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We prove the existence of a Gevrey family of invariant curves for analytic reversible mappings
under weaker nondegeneracy condition. The index of the Gevrey smoothness of the family could
be any number μ > τ + 2, where τ > m − 1 is the exponent in the small divisors condition and m is
the order of degeneracy of the reversible mappings. Moreover, we obtain a Gevrey normal form of
the reversible mappings in a neighborhood of the union of the invariant curves.

1. Introduction and Main Results

In this paper we consider the following reversible mapping A:

x1 = x + h
(
y
)
+ f

(
x, y

)
,

y1 = y + g
(
x, y

)
,

(1.1)

where the rotation h(y) is real analytic and satisfies the weaker non-degeneracy condition

h(j)(0) = 0, 0 < j < m, h(m)(0)/= 0, (1.2)

where f(x, y) and g(x, y) are real analytic and 2π periodic in x, the variable y ranges in an
open interval of the real line �. We suppose that the mapping A is reversible with respect to
the involution R : (x, y) → (−x, y), that is, ARA = R. When some nonresonance and non-
degeneracy conditions are satisfied and f , g are sufficiently small, the existence of invariant
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curve of reversible mapping (1.1) has been proved in [1–3]. For related works, we refer the
readers to [4–6] and the references there.

It is well known that reversible mappings have many similarities as Hamiltonian
systems. Since many KAM theorems are proved for Hamiltonian systems, some math-
ematicians turn to study the regular property of KAM tori with respect to parameters.
One of the earliest results is due to Pöschel [7], who proved that the KAM tori of nearly
integrable analytic Hamiltonian systems form a Cantor family depending on parameters
only in C∞-way. Because the notorious small divisors can result in loss of smoothness
with respect to parameters involving in small divisors in KAM steps, we can only expect
Gevrey smoothness of KAM tori even for analytic systems. Gevrey smoothness is a notion
intermediate between C∞-smoothness and analyticity (see definition below). Popov [8]
obtained Gevrey smoothness of invariant tori for analytic Hamiltonian systems. In [9],
Wagener used the inverse approximation lemma to prove a more general conclusion.
Recently, the preceding result has been generalized to Rüssmann’s non-degeneracy condition
[10–12]. Gevrey smoothness of the family of KAM tori is important for constructing Gevrey
normal form near KAM tori, which can lead to the effective stability [8, 13].

For reversible mappings, if h′(y)/= 0, the existence of a C∞-family of invariant curves
has been proved in [1, 2]. But in the case of weaker non-degeneracy condition (1.2), there is
no result about Gevrey smoothness. In this paper, we are concerned with Gevrey smoothness
of invariant curve of reversible mapping (1.1). The Gevrey smoothness is expressed by
Gevrey index. In the following, we specifically obtain the Gevrey index of invariant curve
which is related to smoothness of reversible mapping (1.1) and the exponent of the small
divisors condition. Moreover, we obtain a Gevrey normal form of the reversible mappings in
a neighborhood of the union of the invariant curves.

As in [7, 14, 15], we introduce some parameters, so that the existence of invariant curve
of reversible mapping (1.1) can be reduced to that of a family of reversible mappings with
some parameters. We write y = p + z, and expand h(y) around p, so that h(y) = h(p) +
∫1
0 h

′(yt)zdt, where yt = p + tz, 0 ≤ t ≤ 1, z varies in a neighborhood of origin of the real line

�. We put ω(p) = h(p), f(x, z; p) =
∫1
0 h

′(yt)zdt+f(x, p +z), g(x, z; p) = g(x, p+z) and obtain
the family of reversible mappings

x1 = x +ω
(
p
)
+ f

(
x, z; p

)
,

z1 = z + g
(
x, z; p

)
.

(1.3)

Now, we turn to consider this family of reversible mappings with parameters p ∈ Π, where
Π ⊂ � is a bounded interval.

Before stating our theorem, we first give some definitions and notations. Usually,
denote by � and �+ the set of integers and positive integers.

Definition 1.1. LetD be a domain of �n . A function F : D → � is said to belong to the Gevrey-
class Gμ(D) of index μ(μ ≥ 1) if F is C∞(D)-smooth and there exists a constant M such that
for all p ∈ D,

∣
∣∣∂

β
pF

(
p
)∣∣∣ ≤ cM|β|+1β!μ, (1.4)

where |β| = β1 + · · · + βn and β! = β1! · · ·βn! for β = (β1, . . . , βn) ∈ �n
+.
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Remark 1.2. By definition, it is easy to see that the Gevrey-smooth functions classG1 coincides
with the class of analytic functions. Moreover, we have

G1 ⊂ Gμ1 ⊂ Gμ2 ⊂ C∞, (1.5)

for 1 < μ1 < μ2 < ∞.

In this paper, we will prove Gevrey smoothness of function in a closed set, so we give
the following definition.

