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We consider a singularly perturbed one-dimensional convection-diffusion three-point boundary
value problem with zeroth-order reduced equation. The monotone operator is combined with the
piecewise uniform Shishkin-type meshes. We show that the scheme is second-order convergent, in
the discrete maximum norm, independently of the perturbation parameter except for a logarithmic
factor. Numerical examples support the theoretical results.

1. Introduction

We consider the following singularly perturbed three-point boundary value problem:

Lu := ε2u′′(x) + εa(x)u′(x) − b(x)u(x) = f(x), 0 < x < �, (1.1)

u(0) = A, L0u := u(�) − γu(�1) = B, 0 < �1 < �, (1.2)

where ε ∈ (0, 1] is the perturbation parameter, and, A, B, and γ are given constants. The
functions a(x) ≥ 0, b(x) ≥ β > 0 and f(x) are sufficiently smooth. For 0 < ε � 1 the function
u(x) has in general boundary layers at x = 0 and x = �.

Equations of this type arise in mathematical problems in many areas of mechanics and
physics. Among these are the Navier-Stokes equations of fluid flow at high Reynolds number,
mathematical models of liquid crystal materials and chemical reactions, shear in second-order
fluids, control theory, electrical networks, and other physical models [1, 2].
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Differential equations with a small parameter 0 < ε � 1 multiplying the highest order
derivatives are called singularly perturbed differential equations. Typically, the solutions
of such equations have steep gradients in narrow layer regions of the domain. Classical
numerical methods are inappropriate for singularly perturbed problems. Therefore, it is
important to develop suitable numerical methods to these problems, whose accuracy does
not depend on the parameter value ε; that is, methods that are convergence ε-uniformly
[1–5]. One of the simplest ways to derive such methods consists of using a class of special
piecewise uniform meshes (a Shishkin mesh), (see, e.g., [4–8] for motivation for this type of
mesh), which are constructed a priori in function of sizes of parameter ε, the problem data,
and the number of corresponding mesh points.

Three-point boundary value problems have been studied extensively in the literature.
For a discussion of existence and uniqueness results and for applications of three-point
problems, see [9–12] and the references cited in them. Some approaches to approximating
this type of problem have also been considered [13, 14]. However, the algorithms developed
in the papers cited above are mainly concernedwith regular cases (i.e., when boundary layers
are absent). Fitted difference scheme on an equidistant mesh for the numerical solution of
the linear three-point reaction-diffusion problem have been studied in [15]. A uniform finite
difference method, which is first-order convergent, on an S-mesh (Shishkin type mesh) for a
singularly perturbed semilinear one-dimensional convection-diffusion three-point boundary
value problem have also been studied in [16].

Computational methods for singularly perturbed problemswith two small parameters
have been studied in different ways [17–21]. In this paper, we propose the hybrid
scheme for solving the nonlocal problem (1.1)-(1.2), which comprises three kinds of
schemes, such as Samarskii’s scheme [22], a finite difference scheme with uniform mesh,
and finite difference scheme on piecewise uniform mesh. The considered algorithm is
monotone.

We will prove that the method for the numerical solution of the three-point boundary
value problem (1.1)-(1.2) is uniformly convergent of order N−2ln2N on special piecewise
equidistant mesh, in discrete maximum norm, independently of singular perturbation
parameter. In Section 2, we present some analytical results of the three-point boundary value
problem (1.1)-(1.2). In Section 3, we describe some monotone finite-difference discretization
and introduce the piecewise uniform grid. In Section 4, we analyze the convergence
properties of the scheme. Finally, numerical examples are presented in Section 5.

Notation 1. Henceforth, C denote the generic positive constants independent of ε and of the
mesh parameter. Such a subscripted constant is also independent of ε and mesh parameter,
but whose value is fixed.

Assumption 1. In what follows, we will assume that ε ≤ CN−1, which is nonrestrictive in
practice.

2. Properties of the Exact Solution

For constructing layer-adaptedmeshes correctly, we need to know the asymptotic behavior of
the exact solution. This behavior will be used later in the analysis of the uniform convergence
of the finite difference approximations defined in Section 3. For any continuous function v(x),
we use ‖v‖∞ for the continuous maximum norm on the corresponding interval.



