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The paper discusses the existence of positive solutions, dead-core solutions, and pseudo-dead-core
solutions of the singular problem (φ(u′))′ = λf(t, u, u′), u(0)−αu′(0) = A, u(T)+βu′(0)+γu′(T) = A.
Here λ is a positive parameter, α > 0, A > 0, β ≥ 0, γ ≥ 0, f is singular at u = 0, and f may be
singular at u′ = 0.

1. Introduction

Consider the singular boundary value problem

(
φ
(
u′(t)

))′ = λf
(
t, u(t), u′(t)

)
, λ > 0, (1.1)

u(0) − αu′(0) = A, u(T) + βu′(0) + γu′(T) = A, α,A > 0, β, γ ≥ 0, (1.2)

depending on the parameter λ. Here φ ∈ C(R), f satisfies the Carathéodory conditions on
[0, T]×D,D = (0, (1+β/α)A]×(R\{0}) (f ∈ Car([0, T]×D)), f is positive, limx→ 0+f(t, x, y) =
∞ for a.e. t ∈ [0, T] and each y ∈ R \ {0}, and f may be singular at y = 0.

Throughout the paper AC[0, T] denotes the set of absolutely continuous functions on
[0, T] and ‖x‖ = max{|x(t)| : t ∈ [0, T]} is the norm in C[0, T].

We investigate positive, dead-core, and pseudo-dead-core solutions of problem (1.1),
(1.2).
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A function u ∈ C1[0, T] is a positive solution of problem (1.1), (1.2) if φ(u′) ∈ AC[0, T],
u > 0 on [0, T], u satisfies (1.2), and (1.1) holds for a.e. t ∈ [0, T].

We say that u ∈ C1[0, T] satisfying (1.2) is a dead-core solution of problem (1.1), (1.2) if
there exist 0 < t1 < t2 < T such that u = 0 on [t1, t2], u > 0 on [0, T] \ [t1, t2], φ(u′) ∈ AC[0, T]
and (1.1) holds for a.e. t ∈ [0, T] \ [t1, t2]. The interval [t1, t2] is called the dead-core of u. If
t1 = t2, then u is called a pseudo-dead-core solution of problem (1.1), (1.2).

The existence of positive and dead core solutions of singular second-order differential
equations with a parameter was discussed for Dirichlet boundary conditions in [1, 2] and
for mixed and Robin boundary conditions in [3–5]. Papers [6, 7] discuss also the existence
and multiplicity of positive and dead core solutions of the singular differential equation u′′ =
λg(u) satisfying the boundary conditions u′(0) = 0, βu′(1) + αu(1) = A and u(0) = 1, u(1) = 1,
respectively, and present numerical solutions. These problems are mathematical models for
steady-state diffusion and reactions of several chemical species (see, e.g., [4, 5, 8, 9]). Positive
and dead-core solutions to the third-order singular differential equation

(
φ
(
u′′
))′ = λf

(
t, u, u′, u′′

)
, λ > 0, (1.3)

satisfying the nonlocal boundary conditions u(0) = u(T) = A, min{u(t) : t ∈ [0, T]} = 0, were
investigated in [10].

We work with the following conditions on the functions φ and f in the differential
equation (1.1). Without loss of generality we can assume that 1/n < A for each n ∈ N

(otherwise N is replaced by N
′ := {n ∈ N : 1/n < A}), where A is from (1.2).

(H1) φ : R → R is an increasing and odd homeomorphism such that φ(R) = R.

(H2) f ∈ Car([0, T] × D), where D = (0, (1 + β/α)A] × (R \ {0}), and

lim
x→ 0+

f
(
t, x, y

)
= ∞ for a.e.t ∈ [0, T] and each y ∈ R \ {0}. (1.4)

(H3) for a.e. t ∈ [0, T] and all (x, y) ∈ D,

ϕ(t) ≤ f(t, x, y) ≤ (p1(x) + p2(x)
)(
ω1
(∣∣y
∣∣) +ω2

(∣∣y
∣∣)) + ψ(t), (1.5)

where ϕ, ψ ∈ L1[0, T], p1 ∈ C(0, (1 + β/α)A] ∩ L1[0, (1 + β/α)A], ω1 ∈ C(0,∞),
p2 ∈ C[0, (1 + β/α)A], and ω2 ∈ C[0,∞) are positive, p1, ω1 are nonincreasing,
p2, ω2 are nondecreasing, ω2(u) ≥ u for u ∈ [0,∞), and

∫∞

0

φ−1(s)
ω2
(
φ−1(s)

)ds = ∞. (1.6)

The aim of this paper is to discuss the existence of positive, dead-core, and pseudo-
dead-core solutions of problem (1.1), (1.2). Since problem (1.1), (1.2) is singular we use
regularization and sequential techniques.
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For this end for n ∈ N, we define f∗
n ∈ Car([0, T]×D∗), whereD∗ = (0, (1+(β/α))A]×R,

and fn ∈ Car([0, T] × R
2) by the formulas

f∗
n

(
t, x, y

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f
(
t, x, y

)
for
(
x, y
) ∈
(
0,
(
1 +

β

α

)
A

]

×
(

R \
[
− 1
n
,
1
n

])
,

n

2

[
f

(
t, x,

1
n

)(
y +

1
n

)
for
(
x, y
) ∈
(
0,
(
1 +

β

α

)
A

]

−f
(
t, x,− 1

n

)(
y − 1

n

)]
×
[
− 1
n
,
1
n

]
,

fn
(
t, x, y

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f∗
n

(
t,

(
1 +

β

α

)
A,y

)
for
(
x, y
) ∈
((

1 +
β

α

)
A,∞

)
× R,

f∗
n

(
t, x, y

)
for
(
x, y
) ∈
(
1
n
,

(
1 +

β

α

)
A

]
× R,

[
φ

(
1
n

)]−1
φ(x)f∗

n

(
t,
1
n
, y

)
for
(
x, y
) ∈
[
0,

1
n

]
× R,

x for
(
x, y
) ∈ (−∞, 0) × R.

