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This paper describes asymptotic properties of solutions of some linear difference systems. First we
consider system of a general form and estimate its solutions by use of a solution of an auxiliary
scalar difference inequality assuming that this solution admits certain properties. Then applying
this result to linear difference systems of a variable order with constant (or bounded) coefficients
we derive effective asymptotic criteria for such systems. Beside it, we give applications of these
results to numerical analysis of vector differential equations with infinite lags.

1. Introduction

Stability and asymptotic investigation of linear difference equations is a conventional topic
which covers the study of various types of these equations. In this paper, we consider the
linear difference system:

y(n + 1) = A(n)y(n) +
p∑

k=0

Bk(n)y(α(n) + k), n ∈ N(n0), (1.1)

where N(n0) = {n0, n0 + 1, . . .}, n0 ∈ N, p ∈ N, A(n) and Bk(n) are given m ×m real matrices,
and α : N(n0) → Z is nondecreasing, unbounded as n → ∞, and satisfying

α(n) + p < n ∀n ∈ N(n0). (1.2)

Equation (1.1) represents a general pattern, where some other specifications of entry
parameters and their properties are necessary. Before doing this we note that many papers
on asymptotics of difference equations involve difference systems fitting this pattern under
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special choices of parameters. For example, if A(n) is an asymptotically constant matrix and
Bk(n), k = 0, 1, . . . , p are identically zero matrices, then (1.1) is of Poincaré type (studied,
e.g., in [1–3] with respect to its asymptotic properties). Similarly, asymptotic stability of the
system (1.1) is another frequent topic discussed in the framework of asymptotic analysis of
difference systems. We can mention, for example, the papers [4, 5] or [6], where various
particular cases of (1.1) have been investigated.

The primary goal of this paper does not consist in the generalization of these results.
Although we are going to formulate the asymptotic bound of solutions for a system of the
general form (1.1), we show that conditions of this criterion are satisfied especially when
(1.1) is of a variable order which becomes infinite as n → ∞ (i.e., when n − α(n) → ∞ as
n → ∞). Such difference equations are studied only rarely (especially in the scalar case—see,
e.g., [7]). Our wish is to describe some of their asymptotic properties.

The idea of our approach consists in a modification of suitable techniques developed
for asymptotic analysis of differential equations with infinite lag (which are essentially
continuous counterparts of difference equations of infinite order). Considering the scalar
case, some general principles of this approach were initiated in [8] and applied in [9].

This paper is structured as follows. In Section 2, we mention some related mathemat-
ical tools which are necessary in our asymptotic investigation of (1.1). Section 3 presents
an asymptotic bound of all solutions of (1.1). This bound is expressed via a solution of
some auxiliary scalar difference inequality introduced in Section 2 and its validity requires
some properties of this solution. In Section 4, we consider some particular cases of (1.1)
and derive effective asymptotic formulae for their solutions following from the asymptotic
result formulated in Section 3. Furthermore, we apply some of our results to the simplest
(Euler) discretization of the vector pantograph equation and compare obtained result with
corresponding asymptotic property of the exact pantograph equation.

2. Preliminaries

Let | · | denote a vector norm on R
m and let ‖ · ‖ be an induced matrix norm. Throughout this

paper we assume that the auxiliary linear system

y(n + 1) = A(n)y(n) (2.1)

is uniformly asymptotically stable (for a precise definition and related properties we refer to
[10]). We recall here that the system (2.1) is uniformly asymptotically stable if and only if
there exist real scalarsM > 0 and 0 < μ < 1 such that

∥∥∥Y (n)Y−1(s)
∥∥∥ ≤Mμn−s ∀n ≥ s ∈ N(n0), (2.2)

where Y (n) is the fundamental matrix of (2.1). Then along with the investigated difference
system (1.1)we consider the scalar difference inequality:

p∑

k=0

‖Bk(n)‖ω(α(n) + k) ≤
(
1 − μ)ω(n). (2.3)
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This inequality formally arises from (1.1) and later we show that it can provide an upper
bound sequence for any solution y(n) of (1.1). Before doing this we have to specify some
properties ofω(n)which turn out to be necessary for the validity of such estimates. We define
the function β : N(n0) → N(n0) by the relation

