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The fuzzy stability problems for the Cauchy additive functional equation and the Jensen additive
functional equation in fuzzy Banach spaces have been investigated by Moslehian et al. In this
paper, we prove the generalized Hyers-Ulam stability of the following quadratic functional
equations f(x+y)+f(x−y) = 2f(x)+2f(y) and f(ax+by)+f(ax−by) = 2a2f(x)+2b2f(y) (a, b ∈
R\{0}, a /= ± 1) in fuzzy Banach spaces.

1. Introduction and Preliminaries

Katsaras [1] defined a fuzzy norm on a vector space to construct a fuzzy vector topological
structure on the space. Some mathematicians have defined fuzzy norms on a vector space
from various points of view [2–4]. In particular, Bag and Samanta [5], following Cheng and
Mordeson [6], gave an idea of fuzzy norm in such a manner that the corresponding fuzzy
metric is of Kramosil and Michálek type [7]. They established a decomposition theorem of a
fuzzy norm into a family of crisp norms and investigated some properties of fuzzy normed
spaces [8].

We use the definition of fuzzy normed spaces given in [5, 9, 10] to investigate a fuzzy
version of the generalized Hyers-Ulam stability for the quadratic functional equations
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(
x + y

)
+ f

(
x − y

)
= 2f(x) + 2f

(
y
)
, (1.1)

f
(
ax + by

)
+ f

(
ax − by

)
= 2a2f(x) + 2b2f

(
y
)

(1.2)

in the fuzzy normed vector space setting, where a, b are nonzero real numbers with a/= ± 1.
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Definition 1.1 (see [5, 9, 10]). Let X be a real vector space. A function N : X × R → [0, 1] is
called a fuzzy norm on X if, for all x, y ∈ X and all s, t ∈ R,

(N1) N(x, t) = 0 for t ≤ 0,

(N2) x = 0 if and only ifN(x, t) = 1 for all t > 0,

(N3) N(cx, t) = N(x, t/|c|) if c /= 0,

(N4) N(x + y, s + t) ≥ min{N(x, s),N(y, t)},
(N5) N(x, ·) is a nondecreasing function of R and limt→∞N(x, t) = 1,

(N6) for x /= 0, N(x, ·) is continuous on R.

The pair (X,N) is called a fuzzy normed vector space.
The properties of fuzzy normed vector spaces and examples of fuzzy norms are given

in [9, 10].

Definition 1.2 (see [5, 9, 10]). Let (X,N) be a fuzzy normed vector space. A sequence {xn} in
X is said to be convergent or converges if there exists an x ∈ X such that limn→∞N(xn −x, t) = 1
for all t > 0. In this case, x is called the limit of the sequence {xn} and we denote it by N-
limn→∞xn = x.

Definition 1.3 (see [5, 9, 10]). Let (X,N) be a fuzzy normed vector space. A sequence {xn} in
X is called Cauchy if for each ε > 0 and each t > 0 there exists an n0 ∈ N such that, for all
n ≥ n0 and all p > 0, we have N(xn+p − xn, t) > 1 − ε.

It is well known that every convergent sequence in a fuzzy normed vector space is
Cauchy. If each Cauchy sequence is convergent, then the fuzzy norm is said to be complete
and the fuzzy normed vector space is called a fuzzy Banach space.

We say that a mapping f : X → Y between fuzzy normed vector spaces X and Y is
continuous at a point x0 ∈ X if, for each sequence {xn} converging to x0 in X, the sequence
{f(xn)} converges to f(x0). If f : X → Y is continuous at each x ∈ X, then f : X → Y is said
to be continuous on X (see [8]).

The stability problem of functional equations is originated from a question of Ulam
[11] concerning the stability of group homomorphisms. Hyers [12] gave a first affirmative
partial answer to the question of Ulam for Banach spaces. Hyers’ theorem was generalized
by Aoki [13] for additive mappings and by Th. M. Rassias [14] for linear mappings by
considering an unbounded Cauchy difference. The paper of Th. M. Rassias [14] has provided
a lot of influence in the development of what we call generalized Hyers-Ulam stability of
functional equations. A generalization of the Th. M. Rassias theorem was obtained by
Găvruţa [15] by replacing the unbounded Cauchy difference by a general control function
in the spirit of Th. M. Rassias’ approach.

