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We investigate the following nonlinear equations with p-Laplacian-like operators (ϕ(x′(t)))′ +
f(x(t))x′(t) + g(x(t)) = e(t): some criteria to guarantee the existence and uniqueness of periodic
solutions of the above equation are given by using Mawhin’s continuation theorem. Our results
are new and extend some recent results due to Liu (B. Liu, Existence and uniqueness of periodic
solutions for a kind of Lienard type p-Laplacian equation, Nonlinear Analysis TMA, 69, 724–729,
2008).

1. Introduction

In this paper, we deal with the existence and uniqueness of periodic solutions for the
following nonlinear equations with p-Laplacian-like operators:

(
ϕ
(
x′(t)

))′ + f(x(t))x′(t) + g(x(t)) = e(t), (1.1)

where f , g are continuous functions on R, and e is a continuous function on R with period
T > 0; moreover, ϕ : R → R is a continuous function satisfying the following:

(H1) for any x1, x2 ∈ R, x1 /=x2, [ϕ(x1) − ϕ(x2)] · (x1 − x2) > 0 and ϕ(0) = 0;

(H2) there exists a function α : [0,+∞) → [0,+∞) such that lims→+∞α(s) = +∞ and

ϕ(x) · x ≥ α(|x|)|x|, ∀x ∈ R. (1.2)
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It is obvious that under these two conditions, ϕ is an homeomorphism from R onto R and is
increasing on R.

Recall that p-Laplacian equations have been of great interest for manymathematicians.
Especially, there is a large literature (see, e.g., [1–7] and references therein) about the existence
of periodic solutions to the following p-Laplacian equation:

(
ϕp

(
x′(t)

))′ + f(x(t))x′(t) + g(x(t)) = e(t), (1.3)

and its variants, where ϕp(s) = |s|p−2s for s /= 0 and ϕp(0) = 0. Obviously, (1.3) is a special case
of (1.1).

However, there are seldom results about the existence of periodic solutions to (1.1).
The main difficulty lies in the p-Laplacian-like operator ϕ of (1.1), which is more complicated
than ϕp in (1.3). Since there is no concrete form for the p-Laplacian-like operator ϕ of (1.1), it
is more difficult to prove the existence of periodic solutions to (1.1).

Therefore, in this paper, we will devote ourselves to investigate the existence of
periodic solutions to (1.1). As one will see, our theorem generalizes some recent results even
for the case of ϕ(s) = ϕp(s) (see Remark 2.2).

Next, let us recall some notations and basic results. For convenience, we denote

C1
T :=

{
x ∈ C1(R,R) : x is T -periodic

}
, (1.4)

which is a Banach space endowed with the norm ‖x‖ = max{|x|∞, |x′|∞}, where

|x|∞ = max
t∈[0,T]

|x(t)|, ∣∣x′∣∣
∞ = max

t∈[0,T]

∣∣x′(t)
∣∣. (1.5)

In the proof of our main results, we will need the following classical Mawhin’s
continuation theorem.

Lemma 1.1 ([8]). Let (H1), (H2) hold and f̃ is Carathéodory. Assume thatΩ is an open bounded set
in C1

T such that the following conditions hold.

(S1) For each λ ∈ (0, 1), the problem

(
ϕ
(
x′(t)

))′ = λf̃
(
t, x, x′), x(0) = x(T), x′(0) = x′(T) (1.6)

has no solution on ∂Ω.

(S2) The equation

F(a) :=
1
T

∫T

0
f̃(t, a, 0)dt = 0 (1.7)

has no solution on ∂Ω ∩ R.

(S3) The Brouwer degree

deg(F,Ω ∩ R, 0)/= 0. (1.8)
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Then the periodic boundary value problem

(
ϕ
(
x′(t)

))′ = f̃
(
t, x, x′), x(0) = x(T), x′(0) = x′(T) (1.9)

has at least one T -periodic solution on Ω.

2. Main Results

In this section, we prove an existence and uniqueness theorem for (1.1).

Theorem 2.1. Suppose the following assumptions hold:

(A1) g ∈ C1(R,R) and g ′(x) < 0 for all x ∈ R;

(A2) there exist a constant r ≥ 0 and a function ε(t) ∈ C(R,R) such that for all t ∈ R and
|x| > r,

x
[
g(x) − ε(t)] < 0,

∫T

0
[ε(t) − e(t)]dt ≤ 0,

∫T

0
|ε(t) − e(t)|dt < 2.

(2.1)

Then (1.1) has a unique T -periodic solution.