β(n) = sup
{
w ∈ N(n0), α(w) + p ≤ n} (2.4)

and the orbitΩ(n0) = {βj(n0), j ∈ N}, where βj means the jth iterate of β. Since the property
(1.2) implies that β(n) > n for all n ∈ N(n0), this orbit is unbounded (as j → ∞). Further, we
introduce the operator

Δ−ω(n) =
(Δω(n) − |Δω(n)|)

2
(2.5)

and assume that there exists a positive solution ω(n) of (2.3) such that

Δ−ω(n) ≤ Δ−ω(n + 1), ∀n ∈ N(n0), (2.6)

∑

n∈Ω(n0)

Δ−ω(n)
ω
(
β(n)

) > −∞. (2.7)

The discussion on the existence of ω(n) having such properties is performed in Section 4.
Now we mention only an obvious fact, namely, that if ω(n) is nondecreasing, then the
assumptions (2.6) and (2.7) become trivial.

Finally, we consider the functional relation

ϕ
(
β(n)

)
= ϕ(n) + 1, n ∈ Ω(n0) (2.8)

known as the Abel equation (see, e.g., [11]). This relation enables us to set up an increasing
sequence of the values ϕ(βj(n0)) starting from the value ϕ(n0). In addition, we consider an
arbitrary extension of this solution ϕ(n) of (2.8) from Ω(n0) to N(n0) requiring

ϕ(n) ≤ ϕ(n + 1), n ∈ N(n0). (2.9)

As we can see later, this sequence may also be involved in an upper bound term for solutions
y(n) of (1.1).

3. Asymptotic Estimate for the Solutions of (1.1)

The goal of this section is to derive an asymptotic bound of solutions of the system (1.1). The
following holds.

Theorem 3.1. Consider the difference equation (1.1), where A(n) is nonsingular for all n ∈ N(n0)
and assume that the auxiliary difference system (2.1) is uniformly asymptotically stable. Further,
consider the inequality (2.3) with the real scalar 0 < μ < 1 given by (2.2) and let ω(n) be a positive
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monotonous solution of (2.3) having the properties (2.6) and (2.7). Finally, let ϕ(n) be a sequence
satisfying (2.8) and (2.9). If y(n) is a solution of (1.1), then

y(n) = O
(
ω(n)Mϕ(n)

)
as n −→ ∞, (3.1)

where the positive real constantM is given by (2.2).

Proof. The vector z(n) = y(n)/ω(n) provides a solution of the linear difference system:

ω(n + 1)z(n + 1) = A(n)ω(n)z(n) +
p∑

k=0

Bk(n)ω(α(n) + k)z(α(n) + k), n ∈ N(n0). (3.2)

If we multiply (3.2) by Y−1(n + 1) (Y−1(n) is the inverse matrix to the fundamental matrix
Y (n) of (2.1)) from the left and rewrite it with n replaced by s, we obtain

Δ
(
Y−1(s)ω(s)z(s)

)
= Y−1(s + 1)

p∑

k=0

Bk(s)ω(α(s) + k)z(α(s) + k). (3.3)

Indeed, applying the difference operator on the left-hand side of (3.3) and using Y (s + 1) =
A(s)Y (s)we arrive at (3.2).

We define recursively n�+1 := β(n�) and put I0 := N(α(n0), n0), I�+1 := N(n�, n�+1),
� = 0, 1, 2, . . . (here we use the notation N(a, b) = {a, a + 1, . . . , b}, where a, b ∈ N, a < b). Thus
N(n0) =

⋃∞
�=1 I� .

Let n ∈ I�+1, n > n� . Summing the relation (3.3) from n� to n − 1 we get

ω(n)z(n) = Y (n)Y−1(n�)ω(n�)z(n�) +
n−1∑

s=n�

Y (n)Y−1(s + 1)
p∑

k=0

Bk(s)ω(α(s) + k)z(α(s) + k).