A square norm on an inner product space satisfies the parallelogram equality

∥∥x + y
∥∥2 +

∥∥x − y
∥∥2 = 2‖x‖2 + 2

∥∥y
∥∥2

. (1.3)

The functional equation

f
(
x + y

)
+ f

(
x − y

)
= 2f(x) + 2f

(
y
)

(1.4)
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is called a quadratic functional equation. In particular, every solution of the quadratic functional
equation is said to be a quadratic mapping. A generalized Hyers-Ulam stability problem for
the quadratic functional equation was proved by Skof [16] for mappings f : X → Y , where
X is a normed space and Y is a Banach space. Cholewa [17] noticed that the theorem of
Skof is still true if the relevant domain X is replaced by an Abelian group. In [18], Czerwik
proved the generalized Hyers-Ulam stability of the quadratic functional equation. During
the last two decades, a number of papers and research monographs have been published on
various generalizations and applications of the generalized Hyers-Ulam stability to a number
of functional equations and mappings (see [19–31]).

This paper is organized as follows. In Section 2, we prove the generalized Hyers-Ulam
stability of the quadratic functional equation (1.1) in fuzzy Banach spaces. In Section 3, we
prove the generalizedHyers-Ulam stability of the quadratic functional equation (1.2) in fuzzy
Banach spaces.

Throughout this paper, assume that X is a vector space and that (Y,N) is a fuzzy
Banach space. Let a, b be nonzero real numbers with a/= ± 1.

2. Generalized Hyers-Ulam Stability of the Quadratic
Functional Equation (1.1)

In this section, we prove the generalized Hyers-Ulam stability of the quadratic functional
equation (1.1) in fuzzy Banach spaces.

Theorem 2.1. Let ϕ : X2 → [0,∞) be a function such that

ϕ̃
(
x, y

)
:=

∞∑

n=0

4−nϕ
(
2nx, 2ny

)
< ∞ (2.1)

for all x, y ∈ X. Let f : X → Y be a mapping with f(0) = 0 such that

lim
t→∞

N
(
f
(
x + y

)
+ f

(
x − y

) − 2f(x) − 2f
(
y
)
, tϕ

(
x, y

))
= 1 (2.2)

uniformly on X × X. Then Q(x) := N-limn→∞(f(2nx)/4n) exists for each x ∈ X and defines a
quadratic mapping Q : X → Y such that if for some δ > 0, α > 0

N
(
f
(
x + y

)
+ f

(
x − y

) − 2f(x) − 2f
(
y
)
, δϕ

(
x, y

)) ≥ α (2.3)

for all x, y ∈ X, then

N

(
f(x) −Q(x),

δ

4
ϕ̃(x, x)

)
≥ α (2.4)

for all x ∈ X.
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Furthermore, the quadratic mapping Q : X → Y is a unique mapping such that

lim
t→∞

N
(
f(x) −Q(x), tϕ̃(x, x)

)
= 1 (2.5)

uniformly on X.

Proof. For a given ε > 0, by (2.2), we can find some t0 > 0 such that

N
(
f
(
x + y

)
+ f

(
x − y

) − 2f(x) − 2f
(
y
)
, tϕ

(
x, y

)) ≥ 1 − ε (2.6)

for all t ≥ t0. By induction on n, we show that

N

(

4nf(x) − f(2nx), t
n−1∑

k=0

4n−k−1ϕ
(
2kx, 2kx

))

≥ 1 − ε (2.7)

for all t ≥ t0, all x ∈ X, and all n ∈ N.
Letting y = x in (2.6), we get

N
(
4f(x) − f(2x), tϕ(x, x)

) ≥ 1 − ε (2.8)

for all x ∈ X and all t ≥ t0. So we get (2.7) for n = 1.
Assume that (2.7) holds for n ∈ N. Then

N

(

4n+1f(x) − f
(
2n+1x

)
, t

n∑

k=0

4n−kϕ
(
2kx, 2kx

))

≥ min

{

N

(

4n+1f(x) − 4f(2nx), t0
n−1∑

k=0

4n−kϕ
(
2kx, 2kx

))

,

N
(
4f(2nx) − f

(
2n+1x

)
, t0ϕ(2nx, 2nx)

)}

≥ min{1 − ε, 1 − ε} = 1 − ε.

