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We give a new construction of the q-extensions of Euler numbers and polynomials.We present new
generating functions which are related to the q-Euler numbers and polynomials. We also consider
the generalized q-Euler polynomials attached to Dirichlet’s character χ and have the generating
functions of them. We obtain distribution relations for the q-Euler polynomials and have some
identities involving q-Euler numbers and polynomials. Finally, we derive the q-extensions of zeta
functions from the Mellin transformation of these generating functions, which interpolate the q-
Euler polynomials at negative integers.

1. Introduction

Let C be the complex number field. We assume that q ∈ C with |q| < 1 and that the q-number
is defined by [x]q = (1 − qx)/(1 − q) in this paper.

Recently, many mathematicians have studied for q-Euler and q-Bernoulli polynomials
and numbers (see [1–18]). Specially, there are papers for the q-extensions of Euler
polynomials and numbers approaching with two kinds of viewpoint among remarkable
papers (see [7, 10]). It is known that the Euler polynomials are defined by (2/(et + 1))ext =
∑∞

n=0 En(x)(tn/n!), for |t| < π , and En = En(0) are called the nth Euler numbers. The
recurrence formula for the original Euler numbers En is as follows:

E0 = 1, (E + 1)n + En = 0, if n > 0 (1.1)
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see [7, 10]. As for the q-extension of the recurrence formula for the Euler numbers, Kim [10]
had the following recurrence formula:

E∗
0,q =

[2]q
2

, and
(
qE∗ + 1

)n + E∗
n,q =

⎧
⎨

⎩

[2]q if n = 0,

0 if n ≥ 1,
(1.2)

with the usual convention of replacing (E∗)n by E∗
n,q. Many researchers have made a wider

and deeper study of the q-number up to recently (see [1–18]). In the field of number theory
and mathematical physics, zeta functions and l-functions interpolating these numbers in
negative integers have been studied by Cenkci and Can [3], Kim [4–12], and Ozden et al.
[16–18].

This research for q-Euler numbers seems to be motivated by Carlitz who had
constructed the q-Bernoulli numbers and polynomials for the first time. In [1, 2], Carlitz
considered the recurrence formulae for the q-extension of the Bernoulli numbers as follows:

B0,q = 1,
(
qB + 1

)k − Bk,q =

⎧
⎨

⎩

1 if k = 1,

0 if k > 1,
(1.3)

with the usual convention of replacing Bk by Bk,q. These numbers diverge when q = 1, and so
Carlitz modified and constructed them as following:

β0,q = 1, q
(
qβ + 1

)k − βk,q =

⎧
⎨

⎩

1 if k = 1,

0 if k > 1,
(1.4)

with the usual convention of replacing βk by βk,q. From this, it was shown that limq→ 1βk,q =
Bk. Here Bk are the Bernoulli numbers.

Lately, Carlitz’s q-Bernoulli numbers have been studied actively by many mathemati-
cians in the field of number theory, discrete mathematics, analysis, mathematical physics, and
so on (see [3–18]).

The purpose of this paper is to give a new construction of the q-extensions of
Euler numbers and polynomials. It is expected that new constructed q-Euler numbers and
polynomials in this paper are more useful to be applied to various areas related to number
theory. In this paper, we present new generating functions which are related to q-Euler
numbers and polynomials. We also consider the generalized q-Euler polynomials attached to
Dirichlet’s character χwith an odd conductor and have the generating functions of them. We
obtain distribution relations for the q-Euler polynomials, and have some identities involving
the q-Euler numbers and polynomials. Finally, we derive the q-extensions of zeta functions
from the Mellin transformation of these generating functions. Using the Cauchy residue
theorem and Laurent series, we show that these q-extensions of zeta functions interpolate
the q-Euler polynomials at negative integers.
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2. New Approach to q-Euler Numbers and Polynomials

Let N be the set of natural numbers and Z+ = N ∪ {0}. For q ∈ C with |q| < 1, let us define the
q-Euler polynomials En,q(x) as follows:

Fq(t, x) = 2
∞∑

m=0
(−1)me[m+x]qt =

∞∑

n=0

En,q(x)
tn

n!
· (2.1)

Note that

lim
q→ 1

Fq(t, x) =
2

et + 1
ext =

∞∑

n=0

En(x)
tn

n!
, for |t| < π, (2.2)

where En(x) are called the nth Euler polynomials. In the special case x = 0, En,q(= En,q(0)) are
called the nth q-Euler numbers. That is,

Fq(t) = Fq(t, 0) = 2
∞∑

m=0
(−1)me[m]qt =

∞∑

n=0

En,q
tn

n!
· (2.3)

From (2.1) and (2.3), we note that

Fq(t, 1) + Fq(t) = etFq

(
qt
)
+ Fq(t)

=

( ∞∑

l=0

tl

l!

)( ∞∑

m=0

qmEm,q
tm

m!

)

+
∞∑

n=0

En,q
tn

n!

=
∞∑

n=0
n=l+m

(
n∑

l=0

n!qlEl,q

l!(n − l)!

)
tn

n!
+

∞∑

n=0

En,q
tn

n!

=
∞∑

n=0

(
n∑

l=0

(
n

l

)

qlEl,q

)
tn

n!
+

∞∑

n=0

En,q
tn

n!
.

(2.4)

From (2.1) and (2.3), we can easily derive the following equation:

Fq(t, 1) + Fq(t) = 2. (2.5)

By (2.4) and (2.5), we see that E0,q = 1 and

n∑

l=0

(
n

l

)

qlEl,q + En,q =

⎧
⎨

⎩

2 if n = 0,

0 if n > 0.
(2.6)

Therefore, we obtain the following theorem.
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Theorem 2.1. For n ∈ Z+, one has

E0,q = 1,
(
qE + 1

)n + En,q =

⎧
⎨

⎩

2 if n = 0,

0 if n > 0,
(2.7)

with the usual convention of replacing Ei by Ei,q.