(3.4)

Notice that α(s) + p ≤ n� for any s ∈ I�+1. Then considering appropriate norms and
employing inequalities (2.2)-(2.3)we arrive at the estimate

|z(n)| ≤MS�

(
μn−n�

ω(n�)
ω(n)

+
1

ω(n)

n−1∑

s=n�

μn−s−1
(
1 − μ)ω(s)

)

=MS�

(
μn−n�

ω(n�)
ω(n)

+
1

ω(n)

n−1∑

s=n�

ω(s)Δμn−s
)
,

(3.5)

where S� := sup{|z(s)|, s ∈ ⋃�
r=0 Ir}. Then summation by parts formula yields

n−1∑

s=n�

ω(s)Δμn−s = ω(n) −ω(n�)μn−n� −
n−1∑

s=n�

μn−s−1Δω(s). (3.6)
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Substituting this back into (3.5) we have

|z(n)| ≤MS�

(
1 − 1

ω(n)

n−1∑

s=n�

μn−s−1Δω(s)

)

≤MS�

(
1 − 1

ω(n)

n−1∑

s=n�

μn−s−1Δ−ω(s)

)

=MS�

(
1 − 1
(
1 − μ)ω(n)

n−1∑

s=n�

Δμn−sΔ−ω(s)

)

≤MS�

(
1 − Δ−ω(n�)(

1 − μ)ω(n)
n−1∑

s=n�

Δμn−s
)

≤MS�

(
1 − Δ−ω(n�)(

1 − μ)ω(β(n�)
)
)
,

(3.7)

where we have used the property (2.6) and relations

n−1∑

s=n�

Δμn−s = 1 − μn−nl < 1,
−Δ−ω(n�)
ω(n)

≤ −Δ−ω(n�)
ω
(
β(n�)

) . (3.8)

Since this estimate holds for any n ∈ I�+1, we can write

S�+1 ≤MS�

(
1 − Δ−ω(n�)(

1 − μ)ω(β(n�)
)
)
. (3.9)

Then (2.7) implies that S�+1 ≤ KM� ; hence

|z(n)| ≤ KM� (3.10)

for a suitable real K > 0 and any n ∈ I�+1, that is, any n satisfying β�(n0) ≤ n ≤ β�+1(n0).
Applying the function ϕ(n) satisfying (2.8) and (2.9) to these inequalities we get

ϕ
(
β�(n0)

)
≤ ϕ(n) ≤ ϕ

(
β�+1(n0)

)
, (3.11)

that is,

� ≤ ϕ(n) − ϕ(n0) ≤ � + 1 (3.12)
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by the use of ϕ(β�(n0)) = ϕ(n0) + �. To summarize this,

|z(n)| ≤ LMϕ(n) (3.13)

for a real constant L > 0 and all n ∈ N(n0). The property (3.1) is proved.

As we have remarked earlier, a discussion of conditions of Theorem 3.1 will be
performed in the following section. We mention here only an immediate consequence of this
assertion. If we choose a constant sequenceω(n) (which obviously satisfies both assumptions
(2.6) and (2.7)) and substitute it into (2.3), we get the following.

Corollary 3.2. Consider the difference equation (1.1), where A(n) is nonsingular for all n ∈ N(n0)
and assume that the auxiliary difference system (2.1) is uniformly asymptotically stable; that is, (2.2)
holds with 0 < μ < 1 andM > 0. IfM ≤ 1 and

p∑

k=0

‖Bk(n)‖ ≤ 1 − μ, (3.14)

then any solution y(n) of (1.1) is bounded.

4. Applications

The difference equations of the type (1.1) play a significant role in numerical analysis of linear
differential equations with a delayed argument. Consider the equation

x′(t) = C(t)x(t) +D(t)x(τ(t)), t ∈ I = [t0,∞) (4.1)

with continuous matrix functions C, D and continuous delay argument τ satisfying τ(t) < t
for all t > t0. Important numerical discretizations of (4.1) originate from the class of Θ-
methods. If we consider the mesh points tn = t0 + nh (n ∈ N, h > 0 is the stepsize)
and y(n) means the approximation of the exact value x(tn), then the Θ-method applied to
(4.1) leads just to the difference equation (1.1), where A(n), Bk(n), and α(n) depend on
C(t), D(t) and τ(t). Since τ(tn) generally does not belong to the given mesh, we have to
employ an interpolation (standard procedures are piecewise constant and piecewise linear
interpolation). The choice of a suitable interpolation influences the value of parameter p in
(1.1); usual values are p = 0, p = 1, and p = 2. General references concerning the Θ-methods
and other discretizations of delay differential equations are provided by books [12, 13], where
relevant formulae and some of their properties can be found.