(2.9)

This completes the induction argument. Letting t = t0 and replacing n and x by p and 2nx in
(2.7), respectively, we get

N

(
f(2nx)

4n
− f(2n+px)

4n+p
,

t0
4n+p

p−1∑

k=0

4p−k−1ϕ
(
2n+kx, 2n+kx

))

≥ 1 − ε (2.10)

for all integers n ≥ 0, p > 0.
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It follows from (2.1) and the equality

p−1∑

k=0

4−n−k−1ϕ
(
2n+kx, 2n+kx

)
=

1
4

n+p−1∑

k=n

4−kϕ
(
2kx, 2kx

)
(2.11)

that for a given δ > 0 there is an n0 ∈ N such that

t0
2

n+p−1∑

k=n

4−kϕ
(
2kx, 2kx

)
< δ (2.12)

for all n ≥ n0 and p > 0. Now we deduce from (2.10) that

N

(
f(2nx)

4n
− f(2n+px)

4n+p
, δ

)
≥ N

(
f(2nx)

4n
− f(2n+px)

4n+p
,

t0
4n+p

p−1∑

k=0

4p−k−1ϕ
(
2n+kx, 2n+kx

))

≥ 1 − ε

(2.13)

for all n ≥ n0 and all p > 0. Thus the sequence {f(2nx)/4n} is Cauchy in Y . Since Y is a fuzzy
Banach space, the sequence {f(2nx)/4n} converges to some Q(x) ∈ Y . So we can define a
mapping Q : X → Y by Q(x) := N-limn→∞(f(2nx)/4n); namely, for each t > 0 and x ∈ X,
limn→∞N(f(2nx)/4n −Q(x), t) = 1.

Let x, y ∈ X. Fix t > 0 and 0 < ε < 1. Since limn→∞4−nϕ(2nx, 2ny) = 0, there is an
n1 > n0 such that t0ϕ(2nx, 2ny) < 4nt/4 for all n ≥ n1. Hence for all n ≥ n1, we have

N
(
Q
(
x + y

)
+Q

(
x − y

) − 2Q(x) − 2Q
(
y
)
, t
)

≥ min
{
N

(
Q
(
x + y

) − 4−nf
(
2nx + 2ny

)
,
t

8

)
, N

(
Q
(
x − y

) − 4−nf
(
2nx − 2ny

)
,
t

8

)
,

N

(
2Q(x) − 4−n · 2f(2nx), t

4

)
,N

(
2Q

(
y
) − 4−n · 2f(2ny), t

4

)
,

N

(
f
(
2n
(
x + y

)) − f
(
2n
(
x − y

)) − 2f(2nx) − 2f
(
2ny

)
,
4nt
4

)}
.

(2.14)

The first four terms on the right-hand side of the above inequality tend to 1 as n → ∞, and
the fifth term is greater than

N
(
f
(
2n
(
x + y

))
+ f

(
2n
(
x − y

)) − 2f(2nx) − 2f
(
2ny

)
, t0ϕ

(
2nx, 2ny

))
, (2.15)

which is greater than or equal to 1 − ε. Thus

N
(
Q
(
x + y

)
+Q

(
x − y

) − 2Q(x) − 2Q
(
y
)
, t
) ≥ 1 − ε (2.16)
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for all t > 0. Since N(Q(x + y) + Q(x − y) − 2Q(x) − 2Q(y), t) = 1 for all t > 0, by (N2),
Q(x + y) + Q(x − y) − 2Q(x) − 2Q(y) = 0 for all x ∈ X. Thus the mapping Q : X → Y is
quadratic, that is, Q(x + y) +Q(x − y) = 2Q(x) + 2Q(y) for all x, y ∈ X.