Definition 1.3. A function F is Gevrey of index μ on a compact set Π∗ if it can be extended as
a Gevrey function of the same index in a neighborhood of Π∗.

Define

D(s, r) = {(x, z) ∈ �/2π� × � | |Im x| ≤ s, |z| ≤ r}, (1.6)

and denote a complex neighborhood of Π by

Πh =
{
p ∈ � | dist(p,Π) ≤ h

}
. (1.7)

Now the function f(x, z; p) is real analytic on D(s, r) × Πh. We expand f(x, z; p) as
Fourier series with respect to x

f
(
x, z; p

)
=
∑

k∈�
fk
(
z; p

)
eikx, (1.8)

then define

∥∥f
∥∥
D(s,r)×Πh

=
∑

k∈�

∥∥fk
∥∥
r,he

s|k|, (1.9)

where

∥∥fk
∥∥
r,h = sup

|z|≤r,p∈Πh

∣∣fk
(
z; p

)∣∣. (1.10)

We write F(x, z; p) ∈ G1,μ(D(s, r) ×Π∗) if F(x, z; p) is analytic with respect to (x, z) on
D(s, r) and Gμ-smooth in p on Π∗.

Denote T = maxp∈Πh |ω′(p)|. Fix δ ∈ (0, 1) and τ > m − 1, and let μ = τ + 2 + δ and

σ = (2/3)δ/(τ+1+δ). LetW0 = diag(ρ−10 , r−10 ).
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Theorem 1.4. We consider the mapping A defined in (1.3), which is reversible with respect to the
involution R : (x, z) → (−x, z), that is, ARA = R. Suppose that ω(p) satisfies the non-degeneracy
condition:ω(j)(0) = 0, 0 < j < m,ω(m)(0)/= 0. Suppose that f(x, z; p) and g(x, z; p) are real analytic
on D(s, r) ×Πh. Then, there exists γ > 0 such that for any 0 < α < 1, if

∥∥f
∥∥
D(s,r)×Πh

+
1
r

∥∥g
∥∥
D(s,r)×Πh

= ε ≤ γαsτ+2, (1.11)

there is a nonempty Cantor set Π∗ ⊂ Π, and a family of transformations V∗(·, ·; p) : D(s/2, r/2) →
D(s, r), ∀p ∈ Π∗,

x = ξ + p∗
(
ξ; p

)
,

z = η + q∗
(
ξ, η; p

)
,

(1.12)

satisfying V∗(x, z; p) ∈ G1,μ(D(s/2, r/2) ×Π∗), and for any β ∈ �+,

∥∥
∥W0∂

β
p(V∗ − id)

∥∥
∥
D(s/2,r/2)×Π∗

≤ cMββ!τ+2+δγ1/2, (1.13)

where M = 2τ+2+δ(T + 1) (τ + 1 + δ)τ+1+δ/πα, the constant c depends on n, τ , and δ. Under these
transformations, the mapping (1.3) is transformed to

ξ1 = ξ +ω∗
(
p
)
+ f∗

(
ξ, η; p

)
,

η1 = η + g∗
(
ξ, η; p

)
,

(1.14)

where f∗ = O(η), g∗ = O(η2) at η = 0. Thus, for any p ∈ Π∗, the mapping (1.3) has an invariant
curve Γ such that the induced mapping on this curve is the translation ξ1 = ξ+ω∗(p), whose frequency
ω∗(p) satisfies that

∣∣
∣∂

β
p

(
ω∗

(
p
) −ω

(
p
))∣∣
∣ ≤ cαMββ!τ+2+δγ1/2sτ+2, ∀β ∈ �+, (1.15)

∣∣∣
∣∣
kω∗

(
p
)

2π
− l

∣∣∣
∣∣
≥ α

2|k|τ , ∀(k, l) ∈ �× �\ {0, 0}. (1.16)

Moreover, one hasmeas (Π \Π∗) ≤ cα1/m.

Remark 1.5. From Theorem 1.4, we can see that for any μ > τ + 2, if ε is sufficiently small, the
family of invariant curves is Gμ-smooth in the parameters. The Gevrey index μ = τ + 2 + δ
should be optimal.

Remark 1.6. The derivatives in (1.13) and (1.15) should be understood in the sense ofWhitney
[16]. In fact, the estimates (1.13) and (1.15) also hold in a neighborhood of Π∗ with the same
Gevrey index.
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2. Proof of the Main Results

In this section, we will prove our Theorem 1.4. But in the case of weaker non-degeneracy
condition, the previous methods in [1, 2] are not valid and the difficulty is how to control the
parameters in small divisors. We use an improved KAM iteration carrying some parameters
to obtain the existence and Gevrey regularity of invariant curves of analytic reversible
mappings. This method is outlined in the paper [7] by Pöschel and adapted to Gevrey classes
in [13] by Popov. We also extend the method of Liu [1, 2].