Proof

Existence. For the proof of existence, we use Lemma 1.1. First, let us consider the homotopic
equation of (1.1):

(
ϕ
(
x′(t)

))′ + λf(x(t))x′(t) + λg(x(t)) = λe(t), λ ∈ (0, 1). (2.2)

Let x(t) ∈ C1
T be an arbitrary solution of (2.2). By integrating the two sides of (2.2)

over [0, T], and noticing that x′(0) = x′(T) and x(0) = x(T), we have

∫T

0

[
g(x(t)) − e(t)]dt = 0, (2.3)

that is,

1
T

∫T

0
g(x(t))dt = e :=

1
T

∫T

0
e(t)dt. (2.4)

Since g(x(·)) is continuous, there exists t0 ∈ [0, T] such that

g(x(t0)) ≥ e. (2.5)



4 Advances in Difference Equations

In view of (A1), we obtain

x(t0) ≤ ẽ, (2.6)

where ẽ = g−1(e). Then, for each t ∈ [t0, t0 + T], we have

2x(t) = x(t) + x(t − T)

= x(t0) +
∫ t

t0

x′(s)ds + x(t0) −
∫ t0

t−T
x′(s)ds

≤ 2x(t0) +
∫ t

t0

∣
∣x′(s)

∣
∣ds +

∫ t0

t−T

∣
∣x′(s)

∣
∣ds

≤ 2ẽ +
∫T

0

∣∣x′(s)
∣∣ds,

(2.7)

which gives that

|x|∞ ≤ ẽ + 1
2

∫T

0

∣∣x′(s)
∣∣ds. (2.8)

Thus,

|x|∞ ≤ |ẽ| + 1
2

∫T

0

∣∣x′(s)
∣∣ds. (2.9)

Since lims→+∞α(s) = +∞, there is a constantM > 0 such that

α(s) ≥ 1, ∀s ≥M. (2.10)

Set

E1 =
{
t : t ∈ [0, T],

∣∣x′(t)
∣∣ > M

}
, E2 =

{
t : t ∈ [0, T],

∣∣x′(t)
∣∣ ≤M}

,

F1 = {t : t ∈ [0, T], |x(t)| > r}, F2 = {t : t ∈ [0, T], |x(t)| ≤ r}.
(2.11)

In view of (A2) and

ϕ(x) · x ≥ α(|x|)|x|, ∀x ∈ R, (2.12)
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we get

∫T

0

∣
∣x′(t)

∣
∣dt =

∫

E1

∣
∣x′(t)

∣
∣dt +

∫

E2

∣
∣x′(t)

∣
∣dt

≤
∫

E1

∣
∣x′(t)

∣
∣dt +MT

≤
∫

E1

ϕ(x′(t))x′(t)
α(|x′(t)|) dt +MT

≤
∫

E1

ϕ
(
x′(t)

)
x′(t)dt +MT

≤
∫T

0
ϕ
(
x′(t)

)
x′(t)dt +MT

=
∫T

0
ϕ
(
x′(t)

)
dx(t) +MT

= −
∫T

0

(
ϕ
(
x′(t)

))′
x(t)dt +MT

= λ
∫T

0

[
g(x(t)) − e(t)]x(t)dt + λ

∫T

0
f(x(t))x′(t)x(t)dt +MT

= λ
∫T

0

[
g(x(t)) − e(t)]x(t)dt +MT

= λ
∫

F1

[
g(x(t)) − ε(t)]x(t)dt + λ

∫

F2

[
g(x(t)) − ε(t)]x(t)dt

+ λ
∫T

0
[ε(t) − e(t)]x(t)dt +MT

≤
∫

F2

∣∣g(x(t)) − ε(t)∣∣ · |x(t)|dt +MT +
∫T

0
|ε(t) − e(t)|dt · |x|∞

≤M′T +MT +
∫T

0
|ε(t) − e(t)|dt · |x|∞,

(2.13)

where

M′ =
[
max
|x|≤r

∣∣g(x)
∣∣ + max

t∈[0,T]
|ε(t)|

]
· r. (2.14)

By (2.9), we have

|x|∞ ≤ |ẽ| + (M′ +M)T
2

+
1
2

∫T

0
|ε(t) − e(t)|dt · |x|∞. (2.15)
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Noticing that

∫T

0
|ε(t) − e(t)|dt < 2, (2.16)

there exists a constantM′′ > |ẽ| such that

|x|∞ ≤M′′. (2.17)

On the other hand, it follows from

∣
∣ϕ(x)

∣
∣ · |x| = ϕ(x) · x ≥ α(|x|)|x|, ∀x ∈ R, (2.18)

that α(|x|) ≤ |ϕ(x)| for x /= 0. In addition, since x(0) = x(T), there exists t1 ∈ [0, T] such that
x′(t1) = 0. Thus ϕ(x′(t1)) = 0.

