
(
[0, T]; W1

2 (ai, ai+1)
)
∩C
(
[0, T]; W2

2 (ai, ai+1)
)
,

ui(t, ai), ui(t, ai+1) ∈ C2([0, T];R), i = 1, 2, . . . , m.
(3.34)
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