KAM step

The KAM step can be summarized in the following lemma.

Lemma 2.1. Consider the following real analytic mapping A:

x1 = x +ω
(
p
)
+ f

(
x, z; p

)
,

z1 = z + g
(
x, z; p

)
,

(2.1)

on D(s, r) × Πh. Suppose the mapping is reversible with respect to the involution R : (x, z) →
(−x, z), that is, ARA = R. Let 0 < E < 1, 0 < ρ < s/5, and K > 0 such that e−Kρ = E. Suppose
∀p ∈ Π, the following small divisors condition holds:

∣∣∣
∣∣
kω

(
p
)

2π
− l

∣∣∣
∣∣
≥ α

|k|τ , ∀(k, l) ∈ �× �\ {0, 0}, 0 < |k| ≤ K. (2.2)

Let

max
p∈Πh

∣∣ω′(p
)∣∣ ≤ T, h =

πα

TKτ+1
. (2.3)

Suppose that

∥∥f
∥∥
s,r;h +

1
r

∥∥g
∥∥
s,r;h ≤ ε = αρτ+2E, (2.4)

where the norm ‖ · ‖s,r;h indicates ‖ · ‖D(s,r)×Πh for simplicity. Then, for any p ∈ Πh, there exists a
transformationU:

x = ξ + u
(
ξ; p

)
,

z = η + v
(
ξ, η; p

)
,

(2.5)

which is affine in η, such that the mappingA is transformed to A+ = U−1AU:

ξ1 = ξ +ω+
(
p
)
+ f+

(
ξ, η; p

)
,

η1 = η + g+
(
ξ, η; p

)
,

(2.6)
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where the new perturbation satisfies

∥
∥f+

∥
∥
s+,r+;h

+
1
r+

∥
∥g+

∥
∥
s+,r+;h

≤ ε+ = α+ρ
τ+2
+ E+, (2.7)

with

s+ = s − 5ρ, ρ+ = σρ, μ =
√
E, r+ = μr, E+ = cE3/2,

α

2
≤ α+ ≤ α, (2.8)

where σ is defined in Theorem 1.4. Moreover, one has

∣∣ω+
(
p
) −ω

(
p
)∣∣ ≤ ε, ∀p ∈ Πh. (2.9)

Let α+ = α − (ε/2π)Kτ+1, and denote

R+
k =

{

p ∈ Π |
∣∣∣
∣∣
kω+

(
p
)

2π
− l

∣∣∣
∣∣
<

α+

|k|τ , ∀K < |k| ≤ K+

}

(2.10)

and Π+ = Π \ R+
k
. Then, ∀p ∈ Π+, it follows that

∣
∣∣∣
∣
kω+

(
p
)

2π
− l

∣
∣∣∣
∣
≥ α+

|k|τ , ∀(k, l) ∈ �×�\ {0, 0}, 0 < |k| ≤ K+, (2.11)

where K+ > 0 such that e−K+ρ+ = E+. Let

T+ = T +
3ε
h
, h+ =

πα+

T+K
τ+1
+

. (2.12)

If h+ ≤ 2h/3, thenmaxp∈Πh+
|ω′

+(p)| ≤ T+. Moreover, one has

∥
∥f+

∥
∥
s+,r+;h+

+
1
r+

∥
∥g+

∥
∥
s+,r+;h+

≤ ε+. (2.13)

Thus, the above result also holds for A+ in place of A.

Proof of Lemma 2.1. The above lemma is actually one KAM step. We divide the KAM step into
several pats.

(A) Truncation

Let Qf = f(x, 0; p), Qg = g(x, 0; p) + gz(x, 0; p)z. It follows that ‖Qf‖s,r;h ≤ ε, ‖Qg‖s,r;h ≤ 2rε.
Write Qf =

∑
k∈�Qfk(p)eikx, Qg =

∑
k∈�Qgk(z; p)eikx, and let

Rf =
∑

|k|≤K
Qfk

(
p
)
eikx, Rg =

∑

|k|≤K
Qgk

(
z; p

)
eikx. (2.14)
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By the definition of norm, we have

∥∥Qf − Rf

∥∥
s−ρ,r;h ≤ ce−Kρε,

∥∥Qg − Rg

∥∥
s−ρ,r;h ≤ ce−Kρrε. (2.15)

(B) Construction of the Transformation

As in [1–3], for a reversiblemapping, if the change of variables commutes with the involution
R, then the transformed mapping is also reversible with respect to the same involution R. If
the change of variablesU : (ξ, η) → (x, z) is of the form

x = ξ + u(ξ),

z = η + v
(
ξ, η

)
,

(2.16)

then from the equality RU = UR, it follows that

u(−ξ) = −u(ξ),
v
(−ξ, η) = v

(
ξ, η

)
.