Advances in Difference Equations 3

Lemma 2.1. If a, b, and f ∈ C2[0, �], the solution of (1.1)-(1.2) satisfies the following estimates:

‖u‖∞ ≤ C,
∣
∣
∣u(k)(x)

∣
∣
∣ ≤ C

{

1 +
1
εk

(

e−μ1x/ε + e−μ2(�−x)/ε
)}

, 0 ≤ x ≤ �, k = 1, 2, 3, 4,
(2.1)

provided that b(x) − εa′(x) ≥ β∗ > 0 and |γ | < 1, where

μ1 =
1
2

(√

a2(0) + 4β∗ + a(0)
)

,

μ2 =
1
2

(√

a2(�) + 4β∗ − a(�)
)

.

(2.2)

Proof. The proof is almost identical to that of [16, 23].

3. Discretization and Piecewise Uniform Mesh

Introduce an arbitrary nonuniform mesh on the segment [0, �]

ωN = {0 < x1 < · · · < xN−1 < �},
ωN = ωN ∪ {x0 = 0, xN = �}.

(3.1)

Let hi = xi − xi−1 be a mesh size at the node xi and �i = (hi + hi+1)/2 be an average mesh size.
Before describing our numerical method, we introduce some notation for the mesh functions.
Define the following finite differences for any mesh function vi = v(xi) given on ωN by

vx,i =
(vi − vi−1)

hi
, vx,i =

(vi+1 − vi)
hi+1

, v 0
x,i

=
(vx,i + vx,i)

2
,

vx̂,i =
(vi+1 − vi)

�i
, �i =

hi + hi+1
2

, vxx̂,i =
(vx,i − vx,i)

�
,

‖w‖∞ ≡ ‖w‖∞,ωN
:= max

0≤i≤N
|wi|.

(3.2)

For equidistant subintervals of the mesh, we use the finite differences in the form

vx,i =
(vi − vi−1)

h
, vx,i =

(vi+1 − vi)
h

, vxx,i =
(vx,i − vx,i)

h
. (3.3)

To approximate the solution of (1.1)-(1.2), we employ a finite difference scheme
defined on a piecewise uniform Shishkin mesh. This mesh is defined as follows.

We divide each of the intervals [0, σ1] and [�−σ2, �] intoN/4 equidistant subintervals,
and we divide [σ1, � − σ2] into N/2 equidistant subintervals, where N is a positive integer
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divisible by 4. The transition points σ1 and σ2, which separate the fine and coarse portions of
the mesh, are obtained by taking

σ1 = min
{
�

4
, μ−1

1 ε lnN
}

, σ2 = min
{
�

4
, μ−1

2 ε lnN
}

, (3.4)

where μ1 and μ2 are given in Lemma 2.1. In practice, we usually have σi � � (i = 1, 2), and so
the mesh is fine on [0, σ1], [� − σ2, �] and coarse on [σ1, � − σ2]. Hence, if we denote the step
sizes in [0, σ1], [σ1, � − σ2], and [� − σ2, �] by h(1), h(2), and h(3), respectively, we have

h(1) =
4σ1
N

, h(2) =
2(� − σ2 − σ1)

N
, h(3) =

4σ2
N

, h(2) +
1
2

(

h(1) + h(3)
)

=
2�
N
,

h(k) ≤ �N−1, k = 1, 3, �N−1 ≤ h(2) < 2�N−1,

(3.5)

so that

ωN =
{

xi = ih(1), i = 0, 1, . . . ,
N

4
;xi = σ1 +

(

i − N

4

)

h(2), i =
N

4
+ 1, . . . ,

3N
4

;

xi = � − σ2 +
(

i − 3N
4

)

h(3), i =
3N
4

+ 1, . . . ,N, h(1) =
4σ1
N

,h(2) =
2(� − σ2 − σ1)

N
,

h(3) =
4σ2
N

}

.

(3.6)

On this mesh, we define the following finite difference schemes:

Lh1ui ≡ ε2kiuxx,i + εaiux,i − biui = fi − R(1)
i , for i = 1, 2, . . . ,

N

4
− 1; i =

3N
4

+ 1, . . . ,N,

Lh2ui ≡ ε2uxx,i + εaiux,i − biui = fi − R(2)
i , for i =

N

4
+ 1, . . . ,

3N
4

− 1,

Lh3ui ≡ ε2uxx̂,i + εaiux,i − biui = fi − R(3)
i , for i =

N

4
,
3N
4
,

(3.7)
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where

ki =
1

1 + aih/2ε
, (3.8)

R
(1)
i = −ε

2h

6

∫xi+1

xi−1
ϕ
(1)
i (x)u(4)(x)dx − εaih

4

∫xi+1

xi−1
ψi(x)u′′′(x)dx − a2i h

2

4(1 + aih/2ε)
uxx,i, (3.9)