Then, for all t ∈ E := {t ∈ [0, T] : x′(t)/= 0}, we have

α
(∣∣x′(t)

∣∣) ≤ ∣∣ϕ
(
x′(t)

)∣∣

=

∣∣∣∣∣

∫ t

t1

(
ϕ
(
x′(s)

))′
ds

∣∣∣∣∣

≤
∣∣∣∣∣

∫ t

t1

f(x(s)) · x′(s)ds

∣∣∣∣∣
+
∫T

0

∣∣g(x(s))
∣∣ds +

∫T

0
|e(s)|ds

≤
∣∣∣∣∣

∫x(t)

x(t1)
f(u)du

∣∣∣∣∣
+
[
max
|x|≤M′′

∣∣g(x)
∣∣ + max

t∈[0,T]
|e(t)|

]
· T

≤
∫M′′

−M′′

∣∣f(u)
∣∣du +

[
max
|x|≤M′′

∣∣g(x)
∣∣ + max

t∈[0,T]
|e(t)|

]
· T

≤ max
|x|≤M′′

∣∣f(x)
∣∣ · 2M′′ +

[
max
|x|≤M′′ ′

∣∣g(x)
∣∣ + max

t∈[0,T]
|e(t)|

]
· T :=M′′′.

(2.19)

For the aboveM′′′, it follows from lims→+∞α(s) = +∞ that there exists G > M′′ such that

α(s) > M′′′, s ≥ G. (2.20)

Combining this with α(|x′(t)|) ≤M′′′, we get

∣∣x′(t)
∣∣ < G, t ∈ E, (2.21)

which yields that |x′|∞ < G.
Now, we have proved that any solution x(t) ∈ C1

T of (2.2) satisfies

|x|∞ < G,
∣∣x′∣∣

∞ < G. (2.22)
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Since G > |ẽ|, we have

G > ẽ = g−1(e), −G < ẽ = g−1(e). (2.23)

In view of g being strictly decreasing, we get

g(G) < e, g(−G) > e (2.24)

Set

Ω =
{
x ∈ C1

T : |x|∞ ≤ G, ∣∣x′∣∣
∞ ≤ G

}
. (2.25)

Then, we know that (2.2) has no solution on ∂Ω for each λ ∈ (0, 1), that is, the assumption
(S1) of Lemma 1.1 holds. In addition, it follows from (2.24) that

− 1
T

∫T

0

[
g(G) − e(t)]dt = e − g(G) > 0,

− 1
T

∫T

0

[
g(−G) − e(t)]dt = e − g(−G) < 0.

(2.26)

So the assumption (S2) of Lemma 1.1 holds. Let

H
(
x, μ

)
= μx − (

1 − μ) 1
T

∫T

0

[
g(x) − e(t)]dt. (2.27)

For x ∈ ∂Ω ∩ R and μ ∈ [0, 1], by (2.24), we have

xH
(
x, μ

)
= μx2 − (

1 − μ)x 1
T

∫T

0

[
g(x) − e(t)]dt

= μx2 +
(
1 − μ)x 1

T

∫T

0

[
e − g(x)]dt > 0.

(2.28)

Thus,H(x, μ) is a homotopic transformation. So

deg(F,Ω ∩ R, 0) = deg(H(x, 0),Ω ∩ R, 0)

= deg(H(x, 1),Ω ∩ R, 0)

= deg(I,Ω ∩ R, 0)/= 0,

(2.29)

that is, the assumption (S3) of Lemma 1.1 holds. By applying Lemma 1.1, there exists at least
one solution with period T to (1.1).
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Uniqueness. Let

ψ(x) =
∫x

0
f(u)du, y(t) = ϕ

(
x′(t)

)
+ ψ(x(t)). (2.30)

Then (1.1) is transformed into

x′(t) = ϕ−1[y(t) − ψ(x(t))],
y′(t) = −g(x(t)) + e(t).

(2.31)

Let x1(t) and x2(t) being two T -periodic solutions of (1.1); and

yi(t) = ϕ
(
x′
i(t)

)
+ ψ(xi(t)), i = 1, 2. (2.32)

Then we obtain

x′
i(t) = ϕ−1[yi(t) − ψ(xi(t))

]
,

y′
i(t) = −g(xi(t)) + e(t).

i = 1, 2. (2.33)

Setting

v(t) = x1(t) − x2(t), u(t) = y1(t) − y2(t), (2.34)

it follows from (2.33) that

v′(t) = ϕ−1[y1(t) − ψ(x1(t))
] − ϕ−1[y2(t) − ψ(x2(t))

]
,

u′(t) = −[g(x1(t)) − g(x2(t))
]
.

(2.35)

Now, we claim that

u(t) ≤ 0, ∀t ∈ R. (2.36)

If this is not true, we consider the following two cases.

