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We investigate several arithmetic properties of (h, q)-Genocchi polynomials and numbers of higher
order.

1. Introduction and Preliminaries

Recently, Kim [1] studied q-Genocchi and Euler numbers using Fermionic q-integral and
introduced related applications. Kim [2] also gives the q-extensions of the Euler numbers
which can be viewed as interpolating of q-analogue of Euler zeta function at negative
integers and gives Bernoulli numbers at negative integers by interpolating Riemann zeta
function. These numbers are very useful for number theory and mathematical physics.
Kim [3, 4] studied q-Bernoulli numbers and polynomials related to Gaussian binomial
coefficient and studied also some identities of q-Euler polynomials and q-stirling numbers.
Kim [5] made Dedekind DC sum in the meaning of extension of Dedekind sum or Hardy
sum and introduced lots of interesting results. The purpose of this paper is to investigate
several arithmetic properties of (h, q)-Genocchi polynomials and numbers of higher
order.

Let p be a fixed odd prime. Throughout this paper Z, Zp, Qp, and Cp will, respectively,
denote the ring of rational integers, the ring of p-adic rational integers, the field of p-adic
rational numbers, and the completion of algebraic closure of Qp. Let vp be the normalized
exponential valuation of Cp with |p|p = p−vp(p) = p−1. When one talks of q-extension, q is
variously considered as an indeterminate, a complex number q ∈ C, or a p-adic number
q ∈ Cp. If q ∈ C, one normally assumes |q| < 1. If q ∈ Cp, then we assume |q − 1|p < p−1/(p−1),
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so that qx = exp(x log q) for |x|p ≤ 1. We also use the notations

[x]q =
1 − qx
1 − q , [x]−q =

1 − (−q)x
1 + q

(1.1)

for all x ∈ Zp (see [5–12]). Hence, limq→ 1[x]q = x.
Let d be a fixed positive integer with (p, d) = 1. We now set

X = lim←−
N

Z

dpNZ
, X∗ =

⋃

0<a<dp
(a,p)=1

a+dpZp, a+dpNZp=
{
x ∈ X | x≡a

(
mod pN

)}
,

(1.2)

where a ∈ Z lies in 0 ≤ a < dpN . For any N ∈ N, we set

µq

(
a + dpNZp

)
=

(−q)a
[
dpN

]
−q
, (1.3)

and this can be extended to a distribution on Zp.
We say that f is a uniformly differentiable function at a point a ∈ Zp and write f ∈

UD(Zp), if the difference quotients Ff(x, y) = ((f(x) − f(y))/(x − y)) have a limit f ′(a) as
(x, y) → (a, a) (cf. [13–23]).

For f ∈ UD(Zp), the p-adic invariant integral on Zp is defined as

I
(
f
)
=
∫

X

f(x)dµ(x) = lim
N→∞

dpN−1∑

x=0

f(x)(−1)x (1.4)

(see [14, 23]). Let n ∈N and fn(x) = f(x + n). From (1.4), we have

I
(
fn
)
+ I

(
f
)
= 2

n−1∑

l=0

(−1)lf(l). (1.5)

The p-adic integral has been used in many areas such as mathematics, physics, probability
theory, dynamical systems, and biological models. Especially, Khrennikov [24–26] applied to
many areas using ingenious technique. The Genocchi numbers Gn and polynomials Gn(x)
are defined by the generating functions as follows:

2t
et + 1

=
∞∑

n=0

Gn
tn

n!
,

2t
et + 1

ext =
∞∑

n=0

Gn(x)
tn

n!
(1.6)

(see [5, 7, 15]). The q-extension of Genocchi numbers are defined by

Fq(t) = t
∞∑

m=0
(−1)mqme[m]qt =

∞∑

n=0

Gn,q
tn

n!
(1.7)
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(see [1, 2]), and the q-extension of Genocchi polynomials is also given by

Gn,q(x) =
n∑

l=0

(
n

l

)

qlxGl,q[x]n−lq . (1.8)

In Section 2, we investigate several arithmetic properties of (h, q)-Genocchi polynomi-
als and numbers of higher order.