(1.7)

Then (H2) and (H3) give

ϕ(t) ≤ fn
(
t, x, y

)
for a.e. t ∈ [0, T] and all

(
x, y
) ∈
[
1
n
,∞
)
× R, (1.8)

0 < fn
(
t, x, y

)
for a.e. t ∈ [0, T] and all

(
x, y
) ∈ (0,∞) × R, (1.9)

x = fn
(
t, x, y

)
for a.e. t ∈ [0, T] and all

(
x, y
) ∈ (−∞, 0] × R, (1.10)

fn
(
t, x, y

) ≤ (p1(x) + p̃2(x)
)(
ω1
(∣∣y
∣∣) + ω̃2

(∣∣y
∣∣)) + ψ(t)

for a.e. t ∈ [0, T] and all
(
x, y
) ∈
(
0,
(
1 +

β

α

)
A

]
× (R \ {0}), where

p̃2(x) = max
{
p2(x), p2(1)

}
, ω̃2

(∣∣y
∣∣) = max

{
ω2
(∣∣y
∣∣), ω2(1)

}
.

(1.11)

Consider the auxiliary regular differential equation

(
φ
(
u′(t)

))′ = λfn
(
t, u(t), u′(t)

)
, λ > 0. (1.12)

A function u ∈ C1[0, T] is a solution of problem (1.12), (1.2) if φ(u′) ∈ AC[0, T], u fulfils (1.2),
and (1.12) holds for a.e. t ∈ [0, T].

We introduce also the notion of a sequential solution of problem (1.1), (1.2). We say
that u ∈ C1[0, T] is a sequential solution of problem (1.1), (1.2) if there exists a sequence {kn} ⊂ N,
limn→∞kn = ∞, such that u = limn→∞ukn in C1[0, T], where ukn is a solution of problem
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(1.12), (1.2)with n replaced by kn. In Section 3 (see Theorem 3.1)we show that any sequential
solution of problem (1.1), (1.2) is either a positive solution or a pseudo-dead-core solution or
a dead-core solution of this problem.

The next part of our paper is divided into two sections. Section 2 is devoted to the
auxiliary regular problem (1.12), (1.2). We prove the solvability of this problem by the
existence principle in [11] and investigate the properties of solutions. The main results are
given in Section 3. We prove that under assumptions (H1)–(H3), for each λ > 0, problem
(1.1), (1.2) has a sequential solution and that any sequential solution is either a positive
solution or a pseudo-dead-core solution or a dead-core solution (Theorem 3.1). Theorem 3.2
shows that for sufficiently small values of λ all sequential solutions of problem (1.1), (1.2) are
positive solutions while, by Theorem 3.3, all sequential solutions are dead-core solutions if λ
is sufficiently large. An example demonstrates the application of our results.

2. Auxiliary Regular Problems

The properties of solutions of problem (1.12), (1.2) are given in the following lemma.

Lemma 2.1. Let (H1)–(H3) hold. Let un be a solution of problem (1.12), (1.2). Then

0 < un(t) ≤
(
1 +

β

α

)
A for t ∈ [0, T], (2.1)

un(0) < A, un(T) <
(
1 +

β

α

)
A, (2.2)

u′n is increasing on [0, T] and u′n
(
γn
)
= 0 for a γn ∈ (0, T). (2.3)

Proof. Suppose that u′n(0) ≥ 0. Then un(0) = A + αu′n(0) ≥ A > 0. Let

τ = sup{t ∈ (0, T] : u(s) > 0 for s ∈ [0, t]}. (2.4)

Then τ ∈ (0, T] and, by (1.9), (φ(u′n))
′ > 0 a.e. on [0, τ]. Hence φ(u′n) is increasing on

[0, τ], and therefore, u′n is also increasing on this interval since φ is increasing on R by
(H1). Consequently, τ = T and u′n > 0 on (0, T]. Then u(T) > u(0), which contradicts
un(0) − un(T) = (α + β)u′n(0) + γu′n(T) ≥ 0. Hence u′n(0) < 0. Let un(0) ≤ 0. Then un < 0
on a right neighbourhood of t = 0. Put

ν = sup{t ∈ (0, T] : un(s) < 0 for s ∈ (0, t]}. (2.5)

Then un < 0 on (0, ν), and therefore, (φ(u′n))′ = λun < 0 a.e. on [0, ν], which implies that u′n
is decreasing on [0, ν]. Now it follows from un(0) ≤ 0 and u′n(0) < 0 that ν = T , un < 0 on
(0, T] and u′n < 0 on [0, T]. Consequently, un(0) > un(T), which contradicts un(0) − un(T) =
(α+β)u′n(0)+γu

′
n(T) < 0. To summarize, un(0) > 0 and u′n(0) < 0. Suppose that min{un(t) : t ∈

[0, T]} < 0. Then there exist 0 < a < b ≤ T such that un(a) = 0, u′n(a) ≤ 0 and un < 0 on (a, b).
Hence (φ(u′n))

′ = λun < 0 a.e. on [a, b] and arguing as in the above part of the proof we can
verify that b = T and un < 0, u′n < 0 on (a, T]. Consequently, un(T) = A − βu′n(0) − γu′n(T) ≥
A, which is impossible. Hence un ≥ 0 on [0, T]. New it follows from (1.9) and (1.10) that
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(φ(u′n))
′ ≥ 0 a.e. on [0, T], which together with (H1) gives that u′n is nondecreasing on [0, T].