We illustrate the previous considerations by the one-leg Θ-method (0 ≤ Θ ≤ 1) with a
piecewise linear interpolation applied to the pantograph equation:

x′(t) = Cx(t) +Dx(λt), 0 < λ < 1, t ≥ 0, (4.2)
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where C and D are constant real matrices. The corresponding discretization becomes

y(n + 1) = y(n) + hC(Θy(n + 1) + (1 −Θ)y(n)) + hD
(
γ1(n)y(
λn�) + γ2(n)y(
λn� + 1)

)

+ hD
(
γ3(n)y(
λ(n + 1)�) + γ4(n)y(
λ(n + 1)� + 1)

)
,

(4.3)

where

γ1(n) = (1 −Θ)(1 + 
λn� − λn), γ2(n) = 1 −Θ − γ1(n),
γ3(n) = Θ(1 + 
λ(n + 1)� − λ(n + 1)), γ4(n) = Θ − γ3(n),

(4.4)

n = 0, 1, . . ., and for the well-posedness of the method we assume that I −hΘC is nonsingular.
Then (4.3) is obviously the difference system of the type (1.1), where A(n) = A is constant
matrix, Bk(n) are variable, but bounded matrix functions, α(n) = 
λn� (
 � means an integer
part), and p = 2.

On this account, we are going to discuss the question of a possible usefulness of
Theorem 3.1 for asymptotic description of such a system. First we state the following.

Lemma 4.1. Consider the inequality (2.3), where 0 < μ < 1, ‖Bk(n)‖ ≤ bk, and α(n) = 
λn�,
0 < λ < 1, n ∈ N(n0), k = 0, 1, . . . , p. Let

b =
p∑

k=0

bk, r = logλ
1 − μ
b

. (4.5)

Then

ω(n) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
n − p

1 − λ
)r

if b ≥ 1 − μ,
(
n +

p

1 − λ
)r

if b < 1 − μ
(4.6)

is the monotonous solution of (2.3) satisfying the properties (2.6) and (2.7).

Proof. First we prove thatω(n) is the solution of (2.3). Let b ≥ 1−μ. Then r ≥ 0 and substituting
into (2.3)we have

p∑

k=0

‖Bk(n)‖ω(
λn� + k) ≤ b
(

λn� + p − p

1 − λ
)r

≤ b
(
λn − λ p

1 − λ
)r

=
(
1 − μ)ω(n). (4.7)

The case b < 1 − μ can be verified analogously. Further, we show that ω(n) satisfies (2.6) and
(2.7). It is enough to consider the case b < 1 − μ only, because in the opposite case Δ−ω(n) is
identically zero. If b < 1 − μ, then

Δ−ω(n) = Δω(n) =
(
n + 1 +

1
1 − λ

)r
−
(
n +

1
1 − λ

)r
(4.8)
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and (2.6) obviously holds with respect to r < 0. To verify (2.7) we utilize the relation

λ−1
(
n − p) − 1 < β(n) < λ−1(n + 1) (4.9)

following from the definition of β(n). Then using the mean value theorem we get

−Δ−ω(n) =
(
n +

1
1 − λ

)r
−
(
n + 1 +

1
1 − λ

)r
≤ −r

(
n +

1
1 − λ

)r−1
,

ω
(
β(n)

)
> ω
(
λ−1(n + 1)

)
=
(
λ−1n +

1
λ(1 − λ)

)r
.

(4.10)

From here we can deduce that

−Δ−ω(n)
ω
(
β(n)

) ≤ −r(n + 1/(1 − λ))r−1
λ−r(n + 1/(1 − λ))r = O

(
1
n

)
as n −→ ∞. (4.11)

Further, it follows from (4.9) that
∑∞

j=1 1/β
j(n0) converges, and hence (2.7) holds.