R
(2)
i = −ε

2

2

∫xi+1

xi−1
ϕ
(2)
i (x)u′′′(x)dx − εaih−1

∫xi+1

xi

(xi+1 − x)u′′(x)dx, (3.10)

R
(3)
i = −ε

2

2

∫xi+1

xi−1
ϕ
(3)
i (x)u′′′(x)dx − εaih−1i+1

∫xi+1

xi

(xi+1 − x)u′′(x)dx, (3.11)

with the usual piecewise linear basis functions

ψi(x) =

⎧

⎪⎪⎪⎪
⎨

⎪⎪⎪⎪⎩

(
x − xi−1

h

)2

, xi−1 < x < xi,

(
xi+1 − x

h

)2

, xi < x < xi+1,

ϕ
(1)
i (x) =

(

1 − h−1|x − xi|
)3

=

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪
⎩

(
x − xi−1

h

)3

, xi−1 < x < xi,

(
xi+1 − x

h

)3

, xi < x < xi+1,

ϕ
(2)
i (x) =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪
⎩

−
(
x − xi−1

h

)2

, xi−1 < x < xi,

(
xi+1 − x

h

)2

, xi < x < xi+1,

ϕ
(3)
i (x) =

⎧

⎪⎪⎪
⎨

⎪⎪⎪
⎩

(x − xi−1)2
hi�i

, xi−1 < x < xi,

(xi+1 − x)2
hi�i+1

, xi < x < xi+1.

(3.12)

It is now necessary to define an approximation for the second boundary condition of
(1.2). Let xN0 be the mesh point nearest to �1. Then, using interpolating quadrature formula
with respect to xN0 and xN0+1, we can write

u(x) =
x − xN0+1

xN0 − xN0+1
u(xN0) +

x − xN0

xN0+1 − xN0

u(xN0+1) + r(x), (3.13)

where

r(x) =
1
2
f ′′(ξ)(x − xN0)(x − xN0+1), ξ ∈ (xN0 , �1). (3.14)
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Substituting x = �1 into (3.13), for the second boundary condition of (1.2), we obtain

uN − γ
[
�1 − xN0+1

xN0 − xN0+1
u(xN0) +

�1 − xN0

xN0+1 − xN0

u(xN0+1)
]

+ r(x) = B. (3.15)

Based on (3.7) and (3.15), we propose the following difference scheme for approximat-
ing (1.1)-(1.2):

�h1yi ≡ ε2kiyxx,i + εaiyx,i − biyi = fi i = 1, 2, . . . ,
N

4
− 1; i =

3N
4

+ 1, . . . ,N, (3.16)

�h2yi ≡ ε2yxx,i + εaiyx,i − biyi = fi i =
N

4
+ 1, . . . ,

3N
4

− 1, (3.17)

�h3yi ≡ ε2yxx̂,i + εaiyx,i − biyi = fi i =
N

4
,
3N
4
, (3.18)

y0 = A, �0y ≡ yN − γ
[
�1 − xN0+1

xN0 − xN0+1
y(xN0) +

�1 − xN0

xN0+1 − xN0

y(xN0+1)
]

= B. (3.19)

4. Uniform Error Estimates

Let z = y − u, x ∈ ωN . Then, the error in the numerical solution satisfies

�hz ≡ Ri, i = 1, 2, . . . ,N − 1,

z0 = 0, zN − γ
[
�1 − xN0+1

xN0 − xN0+1
zN0 +

�1 − xN0

xN0+1 − xN0

zN0+1

]

= r,
(4.1)

where

Ri = R
(1)
i + R(2)

i + R(3)
i , (4.2)

and r is defined by (3.14).

Lemma 4.1. Let zi be the solution to (4.1). Then, the estimate

‖z‖∞,�N
≤ C{‖R‖∞,ωN

+ |r|} (4.3)

holds.

Proof. The proof is almost identical to that of [16, 23].
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Lemma 4.2. Under the above assumptions of Section 1 and Lemma 2.1, the following estimates hold
for the error functions Ri and r:

‖R‖∞,ωN
≤ C
(

N−1 lnN
)2
,

|r| ≤ C
(

N−1 lnN
)2
.