(2.17)

In this case, the transformed mapping U−1AU of A is also reversible with respect to the
involution R : (ξ, η) → (−ξ, η).

In the following, we will determine the unknown functions u and v to satisfy
the condition (2.17) in order to guarantee that the transformed mapping U−1AU is also
reversible.

We may solve u and v from the following equations:

u
(
ξ +ω

(
p
)) − u(ξ) = Rf(ξ) −

[
Rf(ξ)

]
,

v
(
ξ +ω

(
p
)
, η
) − v

(
ξ, η

)
= Rg

(
ξ, η

) − [
Rg

(
ξ, η

)]
,

(2.18)

where [·] denotes the mean value of a function over the angular variable ξ. Indeed, we can
solve these functions from the above equations. But the problem is that such functions u and v
do not, in general, satisfy the condition (2.17), that is, the transformed mappingU−1AU is no
longer a reversible mapping with respect to R. Therefore, we cannot use the above equations
to determine the functions u and v.

Instead of solving the above equations (2.18), we may find these functions u and v
from the following modified equations:

u
(
ξ +ω

(
p
)) − u(ξ) = f̃(ξ),

v
(
ξ +ω

(
p
)
, η
) − v

(
ξ, η

)
= g̃

(
ξ, η

)
,

(2.19)
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with

f̃(ξ) =
1
2
(
Rf(ξ) −

[
Rf (ξ)

]
+ Rf

(−ξ −ω
(
p
)) − [

Rf

(−ξ −ω
(
p
))])

,

g̃
(
ξ, η

)
=
1
2
(
Rg

(
ξ, η

) − Rg

(−ξ −ω
(
p
)
, η
))
,

(2.20)

where [·] denotes the mean value of a function over the angular variable ξ.

It is easy to verify that f̃(−ξ − ω(p)) = f̃(ξ) and g̃(−ξ − ω(p), η) = −g̃(ξ, η). So, by
Lemma A.1, the functions u and v meet the condition (2.17). In this case, the transformed
mapping U−1AU is also reversible with respect to the involution R : (ξ, η) → (−ξ, η).

Because the right hand sides of (2.19) have the mean value zero, we can solve u, v
from (2.19). But the difference equations introduce small divisors. By the definition of Πh, it
follows that ∀p ∈ Πh,

∣∣∣
∣∣
kω

(
p
)

2π
− l

∣∣∣
∣∣
≥ α

2|k|τ , ∀(k, l) ∈ �×�\ {0, 0}, 0 < |k| ≤ K. (2.21)

Let f̃k, g̃k be Fourier coefficients of f̃ and g̃. Then, we have

uk =
f̃k

eikω(p) − 1
, vk =

g̃k

eikω(p) − 1
, 0 < |k| ≤ K, (2.22)

and uk = 0, vk = 0 for k = 0 or |k| > K. Moreover, v is affine in η, u is independent of η.

(C) Estimates of the Transformation

By the definition of norm, we have

∥∥
∥f̃

∥∥
∥
s−ρ,r;h

≤ cε,
∥∥g̃

∥∥
s−ρ,r;h ≤ crε. (2.23)

By Lemma A.1, it follows that

‖u‖s−2ρ,r;h ≤ cε

αρτ+1
, ‖v‖s−2ρ,r;h ≤ crε

αρτ+1
. (2.24)

Using Cauchy’s estimate on the derivatives of u, v, we obtain

∥∥uξ

∥∥
s−3ρ,r/2;h ≤ cε

αρτ+2
,

∥
∥vξ

∥
∥
s−3ρ,r/2;h <

crε

αρτ+2
,

∥
∥vη

∥
∥
s−3ρ,r/2;h <

cε

αρτ+1
.

(2.25)
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In the same way as in [1, 2, 4], we can verify that U−1AU is well defined in D(s − 5ρ, μr),
0 < μ ≤ 1/8. Moreover, according to (2.24)–(2.25), we have

‖W0(U − id)‖D(s−5ρ,μr)×Πh
≤ cε

αρτ+2
,

∥
∥∥W0(DU − Id)W−1

0

∥
∥∥
D(s−5ρ,μr)×Πh

≤ cε

αρτ+2
,

(2.26)

where ‖ · ‖ denotes the maximum of the absolute value of the elements of a matrix, W0 =
diag(ρ−10 , r−10 ),DU denotes the Jacobian matrix with respect to (ξ, η).