Now let, for some positive δ and α, (2.3) hold. Let

ϕn

(
x, y

)
:=

n−1∑

k=0

4−k−1ϕ
(
2nx, 2ny

)
(2.17)

for all x, y ∈ X. Let x ∈ X. By the same reasoning as in the beginning of the proof, one can
deduce from (2.3) that

N

(

4nf(x) − f(2nx), δ
n−1∑

k=0

4n−k−1ϕ
(
2kx, 2kx

))

≥ α (2.18)

for all positive integers n. Let t > 0. We have

N
(
f(x)−Q(x), δϕn(x, x) + t

) ≥ min
{
N

(
f(x) − f(2nx)

4n
, δϕn(x, x)

)
,N

(
f(2nx)

4n
−Q(x), t

)}
.

(2.19)

Combining (2.18) and (2.19) and the fact that limn→∞N(f(2nx)/4n −Q(x), t) = 1, we observe
that

N
(
f(x) −Q(x), δϕn(x, x) + t

) ≥ α (2.20)

for large enough n ∈ N. Thanks to the continuity of the function N(f(x) − Q(x), ·), we see
that N(f(x) −Q(x), (δ/4)ϕ̃(x, x) + t) ≥ α. Letting t → 0, we conclude that

N

(
f(x) −Q(x),

δ

4
ϕ̃(x, x)

)
≥ α. (2.21)

To end the proof, it remains to prove the uniqueness assertion. Let T be another
quadratic mapping satisfying (2.5). Fix c > 0. Given that ε > 0, by (2.5) for Q and T , we
can find some t0 > 0 such that

N

(
f(x) −Q(x),

t

2
ϕ̃(x, x)

)
≥ 1 − ε,

N

(
f(x) − T(x),

t

2
ϕ̃(x, x)

)
≥ 1 − ε

(2.22)

for all x ∈ X and all t ≥ 2t0. Fix some x ∈ X and find some integer n0 such that

t0
∞∑

k=n

4−kϕ
(
2kx, 2kx

)
<

c

2 (2.23)
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for all n ≥ n0. Since

∞∑

k=n

4−kϕ
(
2kx, 2kx

)
=

1
4n

∞∑

k=n

4−(k−n)ϕ
(
2k−n(2nx), 2k−n(2nx)

)

=
1
4n

∞∑

m=0

4−mϕ(2m(2nx), 2m(2nx))

=
1
4n

ϕ̃(2nx, 2nx),

(2.24)

we have

N(Q(x) − T(x), c)

≥ min
{
N

(
f(2nx)

4n
−Q(x),

c

2

)
,N

(
T(x) − f(2nx)

4n
,
c

2

)}

= min
{
N
(
f(2nx) −Q(2nx), 4n−12c

)
,N

(
T(2nx) − f(2nx), 4n−12c

)}

≥ min

{

N

(

f(2nx) −Q(2nx), 4nt0
∞∑

k=n

4−kϕ
(
2kx, 2kx

))

,

N

(

T(2nx) − f(2nx), 4nt0
∞∑

k=n

4−kϕ
(
2kx, 2kx

))}

= min
{
N
(
f(2nx) −Q(2nx), t0ϕ̃(2nx, 2nx)

)
,N

(
T(2nx) − f(2nx), t0ϕ̃(2nx, 2nx)

)}

≥ 1 − ε.

(2.25)

It follows that N(Q(x) − T(x), c) = 1 for all c > 0. Thus Q(x) = T(x) for all x ∈ X.

Corollary 2.2. Let θ ≥ 0 and let p be a real number with 0 < p < 2. Let f : X → Y be a mapping
with f(0) = 0 such that

lim
t→∞

N
(
f
(
x + y

)
+ f

(
x − y

) − 2f(x) − 2f
(
y
)
, tθ

(‖x‖p + ‖y‖p)) = 1 (2.26)

uniformly on X × X. Then Q(x) := N-limn→∞(f(2nx)/4n) exists for each x ∈ X and defines a
quadratic mapping Q : X → Y such that if for some δ > 0, α > 0

N
(
f
(
x + y

)
+ f

(
x − y

) − 2f(x) − 2f
(
y
)
, δθ

(‖x‖p + ‖y‖p)) ≥ α (2.27)

for all x, y ∈ X, then

N

(
f(x) −Q(x),

2δθ
4 − 2p

‖x‖p
)

≥ α (2.28)

for all x ∈ X.
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Furthermore, the quadratic mapping Q : X → Y is a unique mapping such that

lim
t→∞

N

(
f(x) −Q(x),

8
4 − 2p

tθ‖x‖p
)

= 1 (2.29)

uniformly on X.