Suppose that un(ξ) = 0 for some ξ ∈ (0, T]. If ξ = T , then u′n(T) ≤ 0, which contradicts
βu′n(0) + γu

′
n(T) = A since u′n(0) < 0. Hence ξ ∈ (0, T) and u′n(ξ) = 0. Let

η = min{t ∈ [0, T] : un(t) = 0}. (2.6)

Then 0 < η ≤ ξ < T , u′n(η) = 0 and u′n is increasing on [0, η] since (φ(u′))′ > 0 a.e. on this
interval by (1.9). Hence there exists t1 ∈ (0, η), η − t1 ≤ 1, such that 0 < un < 1/n on (t1, η) and
it follows from the definition of the function fn that

(
φ
(
u′n(t)

))′ = Qφ(un(t))p(t) for a.e. t ∈ [t1, η
]
, (2.7)

whereQ = λ[φ(1/n)]−1, p(t) = f∗
n(t, 1/n, u

′
n(t)) ∈ L1[t1, η], and p > 0 a.e. on [t1, η]. Integrating

(2.7) over [t, η] ⊂ [t1, η] yields

φ
(−u′n(t)

)
= −φ(u′n(t)

)
= Q
∫η

t

φ(un(s))p(s)ds, t ∈ [t1, η
]
. (2.8)

From this equality, from (H1) and from un(t) = un(t) − un(η) = u′n(μ)(t − η) ≤ u′n(t)(t − η),
where μ ∈ [t, η], we obtain

φ
(−u′n(t)

) ≤ Qφ(un(t))
∫η

t

p(s)ds ≤ Qφ(−u′n(t)
(
η − t))

∫η

t

p(s)ds

≤ Qφ(−u′n(t)
)
∫η

t

p(s)ds

(2.9)

for t ∈ [t1, η]. Since φ(−u′n(t)) > 0 for t ∈ [t1, η), we have

1 ≤ Q
∫η

t

p(s)ds for t ∈ [t1, η
)
, (2.10)

which is impossible. We have proved that

un(t) > 0 for t ∈ [0, T]. (2.11)

Hence (φ(u′n))
′ > 0 a.e. on [0, T] by (1.9), and therefore, u′n is increasing on [0, T]. If u′n(T) ≤ 0,

then u′n < 0 on [0, T), and so un(0) > un(T), which is impossible since un(0) − un(T) = (α +
β)u′n(0) + γu

′
n(T) ≤ αu′n(0) < 0. Consequently, u′n(T) > 0 and u′n vanishes at a unique point

γn ∈ (0, T). Hence (2.3) is true.
Next, we deduce from un(0) > 0, u′n(0) < 0 and from un(0) = A+αu′n(0) that un(0) < A

and u′n(0) > −(A/α). Consequently, un(T) = A − βu′n(0) − γu′n(T) ≤ A − βu′n(0) < (1 + β/α)A.
Hence (2.2) holds. Inequality (2.1) follows from (2.2), (2.3), and (2.11).
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Remark 2.2. Let u be a solution of problem (1.12), (1.2) with λ = 0. Then (φ(u′))′ = 0 a.e.
on [0, T], and so u′ is a constant function. Let u(t) = a + bt. Now, it follows from (1.2) that
A = a−αb andA = a+ bT + (β+ γ)b. Consequently, (α+ β + γ)b = −bT , and since α+ β+ γ > 0,
we have b = 0. Hence A = a, and u = A is the unique solution of problem (1.12), (1.2) for
λ = 0.

The following lemma gives a priori bounds for solutions of problem (1.12), (1.2).

Lemma 2.3. Let (H1)–(H3) hold. Then there exists a positive constant S independent of n(and
depending on λ) such that

∥
∥u′n
∥
∥ < S (2.12)

for any solution un of problem (1.12), (1.2).

Proof. Let un be a solution of problem (1.12), (1.2). By Lemma 2.1, un satisfies (2.1)–(2.3).
Hence

∥∥u′n
∥∥ = max

{∣∣u′n(0)
∣∣, u′n(T)

}
. (2.13)

In view of (1.11),

(
φ
(
u′n(t)

))′
u′n(t) ≥ λ

[(
p1(un(t)) + p̃2(un(t))

)(
ω1
(−u′n(t)

)
+ ω̃2

(−u′n(t)
))

+ ψ(t)
]
u′n(t) (2.14)

for a.e. t ∈ [0, γn] and

(
φ
(
u′n(t)

))′
u′n(t) ≤ λ

[(
p1(un(t)) + p̃2(un(t))

)(
ω1
(
u′n(t)

)
+ ω̃2

(
u′n(t)

))
+ ψ(t)

]
u′n(t) (2.15)

for a.e. t ∈ [γn, T]. Since ω̃2(u) ≥ u for u ∈ [0,∞) by (H3), we have

u′n(t)
ω1(−u′n(t)) + ω̃2(−u′n(t))

≥ −1 for t ∈ [0, γn
)
,

u′n(t)
ω1(u′n(t)) + ω̃2(u′n(t))

≤ 1 for t ∈ (γn, T
]
.