2. (h, q)-Genocchi Numbers of Higher Order

Let h, k ∈ N and q ∈ C with |q − 1|p < p−1/(p−1). The (h, q)-Genocchi polynomials G(h,k)
m,q (x) of

order k are defined as

tk
∫

Zp

· · ·
∫

Zp

e[x1+···xk+x]qtq(h−1)x1+···+(h−k)xkdµq(x1) · · ·dµq(xk) =
∞∑

m=0

G
(h,k)
m,q (x)

tm

m!
, (2.1)

where
∫

Zp
f(x)dµq(x) = limN→∞(1/[pN]−q)

∑pN−1
x=0 f(x)(−q)x. It is easily to see thatG(h,k)

0,q (x) =

· · · = G
(h,k)
k−1,q(x) = 0 for each h ∈ Z and k ∈ N. From (2.1), we can obtain the following theorem.

Theorem 2.1. Let h ∈ Z and m, k ∈ N. Then for all x ∈ Zp,

k!
(m + k)!

G
(h,k)
m+k,q(x) =

∫

Zp

· · ·
∫

Zp

[x1 + · · ·xk + x]mq q
(h−1)x1+···+(h−k)xkdµq(x1) · · ·dµq(xk). (2.2)

From Theorem 2.1, if we take k = −m (m > 0), then

1

m!
(

m+k

m

)G(−m,k)
m+k,q (x) =

∫

Zp

· · ·
∫

Zp

[x1 + · · ·xk + x]mq q
−(m+1)x1−···−(m+k)xkdµq(x1) · · ·dµq(xk).

(2.3)

Now, we define (h, q)-Genocchi number of higher order as follows:

G
(−m,k)
m,q = G

(−m,k)
m,q (0). (2.4)

From (2.4), we can derive the following theorem.
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Theorem 2.2. Let h ∈ Z and m, k ∈ N. Then one has

G
(−m,k)
m+k,q

m!
(

m+k

m

) = lim
N→∞

1
[
pN

]k
−q

pN−1∑

x1=0

· · ·
pN−1∑

xk=0
(−1)x1+···+xk[x1 + · · · + xk]mq q

−x1m−···−xk(m+k−1)

=
[2]kq

(
1 − q)m

m∑

i=0

(
m

i

)

(−1)i 1
(
1 + qi−m

) · · · (1 + qi−m−k+1
) ,

(2.5)

where
(

m

i

)
= m · · · (m − k + 1)/k!.

Note that limq→ 1G
(−m,k)
m,q = G

(k)
m , whereG(k)

m are the ordinary Genocchi numbers of order
k defined as

(
2t

et + 1

)k

=
∞∑

n=0

G
(k)
n

tn

n!
. (2.6)

By (2.4) and (2.5), we can obtain the following theorem.

Theorem 2.3. Letm ∈ N. Then one has

G
(−m,1)
m+1,q

m + 1
=

m∑

i=0

(
m

i

)

qxi

G
(−m,1)
i+1,q

i + 1
[x]m−iq =

[2]q
(
1 − q)m

m∑

j=0

qix
(
m

i

)
(−1)j

(
1 + qj−m

) . (2.7)

It is easily to check that

G
(−n,1)
n+1,q

n + 1
=
∫

Zp

q−(n+1)t[x + t]nqdµq(t)

=
1 + q

1 + qd
[d]nq

d−1∑

x=0
(−1)iq−ni

∫

Zp

q−(n+1)dt
[
x + i

d
+ t

]n

qd
dµqd(t),

(2.8)

where n, d ∈ N with d ≡ 1 (mod2). Thus we have the following theorem.