(4.4)

Proof. The argument now depends on whether σ1 = σ2 = �/4 or σ1 = μ−1
1 ε lnN and σ2 =

μ−1
2 ε lnN. In the first case

μ−1
1 ε lnN ≥ �

4
, μ−1

2 ε lnN ≥ �

4
, (4.5)

and the mesh is uniform with h(1) = h(2) = h(3) = �N−1 for all i, 1 ≤ i ≤ N. Therefore, from
(3.9), we have

∣
∣
∣R

(1)
i

∣
∣
∣ ≤ C

{

ε2h

∫xi+1

xi−1

∣
∣
∣u(4)(x)

∣
∣
∣dx + εh

∫xi+1

xi−1

∣
∣u′′′(x)

∣
∣dx + h

∫xi+1

xi−1

∣
∣u′′(x)

∣
∣dx

}

≤ C
{

h2

ε2

}

≤ C
{

16μ−2
1 ln2N

�2
4�2

N2

}

≤ C
(

N−1 lnN
)2
.

(4.6)

The same estimate is obtained for R(2)
i and R(3)

i in a similar manner.
In the second case

μ−1
1 ε lnN <

�

4
, μ−1

2 ε lnN <
�

4
, (4.7)

and the mesh is piecewise uniform with the mesh spacing 4σ1/N and 4σ2/N in the
subintervals [0, σ1] and [� − σ2, �], respectively, and 2(� − σ2 − σ1)/N in the subinterval
[σ1, �−σ2]. We have the estimateR(1)

i in [0, σ1] and [�−σ2, �] and the estimateR(2)
i in [σ1, �−σ2].

In the layer region [0, σ1], the estimate R(1)
i reduces to

∣
∣
∣R

(1)
i

∣
∣
∣ ≤ C

(

h(1)

ε

)2

≤ C
(

16μ−2
1 ε

2ln2N

ε2N2

)

, 1 ≤ i ≤ N

4
− 1. (4.8)

Hence,

∣
∣
∣R

(1)
i

∣
∣
∣ ≤ CN−2ln2N, 1 ≤ i ≤ N

4
− 1. (4.9)



8 Advances in Difference Equations

The same estimate is obtained in the layer region [� − σ2, �] in a similar manner. We
now have to estimate R(2)

i forN/4 + 1 ≤ i ≤ 3N/4 − 1. In this case, we are able to rewrite R(2)
i

as follows:

∣
∣
∣R

(2)
i

∣
∣
∣ ≤ C

{

ε2
∫xi+1

xi−1

∣
∣u′′′(x)

∣
∣dx + ε

∫xi+1

xi−1

∣
∣u′′(x)

∣
∣dx

}

≤ C
{

ε2h(2) + εh(2) + μ−1
1

(

e−μ1xi−1/ε − e−μ1xi+1/ε
)

+μ−1
2

(

e−μ2(�−xi+1)/ε − e−μ2(�−xi−1)/ε
)}

,
N

4
+ 1 ≤ i ≤ 3N

4
− 1.

(4.10)

Since

xi = 2μ−1
1 ε lnN +

(

i − N

4

)

h(2), (4.11)

it follows that

e−μ1xi−1/ε − e−μ1xi+1/ε = 1
N2

e−μ1(i−1−N/4)h
(2)/ε
(

1 − e−2μ1h(2)/ε
)

< N−2. (4.12)

Also, if we rewrite the mesh points in the form xi = � − σ2 − (3N/4 − i)h(2), evidently

e−μ2(�−xi+1)/ε − e−μ2(�−xi−1)/ε = 1
N2

e−μ2(3N/4−i−1)h
(2)/ε
(

1 − e−2μ2h(2)/ε
)

< N−2. (4.13)

The last two inequalities together, (4.10), give the bound

∣
∣
∣R

(2)
i

∣
∣
∣ ≤ CN−2,

N

4
+ 1 ≤ i ≤ 3N

4
. (4.14)

Finally, we estimate R(3)
i for the mesh points xN/4 and x3N/4. For the mesh point xN/4,

R
(3)
i reduces to

∣
∣
∣R

(3)
i

∣
∣
∣ ≤ C

{

ε2
∫xN/4

xN/4−1

(xN/4−1 − x)2
h(1)
(

h(1) + h(2)
)

∣
∣u′′′(x)

∣
∣dx + ε2

∫xN/4+1

xN/4

(xN/4+1 − x)2
h(2)
(

h(1) + h(2)
)

∣
∣u′′′(x)

∣
∣dx

+ε
(

h(2)
)−1 ∫xN/4+1

xN/4

(xN/4 − x)
∣
∣u′′(x)

∣
∣dx

}

≤ C
{

ε2h(1) + ε2h(2) + εh(2) +
1
ε

∫xN/4

xN/4−1

(

e−μ1x/ε + e−μ2(�−x)/ε
)

dx

+
1
ε

∫xN/4+1

xN/4

(

e−μ1x/ε + e−μ2(�−x)/ε
)

dx

}

.