(2.16)

Therefore,

(
φ(u′n(t))

)′
u′n(t)

ω1(−u′n(t)) + ω̃2(−u′n(t))
≥ λ[(p1(un(t)) + p̃2(un(t))

)
u′n(t) − ψ(t)

]
(2.17)

for a.e. t ∈ [0, γn] and

(
φ(u′n(t))

)′
u′n(t)

ω1(u′n(t)) + ω̃2(u′n(t))
≤ λ[(p1(un(t)) + p̃2(un(t))

)
u′n(t) + ψ(t)

]
(2.18)
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for a.e. t ∈ [γn, T]. Integrating (2.17) over [0, γn] and (2.18) over [γn, T] gives

∫φ(|u′n(0)|)

0

φ−1(s)
ω1
(
φ−1(s)

)
+ ω̃2

(
φ−1(s)

)ds ≤ λ
(∫un(0)

un(γn)

(
p1(s) + p̃2(s)

)
ds +

∫ γn

0
ψ(t)dt

)

< λ

(∫A

0

(
p1(s) + p̃2(s)

)
ds +

∫T

0
ψ(t)dt

)

,

(2.19)

∫φ(u′n(T))

0

φ−1(s)
ω1
(
φ−1(s)

)
+ ω̃2

(
φ−1(s)

)ds ≤ λ
(∫un(T)

un(γn)

(
p1(s) + p̃2(s)

)
ds +

∫T

γn

ψ(t)dt

)

< λ

(∫ (1+β/α)A

0

(
p1(s) + p̃2(s)

)
ds +

∫T

0
ψ(t)dt

)

,

(2.20)

respectively. We now show that condition (1.6) implies

∫∞

0

φ−1(s)
ω1
(
φ−1(s)

)
+ ω̃2

(
φ−1(s)

)ds = ∞. (2.21)

Since limy→∞ω̃2(y) = ∞ by (H3), we have limy→∞(ω1(y) + ω̃2(y))/ω̃2(y) = 1. Therefore,
there exists y∗ ∈ (φ(1),∞) such that

ω1

(
φ−1(y

))
+ ω̃2

(
φ−1(y

)) ≤ 2ω̃2

(
φ−1(y

))
= 2ω2

(
φ−1(y

))
for y ∈ [y∗,∞

)
. (2.22)

Then

∫∞

0

φ−1(s)
ω1
(
φ−1(s)

)
+ ω̃2

(
φ−1(s)

)ds >
∫∞

y∗

φ−1(s)
ω1
(
φ−1(s)

)
+ ω̃2

(
φ−1(s)

)ds

≥ 1
2

∫∞

y∗

φ−1(s)
ω2
(
φ−1(s)

)ds,

(2.23)

and (2.21) follows from (1.6). Since
∫ (1+β/α)A
0 (p1(t)+ p̃2(t))dt <∞, inequality (2.21) guarantees

the existence of a positive constantM such that

∫y

0

φ−1(s)
ω1
(
φ−1(s)

)
+ ω̃2

(
φ−1(s)

)ds ≥ λ
(∫ (1+β/α)A

0

(
p1(s) + p̃2(s)

)
ds +

∫T

0
ψ(t)dt

)

(2.24)

for all y ≥ M. Hence (2.19) and (2.20) imply max{φ(|u′n(0)|), φ(u′n(T))} < M. Consequently,
max{|u′n(0)|, u′n(T)} < φ−1(M) and equality (2.13) shows that (2.12) is true for S =
φ−1(M).
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Remark 2.4. By Lemma 2.3, estimate (2.12) is true for any solution un of problem (1.12), (1.2),
where S is a positive constant independent of n and depending on λ. Fix λ > 0 and consider
the differential equation

(
φ
(
u′
))′ = μλfn

(
t, u, u′

)
, μ ∈ [0, 1]. (2.25)

It follows from the proof of Lemma 2.3 that ‖u′‖ < S for each μ ∈ (0, 1] and any solution u
of problem (2.25), (1.2). Since u = A is the unique solution of this problem with μ = 0 by
Remark 2.2, we have ‖u‖ < S for each μ ∈ [0, 1] and any solution u of problem (2.25), (1.2).

We are now in the position to show that problem (1.12), (1.2) has a solution. Let χj :
C1[0, T] → R, j = 1, 2, be defined by

χ1(x) = x(0) − αx′(0) −A, χ2(x) = x(T) + βx′(0) + γu′(T) −A, (2.26)

where α, β, γ, and A are as in (1.2). We say that the functionals χ1 and χ2 are compatible if
for each ρ ∈ [0, 1] the system

χj(a + bt) − ρχj(−a − bt) = 0, j = 1, 2, (2.27)

has a solution (a, b) ∈ R
2. We apply the following existence principle which follows from

[11–13] to prove the solvability of problem (1.12), (1.2).

Proposition 2.5. Let (H1)–(H3) hold. Let there exist positive constants S0, S1 such that

‖u‖ < S0,
∥∥u′
∥∥ < S1 (2.28)

for each μ ∈ [0, 1] and any solution u of problem (2.25), (1.2). Also assume that χ1 and χ2 are
compatible and there exist positive constants Λ0,Λ1 such that

|a| < Λ0, |b| < Λ1 (2.29)

for each ρ ∈ [0, 1] and each solution (a, b) ∈ R
2 of system (2.27).

Then problem (1.12), (1.2) has a solution.

Lemma 2.6. Let (H1)–(H3) hold. Then problem (1.12), (1.2) has a solution.

Proof. By Lemmas 2.1 and 2.3 and Remark 2.4, there exists a positive constant S such that

0 < u(t) ≤
(
1 +

β

α

)
A for t ∈ [0, T],

∥∥u′
∥∥ < S (2.30)

for each μ ∈ [0, 1] and any solution u of problem (2.25), (1.2). Hence (2.28) is true for S0 =
(1 + β/α)A and S1 = S. System (2.27) has the form of

(
1 + ρ

)
(a − αb) = (1 − ρ)A, (

1 + ρ
)(
a + bT + βb + γb

)
=
(
1 − ρ)A. (2.31)
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Subtracting the first equation from the second, we get (1 + ρ)(T + α + β + γ)b = 0. Due to
(1 + ρ)(T + α + β + γ) > 0 for ρ ∈ [0, 1], we have b = 0, and consequently, a = (1 − ρ)A/(1 + ρ).
Hence (a, b) = ((1 − ρ)A/(1 + ρ), 0) is the unique solution of system (2.31). Therefore, χ1 and
χ2 are compatible and (2.29) is fulfilled for Λ0 = A + 1 and Λ1 = 1. The result now follows
from Proposition 2.5.