We show that Lemma 4.1 enables us to formulate an effective asymptotic result for
solutions of the discretization (4.3). As remarked earlier, this recurrence relation can be
rewritten as the difference system (1.1) in a special form

y(n + 1) = Ay(n) +
p∑

k=0

Bk(n)y(
λn� + k), 0 < λ < 1, n ∈ N(n0) (4.12)

with a constant matrix A and bounded matrices Bk(n). Let ρ(A) be the spectral radius of
the matrix A and assume that A has a complete set of eigenvectors. Then the system (2.1) is
uniformly asymptotically stable if and only if ρ(A) < 1 and the inequality (2.2) becomes

∥∥∥Y (n)Y−1(s)
∥∥∥ ≤M(ρ(A)

)n−s ∀n ≥ s ∈ N(n0) (4.13)

(see [10]). Similarlywe canmodify the relation (4.5)with μ being replaced by ρ(A). It remains
to dispose with the form of ϕ(n) satisfying (2.8) and (2.9). Because of the inequality (4.9) we
consider two auxiliary Abel equations with a continuous argument, namely,

ϕ∗
(
λ−1(t + 1)

)
= ϕ∗(t) + 1,

ϕ∗
(
λ−1
(
t − p) − 1

)
= ϕ∗(t) + 1.

(4.14)

We can easily check that the functions

ϕ∗(t) = −logλ
(
t +

1
1 − λ

)
+ C1, ϕ∗(t) = −logλ

(
t − p + λ

1 − λ
)
+ C2, (4.15)
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where C1, C2 are arbitrary real constants, satisfy these equations on corresponding domains.
Taking into account the property (2.9) we can see that asymptotics of ϕ(n) satisfying (2.8)
and (2.9) are described via −logλn. This observation is sufficient for our purpose.

Summarizing previous considerations, we have derived the following.

Corollary 4.2. Consider the difference equation (4.12), where A is a nonsingular constant matrix
with a complete set of eigenvectors such that ρ(A) < 1 and let ‖Bk(n)‖ ≤ bk, n ∈ N(n0), k =
0, 1, . . . , p. If y(n) is a solution of (4.12), then

y(n) = O
(
nrM−logλn

)
as n −→ ∞, (4.16)

where r = logλ((1 − ρ(A))/b), b =
∑p

k=0 bk andM is given by (4.13).

Remark 4.3. The previous ideas and procedures can be extended into a more general case.
Consider the differential equation (4.2) with the delayed argument τ(t) = λt replaced by a
general τ(t) such that τ ′(t) is continuous and nonincreasing on I and 0 < τ ′(t) ≤ λ < 1 for
all t ∈ I. Then using the above mentioned discretization we arrive at (4.12) with 
λn� being
replaced by α(n) having some specific properties (in particular, n − α(n) → ∞ as n → ∞).
Employing the Schröder transformation u = η(t), where η(t) is a differentiable solution of the
relation η(τ(t)) = λη(t), we can similarly as in the case α(n) = 
λn� verify that the property
(4.16) remains preserved with n being replaced by η(n) on its right-hand side. A detailed
modification of the above utilized technique to this general case is only a technical matter
and we omit it.

We recall that the asymptotic estimate (4.16) follows from the general Theorem 3.1.
Our next intention is to show that considering a simplified form of (4.12) we can modify the
proof of Theorem 3.1 to obtain a stronger estimate of solutions.

Let p = 0 and B0(n) = B in (4.12) (a numerical interpretation of such an equation is
discussed later). If the matrix A has a complete set of eigenvectors, then it is diagonalizable.
Therefore we can choose the basis such thatA is diagonal and consider the difference system

y(n + 1) = Ay(n) + By(
λn�), 0 < λ < 1, n ∈ N(n0), (4.17)

where y = (yi), A = diag (ai), and B = (bij) are constant (possibly complex) matrices. To
formulate a stronger estimate of its solutions, instead of the scalar inequality (2.3)we employ
the vector inequality

|B|ψ(
λn�) ≤ (I − |A|)ψ(n) (4.18)

and discuss the existence of a positive solution ψ = (ψi) of (4.18). We note that the symbols
|A|, |B| mean matrices |A| = diag(|ai|), |B| = (|bij |) and the inequality (4.18) between two
vectors represents m inequalities between their corresponding coordinates. Similarly, by a
positive (nonnegative) vector or matrix we understand such a vector or matrix whose all
coordinates or elements are positive (nonnegative).