(4.15)
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Since

e−μ1xN/4−1/ε − e−μ1xN/4/ε = e−μ1(N/4−1)h(1)/ε
(

1 − e−μ1h(1)/ε
)

=
1
N2

(

1 − e−μ1h(1)/ε
)

< N−2,

e−μ2(�−xN/4)/ε − e−μ2(�−xN/4−1)/ε = e−μ2(�−xN/4)/ε
(

1 − e−μ2h(1)/ε
)

=
1
N2

e−μ2N/2h
(2)/ε
(

1 − e−μ2h(1)/ε
)

< N−2,

e−μ1xN/4/ε − e−μ1xN/4+1/ε = 1
N2

(

1 − e−μ1h(2)/ε
)

< N−2,

e−μ2(�−xN/4+1)/ε − e−μ2(�−xN/4)/ε = 1
N2

e−μ2(N/2−1)h
(2)/ε
(

1 − e−μ2h(2)/ε
)

< N−2,

(4.16)

it then follows that

∣
∣
∣R

(3)
i

∣
∣
∣ ≤ CN−2. (4.17)

The same estimate is obtained for i = 3N/4 in a similar manner. This estimate is valid when
only one of the values of σ1 or σ2 is equal to �/4. Next, we estimate the remainder term r.
Suppose that �1 ∈ [2α−1ε| ln ε|, � − 2α−1ε| ln ε|], and the second derivative of f on this interval
is bounded. From (3.14), we obtain

|r| ≤ C∣∣f ′′(ξ)(x − xN0)(x − xN0+1)
∣
∣

≤ C|(x − xN0)(x − xN0+1)|

≤ C
((

h(2)
)2
)

≤ C
(

N−1 lnN
)2
.

(4.18)

Combining Lemmas 2 and 3 gives us the following convergence result.

Theorem 4.3. Let u(x) be the solution of (1) and y be the solution of (29). Then,

∥
∥y − u∥∥∞,�N

≤ CN−2ln2N. (4.19)

5. Algorithm and Numerical Results

In this section, we present some numerical results which illustrate the present method.
(a) The difference scheme (3.16)–(3.19) can be rewritten as

Aiyi−1 − Ciyi + Biyi+1 = −Fi, i = 1, 2, . . . ,N − 1, (5.1)
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where

Ai =
2ε3

(

h(1)
)2(2ε + aih(1)

) , Bi =
2ε3

(

h(1)
)2(2ε + aih(1)

) +
εai
h(1)

,

Ci =
4ε3

(

h(1)
)2(2ε + aih(1)

) +
εai
h(1)

+ bi, i = 1, 2, . . . ,
N

4
− 1;

3N
4

+ 1, . . . ,N,

Ai =
ε2

(

h(2)
)2
, Bi =

ε2
(

h(2)
)2

+
εai
h(2)

, Ci =
ε2

(

h(2)
)2

+
εai
h(2)

+ bi, i =
N

4
+ 1, . . . ,

3N
4

− 1,

Ai =
ε2

�hi
, Bi =

ε2

�hi+1
+
εai
hi+1

, Ci =
ε2

�hi+1
+
ε2

�hi
+
εai
hi+1

+ bi, � =
hi + hi+1

2
, i =

N

4
,
3N
4
,

Fi = −fi, i = 1, 2, . . . ,N − 1.
(5.2)

System (5.1) and (3.19) is solved by the following factorization procedure:

α1 = 0, β1 = 0,

αi+1 =
Bi

Ci −Aiαi
, βi+1 =

Fi +Aiβi
Ci −Aiαi

, i = 1, 2, . . . ,N − 1,

σ1 = min
{
�

4
, μ−1

1 ε lnN
}

, σ2 = min
{
�

4
, μ−1

2 ε lnN
}

, h(2) =
2(� − σ2 − σ1)

N
,

N∗
0 =

[

�1 − σ1 +Nh(2)/4
h(2)

]

, N0 =

⎧

⎪⎨

⎪⎩

N∗
0 , if �1 − xN∗

0
≤ xN∗

0
− �1,

N∗
0 + 1, if �1 − xN∗

0
> xN∗

0
− �1,

Qi,N0 =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪
⎩

1, i =N0 + 1,

i−1∏

j=N0+1

αj , N0 + 2 ≤ i ≤N,

yN =
BαN0+1 − γμβN0+1 + γ

(

δαN0+1 − μ
)∑N

i=N0+1Qi,N0βi

αN0+1 − γ
(

δαN0+1 − μ
)∏N

i=N0+1αi
,

δ =
�1 − xN0+1

xN0 − xN0+1
, μ =

�1 − xN0

xN0+1 − xN0

,

yi = αi+1yi+1 + βi+1, i =N − 1, . . . , 2, 1.