(D) Estimates of the New Perturbation

Let α+ = α − (ε/2π)Kτ+1. We have |kω+(p)/2π − l| ≥ α+/|k|τ , ∀p ∈ Π, ∀0 < |k| ≤ K. Then,
by the definition of R+

k
, it follows that (2.11) holds. Thus, the small divisors condition for the

next step holds.
Let Rf(p) = [Rf(ξ; p)], then we have ‖Rf(p)‖ ≤ ε = αρτ+2E. Due to U−1AU = A+, we

have

f+
(
ξ, η

)
= u(ξ) − u(ξ1) − Rf

(
p
)
+ f

(
ξ + u, η + v

)
. (2.27)

By the first difference equation of (2.19), we have

f+ = u
(
ξ +ω

(
p
)) − u(ξ1) + f

(
ξ + u, η + v

) − f̃(ξ) − Rf

(
p
)
. (2.28)

From the reversibility of A, it follows that

f
(−x −ω

(
p
) − f, z + g

) − f(x, z) = 0,

g
(−x −ω

(
p
) − f, z + g

)
+ g(x, z) = 0.

(2.29)

Hence, we have

f
(
ξ, η

) − f̃(ξ) − Rf

(
p
)
=

1
2
(
f
(
ξ, η

) − Rf(ξ) + f
(
ξ, η

) − Rf

(−ξ −ω
(
p
)))

=
1
2
(
f
(
ξ, η

) − Rf(ξ) + f
(−ξ −ω

(
p
)
, η
) − Rf

(−ξ −ω
(
p
))

−f(−ξ −ω
(
p
)
, η
)
+ f

(−ξ −ω
(
p
) − f, η + g

))
,

(2.30)

which yields that

∥∥∥f
(
ξ, η

) − f̃(ξ) − Rf

(
p
)∥∥∥ ≤ cμε + ce−Kρε +

2ε2

ρ
. (2.31)
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By (2.15) and (2.24)–(2.25), the following estimate of f+ holds:

∥
∥f+

∥
∥ ≤ ∥

∥uξ

∥
∥ · ∥∥Rf

(
p
)
+ f+

∥
∥ +

∥
∥fξ

∥
∥ · ‖u‖ + ∥

∥fη
∥
∥ · ‖v‖ + cμε + ce−Kρε +

2ε2

ρ

≤ cε

αρτ+2
∥
∥f+

∥
∥ +

cε2

αρτ+2
+ cμε + ce−Kρε.

(2.32)

Similarly, for g+, we get

g+ = v
(
ξ +ω

(
p
)
, η
) − v

(
ξ1, η1

)
+ g

(
ξ + u, η + v

) − g̃
(
ξ, η

)
, (2.33)

1
r+

∥
∥g+

∥
∥ ≤ cε

αμρτ+2
∥
∥f+

∥
∥ +

cε

αρτ+1

∥∥g+
∥∥

r+
+

cε2

αμρτ+2
+ cμε +

ce−Kρε

μ
. (2.34)

If ε is sufficiently small such that

cε

αμρτ+2
<

1
2
, (2.35)

then combing with (2.32) and (2.34), we have

∥∥f+
∥∥
s+ ,r+;h

+
1
r+

∥∥g+
∥∥
s+,r+;h

≤ cε2

αμρτ+2
+ cμε +

ce−Kρε

μ
. (2.36)

Suppose h+ ≤ (2/3)h. Then, by Cauchy’s estimates, we have

∣∣ω′
+
(
p
) −ω′(p

)∣∣ ≤ 3ε
h
, ∀p ∈ Πh+ . (2.37)

Let T+ = T + 3ε/h. Then, maxp∈Πh+
|ω′

+(p)| ≤ T+.
Moreover, by the definition of ρ+ and E+, we have

∥∥f+
∥∥
s+,r+;h+

+
1
r+

∥∥g+
∥∥
s+,r+;h+

≤ cε2

αμρτ+2
≤ cα+ρ

τ+2
+ E3/2 = α+ρ

τ+2
+ E+. (2.38)

Thus, this ends the proof of Lemma 2.1.

Setting the Parameters and Iteration

Now, we choose some suitable parameters so that the above iteration can go on infinitely.
At the initial step, let ρ0 = (1 − σ)s/10, r0 = r, ε0 = α0ρ

τ+2
0 E0. LetK0 satisfy e−K0ρ0 = E0,

α0 = α > 0, ω0 = ω, T0 = T = maxp∈Πh |ω′(p)|. Denote

Π0 =

{

p ∈ Π |
∣∣
∣∣∣
kω

(
p
)

2π
− l

∣∣
∣∣∣
≥ α

|k|τ , ∀0 < |k| ≤ K0

}

. (2.39)
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Choose h = α1/m. Note that this choice for h is only formeasure estimate for parameters
and has no conflict with the assumption in Theorem 1.4, since we can use a smaller h.

Let h0 = πα0/T0K
τ+1
0 ≤ h and μ0 = E1/2

0 . Assume the above parameters are all well
defined for j. Then, we define ρj+1 = σρj , rj+1 = μjrj and Ej+1 = cE3/2

j , αj+1 = αj − (εj/2π)Kτ+1
j .