Proof. Define ϕ(x, y) := θ(‖x‖p + ‖y‖p) and apply Theorem 2.1 to get the result.

Similarly, we can obtain the following. We will omit the proof.

Theorem 2.3. Let ϕ : X2 → [0,∞) be a function such that

ϕ̃
(
x, y

)
:=

∞∑

n=1

4nϕ
( x

2n
,
y

2n
)
< ∞ (2.30)

for all x, y ∈ X. Let f : X → Y be a mapping satisfying (2.2) and f(0) = 0. Then Q(x) := N-
limn→∞4nf(x/2n) exists for each x ∈ X and defines a quadratic mapping Q : X → Y such that if
for some δ > 0, α > 0

N
(
f
(
x + y

)
+ f

(
x − y

) − 2f(x) − 2f
(
y
)
, δϕ

(
x, y

)) ≥ α (2.31)

for all x, y ∈ X, then

N

(
f(x) −Q(x),

δ

4
ϕ̃(x, x)

)
≥ α (2.32)

for all x ∈ X.
Furthermore, the quadratic mapping Q : X → Y is a unique mapping such that

lim
t→∞

N
(
f(x) −Q(x), tϕ̃(x, x)

)
= 1 (2.33)

uniformly on X.

Corollary 2.4. Let θ ≥ 0 and let p be a real number with p > 2. Let f : X → Y be a mapping
satisfying (2.26) and f(0) = 0. Then Q(x) := N-limn→∞4nf(x/2n) exists for each x ∈ X and
defines a quadratic mapping Q : X → Y such that if for some δ > 0, α > 0

N
(
f
(
x + y

)
+ f

(
x − y

) − 2f(x) − 2f
(
y
)
, δθ

(‖x‖p + ∥∥y
∥∥p)) ≥ α (2.34)

for all x, y ∈ X, then

N

(
f(x) −Q(x),

2δθ
2p − 4

‖x‖p
)

≥ α (2.35)

for all x ∈ X.



Advances in Difference Equations 9

Furthermore, the quadratic mapping Q : X → Y is a unique mapping such that

lim
t→∞

N

(
f(x) −Q(x),

8
2p − 4

tθ‖x‖p
)

= 1 (2.36)

uniformly on X.

Proof. Define ϕ(x, y) := θ(‖x‖p + ‖y‖p) and apply Theorem 2.3 to get the result.

3. Generalized Hyers-Ulam Stability of the Quadratic
Functional Equation (1.2)

In this section, we prove the generalized Hyers-Ulam stability of the quadratic functional
equation (1.2) in fuzzy Banach spaces.

Lemma 3.1. Let V and W be real vector spaces. If a mapping f : V → W satisfies f(0) = 0 and

f
(
ax + by

)
+ f

(
ax − by

)
= 2a2f(x) + 2b2f

(
y
)

(3.1)

for all x, y ∈ V , then the mapping f : V → W is quadratic, that is,

f
(
x + y

)
+ f

(
x − y

)
= 2f(x) + 2f

(
y
)

(3.2)

for all x, y ∈ V .

Proof. Assume that f : V → W satisfies (3.1).
Letting y = 0 in (3.1), we get

2f(ax) = 2a2f(x) (3.3)

for all x ∈ V .
Letting x = 0 in (3.1), we get

f
(
by

)
+ f

(−by) = 2b2f
(
y
)

(3.4)

for all y ∈ V . Replacing y by −y in (3.4), we get

f
(−by) + f

(
by

)
= 2b2f

(−y) (3.5)

for all y ∈ V . It follows from (3.4) and (3.5) that f(−y) = f(y) for all y ∈ V . So

2f
(
by

)
= 2b2f

(
y
)

(3.6)
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for all y ∈ V . Thus

f
(
ax + by

)
+ f

(
ax − by

)
= 2a2f(x) + 2b2f

(
y
)
= 2f(ax) + 2f

(
by

)
(3.7)

for all x, y ∈ V . Replacing ax and by by z and w in (3.7), respectively, we get

f(z +w) + f(z −w) = 2f(z) + 2f(w) (3.8)

for all z,w ∈ V , as desired.