(5.3)
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Table 1: Approximate errors eNε and eN and the computed orders of convergence pNε on the piecewise
uniform mesh ωN for various values of ε andN.

ε N = 32 N = 64 N = 128 N = 256 N = 512
2−2 0.0094302 0.0048322 0.0027402 0.0016792 0.0005534

1.78 1.87 1.95 1.98 2.02
2−4 0.0095503 0.0056215 0.0033157 0.0017325 0.0005988

1.73 1.85 1.92 1.96 1.99
2−6 0.0096054 0.0056215 0.0033157 0.0017325 0.0005988

1.76 1.85 1.92 1.96 1.99
2−8 0.0095502 0.0056215 0.0033157 0.0017325 0.0005988

1.73 1.85 1.92 1.96 1.99
2−10 0.0095502 0.0056215 0.0033157 0.0017325 0.0005988

1.73 1.85 1.92 1.96 1.99
2−12 0.0095502 0.0056215 0.0033157 0.0017325 0.0005988

1.73 1.85 1.92 1.96 1.99
2−14 0.0095502 0.0056215 0.0033157 0.0017325 0.0005988

1.73 1.85 1.92 1.96 1.99
2−16 0.0095502 0.0056215 0.0033157 0.0017325 0.0005988

1.73 1.85 1.92 1.96 1.99
...

eN 0.0096054 0.0056215 0.0033157 0.0017325 0.0005988
pN 1.73 1.85 1.92 1.96 1.99

It is easy to verify that

Ai > 0, Bi > 0, Ci > Ai + Bi, i = 1, 2, . . . ,N. (5.4)

Therefore, the described factorization algorithm is stable.
(b)We apply the numerical method (3.16)–(3.19) to the following problem:

ε2u′′(x) + ε(1 + cos(πx))u′(x) −
(

1 + sin
(πx

2

))

u(x) = f(x), 0 < x < 1,

u(0) = 0, u(1) − 1
2
u

(
1
2

)

= 1,
(5.5)

with

f(x) = 2(επ)2 cos(2πx) + επ(1 + cos(πx)) sin(2πx) −
(

1 + sin
(πx

2

))

sin2(πx). (5.6)

The exact solution of the problem is

u(x) =
2 exp((1 − x)(1 + cos(πx) + d)/2ε)

[

1 − exp(xd/ε)
]

(−1 + exp(d/2ε)
)(−2 − 2 exp(d/2ε) + exp(1 + cos(πx) + d)/4ε

) + sin2(πx), (5.7)
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where

d =
√

5 + 2 cos(πx) + cos2(πx) + 4 sin
(πx

2

)

. (5.8)

This u(x) has the typical boundary layers at x = 0 and x = 1. In the computations in this
section, we take

A = 0, B = 1, γ =
1
2
, �1 =

1
2
, μ1 = 2.414213562, μ2 = 1,

σ1 = min
{
1
4
, 2.414213562 ε lnN

}

, σ2 = min
{
1
4
, ε lnN

}

,

h(2) =
2(1 − σ2 − σ1)

N
, N∗

0 =

[

2 − 4σ1 +Nh(2)

4h(2)

]

,

N0 =

⎧

⎪⎪⎪
⎨

⎪⎪⎪
⎩

N∗
0 , if

1
2
− xN∗

0
≤ xN∗

0
− 1
2
,

N∗
0 + 1, if

1
2
− xN∗

0
> xN∗

0
− 1
2
.

(5.9)

The error of the scheme is measured in the discrete maximum norm. For any values of ε and
N, the maximum pointwise errors eNε and the ε-uniform eN are calculated using

eNε = max
i

∣
∣
∣u(xi) − yNi

∣
∣
∣, eN = max

ε
eNε , (5.10)

where u is the exact solution of (5.5) and y is the numerical solution of the finite difference
scheme (3.16)–(3.19).The convergence rates are

PNε =
ln
(

eNε /e
2N
ε

)

ln 2
. (5.11)

The corresponding ε-uniform convergence rates are computed using the formula

PN =
ln
(

eN/e2N
)

ln 2
. (5.12)
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