The following result deals with the sequences of solutions of problem (1.12), (1.2).

Lemma 2.7. Let (H1)–(H3) hold and let un be a solution of problem (1.12), (1.2). Then {u′n} is
equicontinuous on [0, T].

Proof. By Lemmas 2.1 and 2.3, relations (2.1)–(2.3) and (2.12) hold, where S is a positive
constant. LetH ∈ C[0,∞),H∗ ∈ C(R), and P ∈ AC[0, (1+β/α)A] be defined by the formulas

H(v) =
∫φ(v)

0

φ−1(v)
ω1
(
φ−1(s)

)
+ ω̃2

(
φ−1(s)

)ds for v ∈ [0,∞),

H∗(v) =

⎧
⎨

⎩

H(v) for v ∈ [0,∞),

−H(−v) for v ∈ (−∞, 0),

P(v) =
∫v

0

(
p1(s) + p̃2(s)

)
ds for v ∈

[
0,
(
1 +

β

α

)
A

]
,

(2.32)

where p̃2 and ω̃2 are given in (1.11). ThenH∗ is an increasing and odd function on R,H∗(R) =
R by (2.21), and P is increasing on [0, (1 + (β/α))A]. Since {u′n} is bounded in C[0, T], {un} is
equicontinuous on [0, T], and consequently, {P(un)} is equicontinuous on [0, T], too. Let us
choose an arbitrary ε > 0. Then there exists ρ > 0 such that

|P(un(t1)) − P(un(t2))| < ε,
∣∣∣∣∣

∫ t2

t1

ψ(t)dt

∣∣∣∣∣
< ε for t1, t2 ∈ [0, T], |t1 − t2| < ρ, n ∈ N. (2.33)

In order to prove that {u′n} is equicontinuous on [0, T], let 0 ≤ t1 < t2 ≤ T and t2 − t1 < ρ. If
t2 ≤ γn, then integrating (2.17) from t1 to t2 gives

0 < H∗(u′n(t2)
) −H∗(u′n(t1)

) ≤ λ
(

P(un(t1)) − P(un(t2)) +
∫ t2

t1

ψ(t)dt

)

< 2λε. (2.34)

If t1 ≥ γn, then integrating (2.18) over [t1, t2] yields

0 < H∗(u′n(t2)
) −H∗(u′n(t1)

) ≤ λ
(

P(un(t2)) − P(un(t1)) +
∫ t2

t1

ψ(t)dt

)

< 2λε. (2.35)

Finally, if t1 < γn < t2, then one can check that

0 < H∗(u′n(t2)
) −H∗(u′n(t1)

)
< 3λε. (2.36)
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To summarize, we have

0 ≤ H∗(u′n(t2)
) −H∗(u′n(t1)

)
< 3λε, n ∈ N, (2.37)

whenever 0 ≤ t1 < t2 ≤ T and t2−t1 < ρ. Hence {H∗(u′n)} is equicontinuous on [0, T] and, since
{u′n} is bounded in C[0, T] andH∗ is continuous and increasing on R, {u′n} is equicontinuous
on [0, T].

The results of the following two lemmas we use in the proofs of the existence of
positive and dead-core solutions to problem (1.1), (1.2).

Lemma 2.8. Let (H1)–(H3) hold. Then there exist λ∗ > 0 and ε > 0 such that

un(t) > ε for t ∈ [0, T], n ∈ N, (2.38)

where un is any solution of problem (1.12), (1.2) with λ ∈ (0, λ∗].

Proof. Suppose that the lemmawas false. Thenwe could find sequences {km} ⊂ N and {λm} ⊂
(0,∞), limm→∞λm = 0, and a solution um of the equation (φ(u′))′ = λmfkm(t, u, u

′) satisfying
(1.2) such that limm→∞um(ξm) = 0, where um(ξm) = min{um(t) : t ∈ [0, T]}. Note that um > 0
on [0, T], u′m < 0 on [0, ξm), u′m(ξm) = 0, and u′m > 0 on (ξm, T] for each m ∈ N by Lemma 2.1.
Then, by (1.11),

(
φ
(
u′m(t)

))′ ≤ λm
[(
p1(um(t)) + p̃2(um(t))

)(
ω1
(−u′m(t)

)
+ ω̃2

(−u′m(t)
))

+ ψ(t)
]

(2.39)

for a.e. t ∈ [0, ξm],

(
φ
(
u′m(t)

))′ ≤ λm
[(
p1(um(t)) + p̃2(um(t))

)(
ω1
(
u′m(t)

)
+ ω̃2

(
u′m(t)

))
+ ψ(t)

]
(2.40)

for a.e. t ∈ [ξm, T], and (cf. (2.13))

∥∥u′m
∥∥ = max

{∣∣u′m(0)
∣∣, u′m(T)

}
. (2.41)

Essentially, the same reasoning as in the proof of Lemma 2.3 gives that for m ∈ N (cf. (2.19)
and (2.20))

∫φ(|u′m(0)|)

0

φ−1(s)
ω1
(
φ−1(s)

)
+ ω̃2

(
φ−1(s)

)ds < λm

(∫A

0

(
p1(s) + p̃2(s)

)
ds +

∫T

0
ψ(t)dt

)

,

∫φ(u′m(T))

0

φ−1(s)
ω1
(
φ−1(s)

)
+ ω̃2

(
φ−1(s)

)ds < λm

(∫ (1+β/α)A

0

(
p1(s) + p̃2(s)

)
ds +

∫T

0
ψ(t)dt

)

.