First we recall the following notion.
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Definition 4.4. We say thatm ×mmatrix Q = (qij) is reducible if there exists a partition of the
set {1, 2, . . . , m} into two complementary systems {i1, . . . , iu} and {j1, . . . , jv} (u + v = m) such
that qij = 0 whenever i ∈ {i1, . . . , iu} and j ∈ {j1, . . . , jv}. Otherwise Q is called irreducible.

Irreducibility plays an important role in the spectral theory of nonnegative matrices.
We utilize here the following assertion which is often referred to as the Frobenius theorem
(see, e.g., [14]).

Theorem 4.5. Every irreducible nonnegative matrix Q has a positive eigenvalue such that the
corresponding eigenvector is positive. This eigenvalue is the spectral radius of Q and it is the simple
root of the characteristic equation.

If ρ(A) < 1, we rewrite the inequality (4.18) as

Qψ(
λn�) ≤ ψ(n), (4.19)

whereQ = (I−|A|)−1|B|. In addition, if B is irreducible, thenQ is irreducible and nonnegative.
Hence, by the Frobenius theorem,Q has the eigenvalue ρ(Q)with the corresponding positive
eigenvector ξ. Using this notation we have the following.

Proposition 4.6. LetA = diag (ai) be a diagonal matrix with |ai| < 1, i = 1, . . . , m and let B = (bij)
be irreducible. Then the inequality (4.18) admits the positive solution:

ψ(n) =

⎧
⎨

⎩
ξ
(
ρ(Q)

)−logλn if ρ(Q) ≥ 1,

ξ
(
ρ(Q)

)−logλ(n+1/(1−λ)) if ρ(Q) < 1.
(4.20)

Proof. Let ρ(Q) ≥ 1. Then all coordinates of ψ(n) are nondecreasing and we can write

|B|ψ(
λn�) = |B|ξ(ρ(Q)
)−logλ(
λn�) ≤ |B|ξ(ρ(Q)

)−logλ(λn). (4.21)

It suffices to show that

|B|ξ(ρ(Q)
)−logλ(λn) = (I − |A|)ξ(ρ(Q)

)−logλn (4.22)

which is equivalent to

Qξ =
(
ρ(Q)

)
ξ. (4.23)

The required spectral properties of Q now follow from the Frobenius theorem.
The case ρ(Q) < 1 can be proved quite analogously.

Utilizing Proposition 4.6 we can prove the following.
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Theorem 4.7. Consider the difference system (4.17), where A = diag(ai) and B = (bij) are constant
matrices such that |ai| < 1, i = 1, . . . , m and B is irreducible. Then

y(n) = O
(
n−logλρ(Q)

)
, Q = (I − |A|)−1|B| as n −→ ∞ (4.24)

holds for any solution y(n) of (4.17).

Proof. The proof technique is a modification of the procedures employed in the proof of
Theorem 3.1. Therefore we outline a sketch of it. The system (4.17) can be rewritten as

yi(n + 1) = aiyi(n) +
m∑

j=1

bijyj(
λn�), i = 1, . . . , m. (4.25)

If ai /= 0, we can divide the ith equation from (4.25) by an+1i to obtain

a−n−1i yi(n + 1) = a−ni yi(n) + a−n−1i

m∑

j=1

bijyj(
λn�), (4.26)

that is,

Δ
(
a−si yi(s)

)
= a−s−1i

m∑

j=1

bijyj(
λs�). (4.27)

Let the symbols n� , I� , and S� have the same meaning as in the proof of Theorem 3.1 (with
β(n) given by (2.4), where α(n) = 
λn� and p = 0). If we choose n ∈ I�+1, n > n� , and sum
(4.27) from n� to n − 1, we arrive at

yi(n) = a
n−n�
i yi(n�) +

n−1∑

s=n�

an−s−1i

m∑

j=1

bijyj(
λs�). (4.28)