Define εj+1, μj+1, Kj+1, and hj+1 in the same way as the previous step.
Let

Πj =

{

p ∈ Πj−1 |
∣∣∣∣
∣
kωj

(
p
)

2π
− l

∣∣∣∣
∣
≥ αj

|k|τ , ∀Kj−1 < |k| ≤ Kj

}

. (2.40)

Denote Πhj = {ξ ∈ � | dist(ξ,Πj) ≤ hj} and Dj = D(sj , rj) for simplicity. By the iteration
lemma, we have a sequence of transformationsUj :

x = ξ + uj

(
ξ; p

)
,

z = η + vj

(
ξ, η; p

)
,

(2.41)

such that for any p ∈ Πhj ,Uj : Dj → Dj−1, satisfying

∥
∥Wj

(
Uj − id

)∥∥
Dj×Πhj

≤ cεj

αjρ
τ+2
j

,

∥
∥∥Wj

(
DUj − Id

)
W−1

j

∥
∥∥
Dj×Πhj

≤ cεj

αjρ
τ+2
j

,

(2.42)

where Wj = diag(ρ−1j , r−1j ), DUj denotes the Jacobian matrix with respect to (ξ, η).

Thus, the transformation Vj = U0 ◦U1 · · ·Uj is well defined in Dj ×Πhj and is seen to
take A0 into

Aj = V −1
j A0Vj. (2.43)

More precisely, if we write A0 as

x1 = x +ω
(
p
)
+ f

(
x, z; p

)
,

z1 = z + g
(
x, z; p

) (2.44)

and express Vj in the form

x = ξ + pj
(
ξ; p

)
,

z = η + qj
(
ξ, η; p

)
,

(2.45)
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then A0 is transformed into Aj :

ξ1 = ξ +ωj

(
p
)
+ fj

(
ξ, η; p

)
,

η1 = η + gj
(
ξ, η; p

)
,

(2.46)

satisfying

∥∥fj
∥∥
Dj×Πhj

+
1
rj

∥∥gj
∥∥
Dj×Πhj

≤ εj = αjρ
τ+2
j Ej ,

∣∣ωj+1
(
p
) −ωj

(
p
)∣∣

Dj×Πhj

≤ cεj .

(2.47)

In the following, we will check the assumptions in the iteration lemma to ensure that
KAM step is valid for all j ≥ 0.

Since Ej+1 = cE3/2
j and xj = Kjρj = − lnEj , if E0 is sufficiently small such that

− ln c/ lnEj ≤ 3(1 − σ)/2, it follows that 3/2 ≤ Kj+1/Kj ≤ 3/2σ. Thus hj+1 ≤ (2/3)hj .
By the definition of αj , we have

αj+1 = αj −
εj

2π
Kτ+1

j = αj

(
1 − 1

2π
xτ+2
j e−xj

)
. (2.48)

If E0 is sufficiently small such that

∞∏

j=0

(
1 − 1

2π
xτ+2
j e−xj

)
= 1 −O

(
1
x0

)
≥ 1

2
, (2.49)

then we obtain α0/2 ≤ αj ≤ α0 and so αj/2 ≤ αj+1 ≤ αj , ∀j ≥ 0.
Obviously, if E0 is sufficiently small, the assumption (2.35) holds.
By σ = (2/3)δ/(τ+1+δ), it is easy to see that Kδ

j+1ρ
τ+1+δ
j+1 ≥ Kδ

j ρ
τ+1+δ
j . If E0 is sufficiently

small and so x0 is sufficiently large such thatKδ
0ρ

τ+1+δ
0 = xδ

0ρ
τ+1
0 ≥ 1, then we haveKδ

j ρ
τ+1+δ
j ≥

1, ∀j ≥ 0.
Suppose maxp∈Πhj

|ω′
j(p)| ≤ Tj . Let Tj+1 = Tj + 3εj/hj . Then, we have

maxp∈Πhj+1
|ω′

j+1(p)| ≤ Tj+1.

By iteration, Tj+1 = T0 +
∑j

i=0(3εi/hi) ≤ T0 +
∑∞

j=0(3Tj/π)x
τ+2
j e−xj . Suppose Tj ≤ T + 1,

then we have
∑∞

j=0(3Tj/π)x
τ+2
j e−xj ≤ (3(T+1)/π)

∑∞
j=0 x

τ+2
j e−xj . If E0 is sufficiently small such

that
∑∞

j=0 x
τ+2
j e−xj ≤ π/3(T + 1), then T0 ≤ Tj+1 ≤ T0 + 1.
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Convergence of Iteration in Gevrey Space G1,τ+2+δ(D(s/2, r/2) ×Π∗)

Now, we prove convergence of KAM iteration. Let Vj = U0 ◦U1 · · ·◦Uj : Dj ×Πhj → D0×Πh0 ,
and write Vj in the form

x = ξ + pj
(
ξ; p

)
,

z = η + qj
(
ξ, η; p

)
.