(2.42)

In view of limm→∞λm = 0, we have limm→∞u′m(0) = 0, limm→∞u′m(T) = 0. Consequently,
limm→∞‖u′m‖ = 0 by (2.41). We now deduce from um(t) = um(ξm) +

∫ t
ξm
u′m(t) dt for t ∈ [0, T]
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and m ∈ N, and from limm→∞um(ξm) = 0 that limm→∞‖um‖ = 0. Hence limm→∞(um(0) −
αu′m(0)) = 0, limm→∞(um(T) + βu′m(0) + γu

′
m(T)) = 0, which contradicts um(0) − αu′m(0) = A,

um(T) + βu′m(0) + γu
′
m(T) = A form ∈ N.

Lemma 2.9. Let (H1)–(H3) hold. Then for each c ∈ (0, T) there exists λc > 0 such that

lim
n→∞

un(c) = 0, (2.43)

where un is any solution of problem (1.12), (1.2) with λ > λc.

Proof. Fix c ∈ (0, T) and let ϕ be as in (H3). Put ρ = min{c, T − c},

Λ = min

{∫ c

c/2
ϕ(t)dt,

∫ (T+c)/2

c

ϕ(t)dt

}

> 0, λc =
1
Λ
φ

(
2
(
α + β

)
A

αρ

)

. (2.44)

Let λ ∈ (λc,∞) and choose ε ∈ (0, ρ). If we prove that

un(c) < ε ∀n > 1
ε
, (2.45)

where un is any solution of problem (1.12), (1.2), then (2.43) is true since un > 0 by Lemma 2.1.
In order to prove (2.45), suppose the contrary, that is suppose that there is some n0 > 1/ε such
that un0(c) ≥ ε. The next part of the proof is broken into two cases if u′n0(c) ≤ 0 or u′n0(c) > 0.

Case 1. Suppose u′n0(c) ≤ 0. By Lemma 2.1, u′n0 is increasing on [0, T]. Consequently, if
u′n0(c/2) < −2A/c, then u′n0(t) < −2A/c for t ∈ [0, c/2], and so

un0(0) = un0
(c
2

)
−
∫ c/2

0
u′n0(t)dt > un0

(c
2

)
+A > A, (2.46)

which contradicts un0(0) < A by Lemma 2.1. Therefore,

u′n0
(c
2

)
≥ −2A

c
, 0 ≥ u′n0(t) ≥ −2A

c
for t ∈

[c
2
, c
]
. (2.47)

Keeping in mind that n0un0(t) ≥ n0ε > 1 for t ∈ [0, c], we have, by (1.8),

fn0
(
t, un0(t), u

′
n0(t)

) ≥ ϕ(t) for a.e. t ∈ [0, c], (2.48)

and therefore,

(
φ
(
u′n0(t)

))′ ≥ λϕ(t) > λcϕ(t) for a.e. t ∈ [0, c]. (2.49)
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Then

φ
(
u′n0(c)

) − φ
(
u′n0
(c
2

))
> λc

∫ c

c/2
ϕ(t)dt ≥ λcΛ, (2.50)

which yields

φ
(
−u′n0

(c
2

))
= −φ

(
u′n0
(c
2

))
> −φ(u′n0(c)

)
+ λcΛ

≥ λvΛ = φ

(
2
(
α + β

)
A

αρ

)

≥ φ
(
2A
c

)
.

(2.51)

Hence −u′n0(c/2) > 2A/c, which contradicts the first inequality in (2.47).

Case 2. Suppose u′n0(c) > 0. Then u′n0 is positive and increasing on [c, T] by Lemma 2.1. If
u′n0((T + c)/2) ≥ 2(α + β)A/α(T − c), then u′n0 > 2(α + β)A/α(T − c) on ((T + c)/2, T], and
consequently,

un0(T) = un0

(
T + c
2

)
+
∫T

(T+c)/2
u′n0(t)dt > un0

(
T + c
2

)
+
(
1 +

β

α

)
A >

(
1 +

β

α

)
A, (2.52)

which contradicts un0(T) ≤ (1 + β/α)A by Lemma 2.1. Hence

0 < u′n0(t) <
2
(
α + β

)
A

α(T − c) for t ∈
[
c,
T + c
2

]
. (2.53)

Since n0un0(t) ≥ n0ε > 1 for t ∈ [c, T], the inequality in (2.48) holds a.e. on [c, T], and therefore,
the inequality in (2.49) is true for a.e. t ∈ [c, T]. Integrating (φ(u′n0(t)))

′ > λcϕ(t) over [c, (T +
c)/2] gives

φ

(
u′n0

(
T + c
2

))
> φ
(
u′n0(c)

)
+ λc

∫ (T+c)/2

c

ϕ(t)dt. (2.54)

Then

φ

(
u′n0

(
T + c
2

))
> λc

∫ (T+c)/2

c

ϕ(t)dt ≥ λcΛ ≥ φ
(

2
(
α + β

)
A

α(T − c)

)

. (2.55)

Hence u′n0((T + c)/2) > 2(α + β)A/α(T − c), which contradicts (2.53) with t = (T + c)/2.
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3. Main Results and an Example

Theorem 3.1. Suppose there are (H1)–(H3), then the following assertions hold.

(i) For each λ > 0 problem (1.1), (1.2) has a sequential solution.

(ii) Any sequential solution of problem (1.1), (1.2) is either a positive solution, a pseudo-dead-
core solution, or a dead-core solution.

Proof. (i) Fix λ > 0. By Lemma 2.6, for each n ∈ N problem (1.12), (1.2) has a solution un.
Lemmas 2.1 and 2.7 guarantee that {un} is bounded in C1[0, T] and {u′n} is equicontinuous
on [0, T]. By the Arzelà-Ascoli theorem, there exist u ∈ C1[0, T] and a subsequence {ukn} of
{un} such that u = limn→∞ukn in C

1[0, T]. Hence u is a sequential solution of problem (1.1),
(1.2).