Theorem 2.4. Let d, n ∈ N with d ≡ 1 (mod 2). Then for all x ∈ Zp,

G
(−n,1)
n+1,q (x)

n + 1
=

1 + q

1 + qd
[d]nq

n∑

i=0
(−1)iq−niG−n,1n+1,q

(
x + i

d

)
. (2.9)

We note that if we take x = 0, then we have

G
(−m,1)
m+1,q

m + 1
=

1 + q

1 + qm

m∑

k=0

(
m

k

)

[n]kq
G

(−m,1)
k+1,qn

k + 1

n−1∑

j=0
(−1)jq−(m−k)j[j]m−kq , (2.10)
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where n = 1 (mod 2). By (2.10), we easily see that

G
(−m,1)
m+1,q

m + 1
− 1 + q

1 + qn
[n]mq

G
(−m,1)
m+1,q

m + 1
=

1 + q

1 + qm

m−1∑

k=0

[n]kq
G

(−m,1)
k+1,qn

k + 1

n−1∑

j=0
(−1)jq−(m−k)j[j]m−kq . (2.11)

Note that limq→ 1G
(−m,1)
m,q = Gm, where Gm are the mth Genocchi numbers defined as

2t
et + 1

=
∞∑

n=0

Gn
tn

n!
. (2.12)

From (2.11), we can see that

(1 − nm)
Gm+1

m + 1
=

m−1∑

k=0

(
m

k

)

nk Gk+1

k + 1

n−1∑

j=0
(−1)j jm−k. (2.13)

Let Fq(t, x) be the generating function of G(−m,1)
m,q as follows:

Fq(t, x) =
∞∑

n=0

G
(−n,1)
n+1,q (x)

n + 1
tn

n!
. (2.14)

By (2.7) and (2.14), we see that

Fq(t, x) =
∞∑

k=0

(
(
1 + q

) ∞∑

n=0
(−1)nq−kn[n + x]kq

)
tk

k!

=
(
1 + q

) ∞∑

n=0
(−1)n

∞∑

n=0
(−1)n

∞∑

k=0

q−kn[n + x]kq
tk

k!

=
(
1 + q

) ∞∑

n=0
(−1)ne[n+x]qq−nt.

(2.15)

By (2.14) and (2.15), we can obtain the following theorem.

Theorem 2.5. Letm ∈ N. Then for all x ∈ Zp,

G
(−m,1)
m+1,q (x)

m + 1
= [2]q

∞∑

n=0

q−nm(−1)n[n + x]mq . (2.16)

Acknowledgment

This paper was supported by KOSEF (2009-0073396, 2009-A419-0065).



6 Advances in Difference Equations

References

[1] T. Kim, “On the multiple q-Genocchi and Euler numbers,” Russian Journal of Mathematical Physics, vol.
15, no. 4, pp. 481–486, 2008.

[2] T. Kim, “Note on the Euler q-zeta functions,” Journal of Number Theory, vol. 129, no. 7, pp. 1798–1804,
2009.

[3] T. Kim, “q-Bernoulli numbers and polynomials associated with Gaussian binomial coefficients,”
Russian Journal of Mathematical Physics, vol. 15, no. 1, pp. 51–57, 2008.

[4] T. Kim, “Some identities on the q-Euler polynomials of higher order and q-Stirling numbers by the
fermionic p-adic integral on Zp,” Russian Journal of Mathematical Physics, vol. 16, pp. 501–508, 2009.

[5] T. Kim, “Note on Dedekind type DC sums,” Advanced Studies in Contemporary Mathematics, vol. 18,
no. 2, pp. 249–260, 2009.

[6] T. Kim, “A note on some formulae for the q-Euler numbers and polynomials,” Proceedings of the
Jangjeon Mathematical Society, vol. 9, no. 2, pp. 227–232, 2006.

[7] T. Kim, “A note on the generalized q-Euler numbers,” Proceedings of the Jangjeon Mathematical Society,
vol. 12, no. 1, pp. 45–50, 2009.