Theorem 3.2. Let ϕ : X2 → [0,∞) be a function such that

ϕ̃(x, 0) :=
∞∑

n=0

a−2nϕ(anx, 0) < ∞ (3.9)

for all x ∈ X. Let f : X → Y be a mapping with f(0) = 0 such that

lim
t→∞

N
(
f
(
ax + by

)
+ f

(
ax − by

) − 2a2f(x) − 2b2f
(
y
)
, tϕ

(
x, y

))
= 1 (3.10)

uniformly on X × X. Then Q(x) := N-limn→∞(f(anx)/a2n) exists for each x ∈ X and defines a
quadratic mapping Q : X → Y such that if for some δ > 0, α > 0

N
(
f
(
ax + by

)
+ f

(
ax − by

) − 2a2f(x) − 2b2f
(
y
)
, δϕ

(
x, y

)) ≥ α (3.11)

for all x, y ∈ X, then

N

(
f(x) −Q(x),

δ

a2
ϕ̃(x, 0)

)
≥ α (3.12)

for all x ∈ X.
Furthermore, the quadratic mapping Q : X → Y is a unique mapping such that

lim
t→∞

N
(
f(x) −Q(x), tϕ̃(x, 0)

)
= 1 (3.13)

uniformly on X.

Proof. For a given ε > 0, by (3.10), we can find some t0 > 0 such that

N
(
f
(
ax + by

)
+ f

(
ax − by

) − 2a2f(x) − 2b2f
(
y
)
, tϕ

(
x, y

)) ≥ 1 − ε (3.14)
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for all t ≥ 2t0. By induction on n, we show that

N

(

a2nf(x) − f(anx),
t

2

n−1∑

k=0

a2n−2k−2ϕ
(
akx, 0

))

≥ 1 − ε (3.15)

for all t ≥ 2t0, all x ∈ X, and all n ∈ N.
Letting y = 0 in (3.14), we get

N
(
2f(ax) − 2a2f(x), tϕ(x, 0)

)
≥ 1 − ε (3.16)

for all x ∈ X and all t ≥ 2t0. So we get (3.15) for n = 1.
Assume that (3.15) holds for n ∈ N. Then

N

(

a2n+2f(x) − f
(
an+1x

)
,
t

2

n∑

k=0

a2n−2kϕ
(
akx, 0

))

≥ min

{

N

(

a2n+2f(x) − a2f(anx), t0
n−1∑

k=0

a2n−2kϕ(anx, 0)

)

,

N
(
a2f(anx) − f

(
an+1x

)
, t0ϕ(anx, 0)

)}

≥ min{1 − ε, 1 − ε} = 1 − ε.

(3.17)

This completes the induction argument. Letting t = t0 and replacing n and x by p and anx in
(3.15), respectively, we get

N

(
f(anx)
a2n

− f(an+px)
a2n+2p

,
t0

a2n+2p

p−1∑

k=0

a2p−2k−2ϕ
(
an+kx, 0

))

≥ 1 − ε (3.18)

for all integers n ≥ 0, p > 0.
It follows from (3.9) and the equality

p−1∑

k=0

a−2n−2k−2ϕ
(
an+kx, 0

)
=

1
a2

n+p−1∑

k=n

a−2kϕ
(
akx, 0

)
(3.19)

that for a given δ > 0 there is an n0 ∈ N such that

t0
a2

n+p−1∑

k=n

a−2kϕ
(
akx, 0

)
< δ (3.20)



12 Advances in Difference Equations

for all n ≥ n0 and p > 0. Now we deduce from (3.18) that

N

(
f(anx)
a2n

− f(an+px)
a2n+2p

, δ

)
≥ N

(
f(anx)
a2n

− f(an+px)
a2n+2p

,
t0

a2n+2p

p−1∑

k=0

a2p−2k−2ϕ
(
an+kx, 0

))

≥ 1 − ε

(3.21)

for each n ≥ n0 and all p > 0. Thus the sequence {f(anx)/a2n} is Cauchy in Y . Since Y is
a fuzzy Banach space, the sequence {f(anx)/a2n} converges to some Q(x) ∈ Y . So we can
define a mapping Q : X → Y by Q(x) := N-limn→∞(f(anx)/a2n); namely, for each t > 0 and
x ∈ X, limn→∞N(f(anx)/a2n −Q(x), t) = 1.