(2.50)

In the same way as in [4, 7], we have

∥∥W0
(
Vj − Vj−1

)∥∥
Dj×Πhj

≤ cεj

αjρ
τ+2
j

,

∥
∥W0D

(
Vj − Vj−1

)∥∥
Dj×Πhj

≤ cεj

αjρ
τ+2
j

,

(2.51)

where ‖ · ‖ denotes the maximum of the absolute value of the elements of a matrix.
By Cauchy’s estimate we have

∥∥∥W0∂
β
p

(
Vj − Vj−1

)∥∥∥
Dj×Πj

≤ cEjβ!

h
β

j

, (2.52)

∥
∥∥W0∂

β
pD

(
Vj − Vj−1

)∥∥∥
Dj×Πj

≤ cEjβ!

h
β

j

,

∣∣∣∂
β
p

(
ωj+1

(
p
) −ωj

(
p
))∣∣∣

Dj×Πj

≤ cεjβ!

h
β

j

.

(2.53)

Let Pj,β = cEjβ!/h
β

j and Qj,β = cεjβ!/h
β

j . By Kδ
j ρ

τ+1+δ
j ≥ 1 and the definition of hj , we

have

Pj,β ≤ c

(
2(T0 + 1)

πα

)β

x
(τ+1+δ)β
j β!e−xj ,

≤ c

(
2(T0 + 1)

πα

)β(
x
β

j e
−κxj

)τ+1+δ
β!e−xj/2,

(2.54)

where κ = 1/2(τ + 1 + δ). It is easy to see that

x
β

j e
−κxj ≤ β!κ−β. (2.55)
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Thus, we have

Pj,β ≤ cMββ!τ+2+δE1/2
j , (2.56)

where M = 2τ+2+δ(T0 + 1)(τ + 1 + δ)τ+1+δ/πα, c depends on n, τ , and δ.
In the same way, we have

Qj,β ≤ cαMββ!τ+2+δE1/2
j ρτ+2j . (2.57)

Note that sj → s/2, rj → 0, hj → 0, as j → ∞. Let D∗ = D(s/2, 0), Π∗ = ∩j≥0Πj

and V∗ = limj→∞Vj . Since Vj is affine in η, these estimates (2.52)–(2.56) imply that ∂βpVj is

uniformly convergent to ∂
β
pV∗ on D(s/2, r/2) and satisfies

∥∥
∥W0∂

β
p(V∗ − id)

∥∥
∥
D(s/2,r/2)×Π∗

≤ cMββ!τ+2+δE1/2
0 . (2.58)

Since E0 = (10/(1 − σ))τ+1γ , this proves (1.13).
Let ω∗ = limj→∞ωj . It follows that

∣∣
∣∂

β
p

(
ω∗

(
p
) −ω

(
p
))∣∣
∣
Π∗

≤ cαMββ!τ+2+δE1/2
0 ρτ+20 . (2.59)

Moreover, we have |(kω∗(p)/2π) − l| ≥ α∗/|k|τ , ∀(k, l) ∈ � × � \ {0, 0}, ∀p ∈ Π∗, where
α∗ = limj→∞αj with α/2 ≤ α∗ ≤ α. Thus (1.15) and (1.16) hold.

Whitney Extension in Gevrey Classes

In this section, we apply the Whitney extension theorem in Gevrey classes [13, 17, 18] to
extend V∗ as a Gevrey function of the same Gevrey index in a neighborhood ofΠ∗.

Denote Sj = Vj − Vj−1, then for any positive integers β, γ , and m ∈ �+ with β ≤ m, we
denote

Rm
p′

(
∂
β
pSj

)(
ξ, η, p

)
:= ∂

β
pSj(ξ, η, p

) −
∑

β+γ≤m

(
p − p′

)γ
∂
β+γ
p Sj

(
ξ, η, p′

)

γ !
. (2.60)

In order to apply the Whitney extension theorem in Gevrey classes for function V∗, we are

going to estimateRm
p′ (∂

β
pSj)(ξ, 0, p). First, we suppose that |p−p′| ≤ hj/8, p, p′ ∈ Π∗. Expanding

in Πj the analytic function p → ∂
β
pSj(ξ, 0, p), ξ ∈ �

1, in Taylor series with respect to p at p′,
and using the Cauchy estimate, we evaluate

Lm
j,β :=

∥∥∥W0

(
Rm
p′∂

β
pSj

)(
ξ, 0, p

)∥∥∥, ξ ∈ �1, p, p′ ∈ Π∗. (2.61)
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For β ≤ m + 1, we have

(
β + γ

)
!

γ !
≤ 2β+γβ! ≤ 2β+γ

(m + 1)!
(
m − β + 1

)
!
. (2.62)

Then we obtain as above

Lm
j,β ≤

∑

β+γ≥m+1

∣∣p − p′
∣∣γ
∥∥
∥W0∂

β+γ
p Sj

(
ξ, 0, p′

)∥∥
∥

γ !