Case 1. There exists t2 ∈ (0, T) such that

u(t2) = max
t∈[0,T]

u(t) = max
t∈R

u(t) > 0, (2.37)

which implies that

u′(t2) = −[g(x1(t2)) − g(x2(t2))
]
= 0,

u′′(t2) = −[g(x1(t)) − g(x2(t))
]′|t=t2 = −[g ′(x1(t2))x′

1(t2) − g ′(x2(t2))x′
2(t2)

] ≤ 0.
(2.38)
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By (A1), g ′(x) < 0. So it follows from g(x1(t2)) − g(x2(t2)) = 0 that x1(t2) = x2(t2). Thus, in
view of

−g ′(x1(t2)) > 0, u(t2) = y1(t2) − y2(t2) > 0, (2.39)

and (H1), we obtain

u′′(t2) = −g ′(x1(t2))
[
x′

1(t2) − x′
2(t2)

]

= −g ′(x1(t2))
{
ϕ−1[y1(t2) − ψ(x1(t2))

] − ϕ−1[y2(t2) − ψ(x2(t2))
]}

= −g ′(x1(t2))
{
ϕ−1[y1(t2) − ψ(x1(t2))

] − ϕ−1[y2(t2) − ψ(x1(t2))
]}

> 0,

(2.40)

which contradicts with u′′(t2) ≤ 0.

Case 2.

u(0) = max
t∈[0,T]

u(t) = max
t∈R

u(t) > 0. (2.41)

Also, we have u′(0) = 0 and u′′(0) ≤ 0. Then, similar to the proof of Case 1, one can get a
contradiction.

Now, we have proved that

u(t) ≤ 0, ∀t ∈ R. (2.42)

Analogously, one can show that

u(t) ≥ 0, ∀t ∈ R. (2.43)

So we have u(t) ≡ 0. Then, it follows from (2.35) that

g(x1(t)) − g(x2(t)) ≡ 0, ∀t ∈ R, (2.44)

which implies that

x2(t) ≡ x1(t), ∀t ∈ R. (2.45)

Hence, (1.1) has a unique T -periodic solution. The proof of Theorem 2.1 is now completed.

Remark 2.2. In Theorem 2.1, setting ε(t) ≡ e(t), then (A2) becomes as follows:

(A2′) there exists a constant r ≥ 0 such that for all t ∈ R and |x| > r,

x
[
g(x) − e(t)] < 0. (2.46)
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In the case ϕ(s) = ϕp(s), Liu [7, Theorem 1] proved that (1.1) has a unique T -periodic solution
under the assumptions (A1) and (A2′). Thus, even for the case of ϕ(s) = ϕp(s), Theorem 2.1
is a generalization of [7, Theorem 1].

In addition, we have the following interesting corollary.

Corollary 2.3. Suppose (A1) and

(A2′′) there exist a constant α ≥ 0 such that

∫T

0

[
g(α) − e(t)]dt ≤ 0,

∫T

0

∣
∣g(α) − e(t)∣∣dt < 2 (2.47)

hold. Then (1.1) has a unique T -periodic solution.

Proof. Let ε(t) ≡ g(α). Noticing that

x
[
g(x) − g(α)] < 0, |x| > α, (2.48)

we know that (A2) holds with r = α. This completes the proof.

At last, we give two examples to illustrate our results.

Example 2.4. Consider the following nonlinear equation:

(
ϕ
(
x′(t)

))′ + f(x(t))x′(t) + g(x(t)) = e(t), (2.49)

where ϕ(x) = 2xex
2 − 2x, f(x) = e−x, g(x) = −(x3 + x), and e(t) = sin t. One can easily check

that ϕ satisfy (H1) and (H2). Obviously, (A1) holds. Moreover, since

lim
x→+∞

g(x) = −∞, lim
x→−∞

g(x) = +∞, (2.50)

it is easy to verify that (A2) holds. By Theorem 2.1, (2.49) has a unique 2π-periodic solution.

Example 2.5. Consider the following p-Laplacian equation:

(
ϕp

(
x′(t)

))′ + g(x(t)) = e(t), (2.51)

where g(x) = −(1/2) arctanx, and e(t) = sin2t. Obviously, (A1) holds. Moreover, we have

∫π

0

[
g(0) − e(t)]dt ≤ 0,

∫π

0

∣∣g(0) − e(t)∣∣dt =
∫π

0
sin2t =

π

2
< 2. (2.52)

So (A2′′) holds. Then, by Corollary 2.3, (2.51) has a unique π-periodic solution.
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Remark 2.6. In Example 2.5, ∀r > 0, we have

x
(
g(x) − e

(π
2

))
> r

(
1 − π

4

)
> 0, ∀x < −r. (2.53)

Thus, (A2′) does not hold. So [7, Theorem 1] cannot be applied to Example 2.5. This means
that our results generalize [7, Theorem 1] in essence even for the case of ϕ(s) = ϕp(s).
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[8] R. Manásevich and J. Mawhin, “Periodic solutions for nonlinear systems with p-Laplacian-like
operators,” Journal of Differential Equations, vol. 145, no. 2, pp. 367–393, 1998.