Let x, y ∈ X. Fix t > 0 and 0 < ε < 1. Since limn→∞a−2nϕ(anx, 0) = 0, there is an n1 > n0

such that t0ϕ(anx, 0) < a2nt/4 for all n ≥ n1. Hence for each n ≥ n1, we have

N
(
Q
(
ax + by

)
+Q

(
ax − by

) − 2a2Q(x) − 2b2Q
(
y
)
, t
)

≥ min
{
N

(
Q
(
ax + by

) − a−2nf
(
an · ax + anby

)
,
t

8

)
,

N

(
Q
(
ax − by

) − a−2nf
(
an · ax − anby

)
,
t

8

)
,

N

(
2a2Q(x) − a−2n · 2a2f(anx),

t

4

)
,N

(
2b2Q

(
y
) − a−2n · 2b2f(any

)
,
t

4

)
,

N

(

f
(
an(ax + by

)) − f
(
an(ax − by

)) − 2a2f(anx) − 2b2f
(
any

)
,
a2nt

4

)}

.

(3.22)

The first four terms on the right-hand side of the above inequality tend to 1 as n → ∞, and
the fifth term is greater than

N
(
f
(
an(ax + by

))
+ f

(
an(ax − by

)) − 2a2f(anx) − 2b2f
(
any

)
, t0ϕ(anx, 0)

)
, (3.23)

which is greater than or equal to 1 − ε. Thus

N
(
Q
(
ax + by

)
+Q

(
ax − by

) − 2a2Q(x) − 2b2Q
(
y
)
, t
)
≥ 1 − ε (3.24)

for all t > 0. SinceN(Q(ax+by)+Q(ax−by)−2a2Q(x)−2b2Q(y), t) = 1 for all t > 0, by (N2),
Q(ax + by) +Q(ax − by) − 2a2Q(x) − 2b2Q(y) = 0 for all x ∈ X. By Lemma 3.1, the mapping
Q : X → Y is quadratic.

Now let, for some positive δ and α, (3.18) hold. Let

ϕn(x, 0) :=
n−1∑

k=0

a−2k−2ϕ
(
akx, 0

)
(3.25)
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for all x ∈ X. Let x ∈ X. By the same reasoning as in the beginning of the proof, one can
deduce from (3.18) that

N

(

a2nf(x) − f(anx), δ
n−1∑

k=0

a2n−2k−2ϕ
(
akx, 0

))

≥ α (3.26)

for all positive integers n. Let t > 0. We have

N
(
f(x)−Q(x), δϕn(x, 0) + t

) ≥ min
{
N

(
f(x) − f(anx)

a2n
, δϕn(x, 0)

)
,N

(
f(anx)
a2n

−Q(x), t
)}

.

(3.27)

Combining (3.26) and (3.27) and the fact that limn→∞N(f(anx)/a2n−Q(x), t) = 1, we observe
that

N
(
f(x) −Q(x), δϕn(x, 0) + t

) ≥ α (3.28)

for large enough n ∈ N. Thanks to the continuity of the function N(f(x) − Q(x), ·), we see
that N(f(x) −Q(x), (δ/a2)ϕ̃(x, 0) + t) ≥ α. Letting t → 0, we conclude that

N

(
f(x) −Q(x),

δ

a2
ϕ̃(x, 0)

)
≥ α. (3.29)

To end the proof, it remains to prove the uniqueness assertion. Let T be another
quadratic mapping satisfying (3.1) and (3.13). Fix c > 0. Given that ε > 0, by (3.13) for Q
and T , we can find some t0 > 0 such that