≤
∑

β+γ≥m+1

c
∣
∣p − p′

∣
∣γEj

(
β + γ

)
!2β+γ

γ !hβ+γ
j

≤ c(m + 1)!

∣
∣p − p′

∣
∣m−β+1

(
m − β + 1

)
!

4m+1Ej

hm+1
j

∑

β+γ≥m+1

(
4
∣∣p − p′

∣∣h−1
j

)β+γ−m−1

(2.63)

and we get

Lm
j,β ≤ c(m + 1)!

∣∣p − p′
∣∣m−β+1

(
m − β + 1

)
!

4m+1Ej

hm+1
j

≤ c(4M)m+1

∣
∣p − p′

∣
∣m−β+1

(
m − β + 1

)
!
(m + 1)!τ+2+δE1/2

j ,

(2.64)

whereM = 2τ+2+δ(T0 + 1)(τ + 1+ δ)τ+1+δ/πα, c depends on n, τ , and δ. Similarly, for |p− p′| ≥
hj/8, we obtain the same inequality.

Let Π∗ = ∩j≥0Πj and V∗ = limj→∞Vj . According to (2.64), the limit Rm
p′ (∂

β
pSj)(ξ, 0, p)

satisfies that

∥
∥∥W0R

m
p′∂

β
p(V∗ − id)

∥
∥∥
D(s/2,r/2)×Π∗

≤ c(4M)m+1

∣
∣p − p′

∣
∣m−β+1

(
m − β + 1

)
!
(m + 1)!τ+2+δE1/2

0 . (2.65)

Since V∗ satisfies (2.58) and (2.65), by Theorem 3.7 and Theorem 3.8 in [13], we can extend
V∗ as a Gevrey function of the same Gevrey index in a neighborhood of Π∗. Thus, by the
definition of Gevrey function in a closed set, V∗(x, z; p) ∈ G1,μ(D(s/2, r/2) ×Π∗), satisfies the
estimate (1.13) and (1.15) in a neighborhood ofΠ∗.
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Note that one can also use the inverse approximation lemma in [19] to prove the
preceding Whitney extension for V∗.

Estimates of Measure for Parameters

Now we estimate the Lebesgue measure of the set Π∗, on which the small divisors condition
holds in the KAM iteration. By the analyticity of ω(p) and ω(m)(0)/= 0, m > 1, for almost all
points in Π, ω(m)(p)/= 0. Without loss of generality, we suppose ω(m)(p)/= 0, ∀p ∈ Π. Then, by
the KAM step, we have

Π \Π∗ =
⋃

j≥0
R
j

k, (2.66)

where

R
j

k
=

{

p ∈ Πj−1 |
∣∣
∣∣∣
kωj

(
p
)

2π
− l

∣∣
∣∣∣
<

αj

|k|τ , ∀Kj−1 < |k| ≤ Kj

}

(2.67)

with K−1 = 0.
By Lemma A.2, we have

meas
(
R
j

k

)
≤ c

∑

Kj−1<|k|≤Kj

(
αj

|k|τ+1
)1/m

,

≤ cα1/m
∑

Kj−1<|k|≤Kj

1

|k|τ+1/m
.

(2.68)

Since τ > m − 1, we have

meas(Π \Π∗) ≤ cα1/m
∑

0/= k∈�

1

|k|(τ+1)/m
≤ cα1/m. (2.69)

Appendix

A. Some Results on Difference Equation and Measure Estimate

In this section, we formulate some lemmas which have been used in the previous section. For
detailed proofs, we refer to [1, 20].

In the construction of the transformation in Lemma 2.1, we will meet the following
difference equation:

l(x +ω) − l(x) = g(x). (A.1)
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LemmaA.1. Suppose that l(x), g(x) are real analytic onD(s), whereD(s) = {x ∈ �/2π� | | Imx| ≤
s}. Suppose ω satisfies the Diophantine condition |(kω/2π) − l| ≥ α/|k|τ , ∀(k, l) ∈ �× � \ {0, 0},
then for any 0 < s′ < s, the difference equation (A.1) has the unique solution l(x) ∈ D(s′) satisfying

‖l(x)‖s′ ≤
c

α(s − s′)τ+1
∥∥g(x)

∥∥
s. (A.2)

Moreover, if g(−x −ω) = g(x), then l(x) is odd in x if g(−x −ω) = −g(x), l(x) is even in x.

Lemma A.2. Suppose g(x) is mth differentiable function on the closure I of I, where I ⊂ � is an
interval. Let Ih = {x | |g(x)| < h, x ∈ I}, h > 0. If |g(m)(x)| ≥ d > 0 for all x ∈ I, where d is a
constant, then

meas(Ih) ≤ ch1/m, (A.3)

where c = 2(2 + 3 + · · · +m + d−1).
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