(ii) Let u be a sequential solution of problem (1.1), (1.2). Then u ∈ C1[0, T] and u =
limn→∞ukn in C1[0, T], where ukn is a solution of problem (1.12), (1.2) with n replaced by
kn. Hence u(0) − αu′(0) = A and u(T) + βu′(0) + γu′(T) = A, that is, u fulfils the boundary
condition (1.2). It follows from the properties of ukn given in Lemmas 2.1 and 2.3 that 0 ≤
u(t) ≤ (1+β/α)A for t ∈ [0, T], u′ is nondecreasing on [0, T] and ‖u′

kn
‖ < S for n ∈ N, where S is

a positive constant. The next part of the proof is divided into two cases if min{u(t) : t ∈ [0, T]}
is positive, or is equal to zero.

Case 1. Suppose that min{u(t) : t ∈ [0, T]} > 0. Then there exist ε > 0 and n0 ∈ N, n0 > 1/ε
such that

ukn(t) ≥ ε for t ∈ [0, T], n ≥ n0. (3.1)

Hence (cf. (1.8)) (φ(u′
kn
(t)))′ = λfkn(t, ukn(t), u

′
kn
(t)) ≥ λϕ(t) for a.e. t ∈ [0, T] and all n ≥ n0.

Since u′kn(γkn) = 0 for some γkn ∈ (0, T) by Lemma 2.1, we have −φ(u′kn(t)) ≥ λ
∫γkn
t ϕ(s) ds for

t ∈ [0, γkn], and therefore,

u′kn(t) ≤ −φ−1
(
λ

∫ γkn

t

ϕ(s)ds
)

for t ∈ [0, γkn
]
, n ≥ n0. (3.2)

Essentially, the same reasoning shows that

u′kn(t) ≥ φ−1
(

λ

∫ t

γkn

ϕ(s)ds

)

for t ∈ [γkn , T
]
, n ≥ n0. (3.3)

Passing if necessary to a subsequence, we may assume that {γkn} is convergent, and let
limn→∞γkn = θ. Letting n → ∞ in (3.2) and (3.3) gives

u′(t) ≤ −φ−1
(

λ

∫θ

t

ϕ(s)ds

)

for t ∈ [0, θ],

u′(t) ≥ φ−1
(

λ

∫ t

θ

ϕ(s)ds

)

for t ∈ [θ, T].

(3.4)
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Hence θ is the unique zero of u′, θ ∈ (0, T) since u fulfils (1.2), and

lim
n→∞

fkn

(
t, ukn(t), u

′
kn
(t)
)
= f
(
t, u(t), u′(t)

)
for a.e. t ∈ [0, T]. (3.5)

In addition, it follows from the Fatou lemma and from the relation

λ

∫T

0
fkn

(
t, ukn(t), u

′
kn
(t)
)
dt = φ

(
u′kn(T)

)
− φ
(
u′kn(0)

)
< 2φ(S), n ∈ N, (3.6)

that
∫T
0f(t, u(t), u

′(t))dt ≤ 2φ(S)/λ. Therefore, f(t, u(t), u′(t)) ∈ L1[0, T]. We now show that
φ(u′) ∈ AC[0, T] and u fulfils (1) a.e. on [0, T]. Let us choose 0 ≤ t1 < (θ/2) < t2 < θ. In view
of (3.1), (3.4), (3.5) and Lemma 2.1, there exist ν > 0 and n1 ≥ n0 such that

ε ≤ ukn(t) ≤
(
1 +

β

α

)
A, −S < u′kn(t) ≤ −ν for t ∈ [t1, t2], n ≥ n1. (3.7)

Then (cf. (1.11))

fkn

(
t, ukn(t), u

′
kn
(t)
)
≤
(
p1(ε) + p̃2

((
1 +

β

α

)
A

))
(ω1(ν) + ω̃2(S)) + ψ(t) (3.8)

for a.e. t ∈ [t1, t2] and n ≥ n1. Letting n → ∞ in

φ
(
u′kn(t)

)
= φ
(
u′kn

(
θ

2

))
+ λ
∫ t

θ/2
fkn

(
s, ukn(s), u

′
kn
(s)
)
ds (3.9)

yields

φ
(
u′(t)

)
= φ
(
u′
(
θ

2

))
+ λ
∫ t

θ/2
f
(
s, u(s), u′(s)

)
ds (3.10)

for t ∈ [t1, t2] by the Lebesgue dominated convergence theorem. Since t1, t2 satisfying 0 ≤ t1 <
θ/2 < t2 < θ are arbitrary and f(t, u(t), u′(t)) ∈ L1[0, T], equality (3.10) holds for t ∈ [0, θ].
Essentially, the same reasoning which is now applied to t1, t2 satisfying θ < t1 < (T + θ)/2 <
t2 ≤ T gives

φ
(
u′(t)

)
= φ
(
u′
(
T + θ
2

))
+ λ
∫ t

(T+θ)/2
f
(
s, u(s), u′(s)

)
ds (3.11)

for t ∈ [θ, T]. Hence φ(u′) ∈ AC[0, T] and u fulfills (1.1) a.e. on [0, T]. Consequently, u is a
positive solution of problem (1.1), (1.2).
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Case 2. Suppose that min{u(t) : t ∈ [0, T]} = 0, and let u(ρ1) = u(ρ2) = 0 for some ρ1 ≤ ρ2 and
u > 0 on [0, T] \ [ρ1, ρ2]. Since u′ is nondecreasing on [0, T], we have u′ < 0 on [0, ρ1), u′ = 0
on [ρ1, ρ2] and u′ > 0 on (ρ2, T]. Consequently, u = 0 on [ρ1, ρ2] and

lim
n→∞

fkn

(
t, ukn(t), u

′
kn
(t)
)
= f
(
t, u(t), u′(t)