N

(
f(x) −Q(x),

t

2
ϕ̃(x, 0)

)
≥ 1 − ε,

N

(
f(x) − T(x),

t

2
ϕ̃(x, 0)

)
≥ 1 − ε

(3.30)

for all x ∈ X and all t ≥ 2t0. Fix some x ∈ X and find some integer n0 such that

t0
∞∑

k=n

a−2kϕ
(
akx, 0

)
<

c

2 (3.31)
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for all n ≥ n0. Since

∞∑

k=n

a−2kϕ
(
akx, 0

)
=

1
a2n

∞∑

k=n

a−2(k−n)ϕ
(
ak−n(anx), 0

)

=
1
a2n

∞∑

m=0

a−2mϕ(am(anx), 0)

=
1
a2n

ϕ̃(anx, 0),

(3.32)

we have

N(Q(x) − T(x), c)

≥ min
{
N

(
f(anx)
a2n

−Q(x),
c

2

)
,N

(
T(x) − f(anx)

a2n
,
c

2

)}

= min
{
N
(
f(anx) −Q(anx), a2n−22c

)
,N

(
T(anx) − f(anx), a2n−22c

)}

≥ min

{

N

(

f(anx) −Q(anx), a2nt0
∞∑

k=n

a−2kϕ
(
akx, 0

))

,

N

(

T(anx) − f(anx), a2nt0
∞∑

k=n

a−2kϕ
(
akx, 0

))}

= min
{
N
(
f(anx) −Q(anx), t0ϕ̃(anx, 0)

)
,N

(
T(anx) − f(anx), t0ϕ̃(anx, 0)

)}

≥ 1 − ε.

(3.33)

It follows that N(Q(x) − T(x), c) = 1 for all c > 0. Thus Q(x) = T(x) for all x ∈ X.

Corollary 3.3. Let θ ≥ 0 and let p be a real number with 0 < p < 2 if |a| > 1 and with p > 2 if |a| < 1.
Let f : X → Y be a mapping with f(0) = 0 such that

lim
t→∞

N
(
f
(
ax + by

)
+ f

(
ax − by

) − 2a2f(x) − 2b2f
(
y
)
, tθ

(‖x‖p + ‖y‖p)
)
= 1 (3.34)

uniformly on X × X. Then Q(x) := N-limn→∞(f(anx)/a2n) exists for each x ∈ X and defines a
quadratic mapping Q : X → Y such that if for some δ > 0, α > 0

N
(
f
(
ax + by

)
+ f

(
ax − by

) − 2a2f(x) − 2b2f
(
y
)
, δθ

(‖x‖p + ‖y‖p)
)
≥ α (3.35)

for all x, y ∈ X, then

N

(
f(x) −Q(x),

δθ

a2 − |a|p ‖x‖
p
)

≥ α (3.36)

for all x ∈ X.
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Furthermore, the quadratic mapping Q : X → Y is a unique mapping such that

lim
t→∞

N

(

f(x) −Q(x),
a2

a2 − |a|p tθ‖x‖
p

)

= 1 (3.37)

uniformly on X.

Proof. Define ϕ(x, y) := θ(‖x‖p + ‖y‖p) and apply Theorem 3.2 to get the result.
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Universitatis Babeş-Bolyai. Mathematica, vol. 43, no. 3, pp. 89–124, 1998.

[25] Th. M. Rassias, “The problem of S. M. Ulam for approximately multiplicative mappings,” Journal of
Mathematical Analysis and Applications, vol. 246, no. 2, pp. 352–378, 2000.

[26] Th. M. Rassias, “On the stability of functional equations in Banach spaces,” Journal of Mathematical
Analysis and Applications, vol. 251, no. 1, pp. 264–284, 2000.

[27] Th. M. Rassias, “On the stability of functional equations and a problem of Ulam,” Acta Applicandae
Mathematicae, vol. 62, no. 1, pp. 23–130, 2000.

[28] Th. M. Rassias, “Problem 16; 2, report of the 27th International Symposium on Functional Equations,”
Aequationes Mathematicae, vol. 39, pp. 292–293, 1990.
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