[8] T. Kim, “Note on the q-Euler numbers of higher order,” Advanced Studies in Contemporary Mathematics,
vol. 19, no. 1, pp. 25–29, 2009.

[9] Y.-H. Kim, W. Kim, and C. S. Ryoo, “On the twisted q-Euler zeta function associated with twisted
q-Euler numbers,” Proceedings of the Jangjeon Mathematical Society, vol. 12, no. 1, pp. 93–100, 2009.

[10] H. Ozden, Y. Simsek, S.-H. Rim, and I. N. Cangul, “A note on p-adic q-Euler measure,” Advanced
Studies in Contemporary Mathematics, vol. 14, pp. 233–239, 2007.

[11] Y. Simsek, “Generating functions of the twisted Bernoulli numbers and polynomials associated with
their interpolation functions,” Advanced Studies in Contemporary Mathematics, vol. 16, no. 2, pp. 251–
278, 2008.

[12] Y. Simsek, V. Kurt, and D. Kim, “New approach to the complete sum of products of the twisted
(h, q)-Bernoulli numbers and polynomials,” Journal of Nonlinear Mathematical Physics, vol. 14, no. 1,
pp. 44–56, 2007.

[13] M.Cenkci, Y. Simsek, andV. Kurt, “Further remarks onmultiple p-adic q-L-function of two variables,”
Advanced Studies in Contemporary Mathematics, vol. 14, no. 1, pp. 49–68, 2007.

[14] T. Kim, “q-Volkenborn integration,” Russian Journal of Mathematical Physics, vol. 9, no. 3, pp. 288–299,
2002.

[15] T. Kim, “On Euler-Barnes multiple zeta functions,” Russian Journal of Mathematical Physics, vol. 10, no.
3, pp. 261–267, 2003.

[16] T. Kim, “Analytic continuation of multiple q-zeta functions and their values at negative integers,”
Russian Journal of Mathematical Physics, vol. 11, no. 1, pp. 71–76, 2004.

[17] T. Kim, “Power series and asymptotic series associated with the q-analog of the two-variable p-adic
L-function,” Russian Journal of Mathematical Physics, vol. 12, no. 2, pp. 186–196, 2005.

[18] T. Kim, “Multiple p-adic L-function,” Russian Journal of Mathematical Physics, vol. 13, no. 2, pp. 151–
157, 2006.

[19] T. Kim, “A note on p-adic q-integral on Zp associated with q-Euler numbers,” Advanced Studies in
Contemporary Mathematics, vol. 15, pp. 133–138, 2007.

[20] T. Kim, “On p-adic interpolating function for q-Euler numbers and its derivatives,” Journal of
Mathematical Analysis and Applications, vol. 339, no. 1, pp. 598–608, 2008.

[21] T. Kim, “On the analogs of Euler numbers and polynomials associated with p-adic q-integral on Zp at
q = −1,” Journal of Mathematical Analysis and Applications, vol. 331, no. 2, pp. 779–792, 2007.

[22] T. Kim, “A note on p-adic q-integral on Zp associated with q-Euler numbers,” Advanced Studies in
Contemporary Mathematics, vol. 15, no. 2, pp. 133–137, 2007.

[23] T. Kim, “q-Euler numbers and polynomials associated with p-adic q-integrals,” Journal of Nonlinear
Mathematical Physics, vol. 14, no. 1, pp. 15–27, 2007.

[24] A. Yu. Khrennikov, p-adic Valued Distributions and Their Applications to the Mathematical Physics, Kluwer
Academic Publishers, Dordrecht, The Netherlands, 1994.

[25] A. Yu. Khrennikov, Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological
Models, vol. 427 of Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, The
Netherlands, 1997.

[26] A. Yu. Khrennikov, Interpretations of Probability, VSP, Utrecht, The Netherlands, 1999.