)
for a.e. t ∈ [0, T] \ [ρ1, ρ2

]
. (3.12)

Furthermore, it follows from

λ

∫ρ1

0
fkn

(
t, ukn(t), u

′
kn
(t)
)
dt = φ

(
u′kn
(
ρ1
)) − φ

(
u′kn(0)

)
< 2φ(S),

λ

∫T

ρ2

fkn

(
t, ukn(t), u

′
kn
(t)
)
dt = φ

(
u′kn(T)

)
− φ
(
u′kn
(
ρ2
))

< 2φ(S)

(3.13)

that f(t, u(t), u′(t)) is integrable on the intervals [0, ρ1] and [ρ2, T] by the Fatou lemma. We
can now proceed analogously to Case 1 with 0 ≤ t1 < ρ1/2 < t2 < ρ1 and with ρ2 < t1 <
(T + ρ2)/2 < t2 ≤ T and obtain

φ
(
u′(t)

)
= φ
(
u′
(ρ1
2

))
+ λ
∫ t

ρ1/2
f
(
s, u(s), u′(s)

)
ds for t ∈ [0, ρ1

]
,

φ
(
u′(t)

)
= φ
(
u′
(
T + ρ2

2

))
+ λ
∫ t

(T+ρ2)/2
f
(
s, u(s), u′(s)

)
ds for t ∈ [ρ2, T

]
.

(3.14)

It follows from these equalities and from u′ = 0 on [ρ1, ρ2] that φ(u′) ∈ AC[0, T] and that u
fulfils (1.1) a.e. on [0, T] \ [ρ1, ρ2]. Hence u is a dead-core solution of problem (1.1), (1.2) if
ρ1 < ρ2, and u is a pseudo-dead-core solution if ρ1 = ρ2.

Theorem 3.2. Let (H1)–(H3) hold. Then there exists λ∗ > 0 such that for each λ ∈ (0, λ∗], all
sequential solutions of problem (1.1), (1.2) are positive solutions.

Proof. Let λ∗ > 0 and ε > 0 be given in Lemma 2.8. Let us choose an arbitrary λ ∈ (0, λ∗]. Then
(2.38) holds, where un is any solution of problem (1.12), (1.2). Let u be a sequential solution
of problem (1.1), (1.2). Then u = limn→∞ukn in C1[0, T], where ukn is a solution of (1.12),
(1.2) with n replaced by kn. Consequently, u ≥ ε on [0, T] by (2.38), which means that u is a
positive solution of problem (1.1), (1.2) by Theorem 3.1.

Theorem 3.3. Let (H1)–(H3) hold. Then for each 0 < c1 < c2 < T , there exists λ∗ > 0 such that any
sequential solution u of problem (1.1), (1.2) with λ > λ∗ satisfies the equality

u(t) = 0 for t ∈ [c1, c2], (3.15)

which means that the dead-core of u contains the interval [c1, c2]. Consequently, all sequential
solutions of problem (1.1), (1.2) are dead-core solutions for sufficiently large value of λ.
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Proof. Fix 0 < c1 < c2 < T . Then, by Lemma 2.9, there exists λ∗ > 0 such that

lim
n→∞

un
(
cj
)
= 0 for j = 1, 2, (3.16)

where un is any solution of problem (1.12), (1.2)with λ > λ∗. Let us choose λ > λ∗ and let u be
a sequential solution of problem (1.1), (1.2). Then u = limn→∞ukn in C

1[0, T], where ukn is a
solution of problem (1.12), (1.2)with n replaced by kn. It follows from (3.16) that u(cj) = 0 for
j = 1, 2, and since u′ is nondecreasing on [0, T], (3.15) holds. Consequently, u is a dead-core
solution of problem (1.1), (1.2) by Theorem 3.1.

Example 3.4. Let p ∈ (1,∞), γ1 ∈ [1, p), δ1, γ2, γ3 ∈ (0,∞), δ2, δ3 ∈ (0, 1) and ϕ ∈ L1[0, T] be
positive. Consider the differential equation

(∣∣u′
∣∣p−2u′

)′
= λ
(
uδ1 +

1
uδ2

+
∣∣u′
∣∣γ1 +

1
|u′|γ2 +

1
uδ3 |u′|γ3 + ϕ(t)

)
. (3.17)

Equation (3.17) is the special case of (1.1) with φ(y) = |y|p−2y and f(t, x, y) = xδ1 + 1/xδ2 +
|y|γ1 + 1/|y|γ2 + 1/xδ3 |y|γ3 + ϕ(t). Since

ϕ(t) ≤ f(t, x, y) ≤
(
1 + xδ1 +

1
xδ2

+
1
xδ3

)(

1 + yγ1 +
1
∣∣y
∣∣γ2

+
1
∣∣y
∣∣γ3

)

+ ϕ(t) (3.18)

for (t, x, t) ∈ [0, T] × D∗, where D∗ = (0,∞) × (R \ {0}), f fulfils (H3) with ϕ = ψ, p1(x) =
1/xδ2+1/xδ3 , p2(x) = 1+xδ1 ,ω1(y) = 1/yγ2+1/yγ3 , andω2(y) = 1+yγ1 . Hence, by Theorem 3.1,
problem (3.17), (1.2) has a sequential solution for each λ > 0, and any sequential solution is
either a positive solution or a pseudo-dead-core solution or a dead-core solution. If the values
of λ are sufficiently small, then all sequential solutions of problem (3.17), (1.2) are positive
solutions by Theorem 3.2. Theorem 3.3 guarantees that all sequential solutions of problem
(3.17), (1.2) are dead-core solutions for sufficiently large values of λ.
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