Put zi(n) = yi(n)/ψi(n), where ψ(n) = (ψi(n)) is given by (4.20). Then

zi(n) =
an−n�i ψi(n�)

ψi(n)
zi(n�) +

n−1∑

s=n�

an−s−1i

ψi(n)

m∑

j=1

bijψj(
λs�)zj(
λs�), (4.29)

hence

|zi(n)| ≤ S�
|ai|n−n�ψi(n�)

ψi(n)
+ S�

n−1∑

s=n�

|ai|n−s−1
ψi(n)

m∑

j=1

∣∣bij
∣∣ψj(
λs�)

≤ S�
(

|ai|n−n�ψi(n�)
ψi(n)

+
n−1∑

s=n�

|ai|n−s−1
ψi(n)

(1 − |ai|)ψi(s)
) (4.30)
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by the use of Proposition 4.6. This inequality is just the inequality (3.5). Consequently, using
the same proof procedures as given in the corresponding part of the proof of Theorem 3.1 and
taking into account Lemma 4.1, we can show the boundedness of S� as � → ∞.

If ai = 0, then

zi(n) =
1

ψi(n)

m∑

j=1

bijψj(
λ(n − 1)�)zj(
λ(n − 1)�), (4.31)

and Proposition 4.6 implies

|zi(n)| ≤ S�
ψi(n)

m∑

j=1

∣∣bij
∣∣ψj(
λ(n − 1)�) ≤ S�

ψi(n − 1)
ψi(n)

. (4.32)

The boundedness of S� as � → ∞ now follows from the corresponding properties of ψi(n).

Remark 4.8. Our final goal is to give a numerical interpretation to Theorem 4.7. Consider again
the pantograph equation (4.2) with a (generally complex) diagonal matrix C. Applying the
forward Euler method with a piecewise constant interpolation to such an equation (4.2) we
obtain the linear difference system (4.17), where A = I + hC and B = hD. Since |ai| < 1 if and
only if 2 Re ci < −h|ci|2, we can reformulate Theorem 4.7 as follows.

Corollary 4.9. Consider (4.2), where C = diag (ci) and D = (dij) are constant matrices such that
2Re ci < −h|ci|2, i = 1, . . . , m and D is irreducible. Let y(n) be an approximate value of x(nh)
calculated via the recurrence relation (4.17), where A = I + hC, B = hD, and h > 0 is the stepsize.
Then

y(n) = O
(
n−logλρ(Q)

)
, Q = (I − |I + hC|)−1h|D| as n −→ ∞. (4.33)

In particular, if C is a real diagonal matrix with negative diagonal elements, I + hC
is nonnegative (note that this is actually a stepsize restriction), and D is a nonnegative
irreducible matrix, then (4.33) becomes

y(n) = O
(
n−logλρ(C

−1D)
)

as n −→ ∞. (4.34)

It should be emphasized that exactly the same (nonimprovable) asymptotic estimate holds
for the solution x(t) of the exact pantograph equation (4.2) provided that all eigenvalues of
C have negative real parts and the maximal geometric multiplicity of eigenvalues of C−1D
with the maximal real part is equal to 1 (see [15, 16]). Consequently, the estimate (4.34) of the
corresponding numerical solution is optimal in this sense.

In general, the problem of a possible mutual relationship between qualitative
properties of delay differential and difference equations is not restricted only to numerical
investigations and it is studied in a more general context (see, e.g., the papers [17, 18]).
However, it is just the numerical analysis of delay differential equations which gives an
important motivation for the joint study of both types of delay equations. Related questions
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concerning joint investigations of delay differential equations and its discretizations in
the framework of the time-scale theory are discussed in [8, 19]. Among many papers on
numerical investigations of differential equations with a proportional delay we can mention
at least [9, 20–22] and the references cited therein. We emphasize that these papers deal with
scalar equations of the pantograph type. The investigations of the vector case, mentioned in
this paper, are just at the beginning.
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