Theorem 2.1 of this paper seems to be more interesting and valuable than the q-Euler
numbers which are introduced in [7, 10].

From (2.1), we note that

Fq(t, x) = e[x]qtFq

(
qxt
)
=

∞∑

n=0

(
n∑

l=0

(
n

l

)

qlx[x]n−lq El,q

)
tn

n!
. (2.8)

Therefore, we obtain the following theorem.

Theorem 2.2. For n ∈ Z+, one has

En,q(x) =
n∑

l=0

(
n

l

)

[x]n−lq qlxEl,q. (2.9)

By (2.1), we see that

Fq(t, x) =
∞∑

n=0

(

2
∞∑

m=0
(−1)m[m + x]nq

)
tn

n!

=
∞∑

n=0

(
2

(
1 − q

)n

n∑

l=0

(
n

l

)

(−1)lqlx 1
1 + ql

)
tn

n!
.

(2.10)

By (2.1) and (2.10), we obtain the following theorem.

Theorem 2.3. For n ∈ Z+, one has

En,q(x) =
2

(
1 − q

)n

n∑

l=0

(
n

l

)

(−1)lqlx 1
1 + ql

. (2.11)

From (2.1), we can derive that, for f ∈ N with f ≡ 1 (mod2),

Fq(t, x) =
f−1∑

a=0
(−1)aFqf

(

t
[
f
]
q,
x + a

f

)

· (2.12)
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By (2.12), we see that, for f ∈ N with f ≡ 1 (mod2),

∞∑

n=0

En,q(x)
tn

n!
=

∞∑

n=0

⎛

⎝
[
f
]n
q

f−1∑

a=0
(−1)aEn,qf

(
x + a

f

)
⎞

⎠ tn

n!
. (2.13)

Therefore, we obtain the following theorem.

Theorem 2.4 (Distribution relation for En,q(x)). For n ∈ Z+, f ∈ N with f ≡ 1 (mod2), one has

En,q(x) =
[
f
]n
q

f−1∑

a=0
(−1)aEn,qf

(
x + a

f

)

. (2.14)

By (2.1), we observe the following equations:

Fq(t, n) + Fq(t) = 2
n−1∑

l=0

(−1)le[l]qt if n = odd,

Fq(t, n) − Fq(t) = 2
n−1∑

l=0

(−1)l−1e[l]qt if n = even.

(2.15)

By (2.15), we obtain the following result.

Theorem 2.5. Let n ∈ N with n ≡ 1 (mod2). Then one has

Em,q(n) + Em,q = 2
n−1∑

l=0

(−1)l[l]mq , (2.16)

wherem ∈ Z+.

Let χ be Dirichlet’s character with an odd conductor f ∈ N. Then we define the
generalized q-Euler polynomials attached to χ as follows:

Fq,χ(t, x) = 2
∞∑

m=0

χ(m)(−1)me[m+x]qt

=
∞∑

n=0

En,χ,q(x)
tn

n!
.

(2.17)
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In the special case x = 0, En,χ,q(= En,χ,q(0)) are called the nth generalized q-Euler numbers
attached to χ. Thus the generating functions of the generalized q-Euler numbers attached to
χ are as follows:

Fq,χ(t) = 2
∞∑

m=0

χ(m)(−1)me[m]qt

=
∞∑

n=0

En,χ,q
tn

n!
.

(2.18)

By (2.1) and (2.17), we see that

Fq,χ(t, x) =
f−1∑

a=0
(−1)aχ(a)Fqf

(

t
[
f
]
q,
x + a

f

)

=
∞∑

n=0

⎛

⎝
[
f
]n
q

f−1∑

a=0
(−1)aχ(a)En,qf

(
x + a

f

)
⎞

⎠ tn

n!
.

(2.19)

Therefore, we obtain the following theorem.

Theorem 2.6. For n ∈ Z+, f ∈ N with f ≡ 1 (mod2), one has

En,χ,q(x) =
[
f
]n
q

f−1∑

a=0
(−1)aχ(a)En,qf

(
x + a

f

)

. (2.20)

By (2.17) and (2.18), we see that

Fq,χ(t, x) = e[x]qtFq,χ

(
qxt
)
=

∞∑

n=0

(
n∑

l=0

(
n

l

)

qlx[x]n−lq El,χ,q

)
tn

n!
. (2.21)

Hence

En,χ,q(x) =
n∑

l=0

(
n

l

)

qlx[x]n−lq El,χ,q. (2.22)

From (2.17), we note that

Fq,χ(t, x) =
∞∑

n=0

⎛

⎜
⎝

2
(
1 − q

)n

f−1∑

a=0
(−1)aχ(a)

n∑

l=0

(
n

l

)
(−1)lql(x+a)

1 + qlf

⎞

⎟
⎠

tn

n!
. (2.23)
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From (2.17) and (2.23), we have

En,χ,q(x) =
2

(
1 − q

)n

f−1∑

a=0
(−1)aχ(a)

n∑

l=0

(
n

l

)
(−1)lql(x+a)

1 + qlf

= 2
∞∑

m=0

χ(m)(−1)m[m + x]nq .

(2.24)

In (2.19), it is easy to show that

lim
q→ 1

Fq,χ(t, x) =

⎛

⎝
2
∑f−1

a=0 (−1)aχ(a)eat
eft + 1

⎞

⎠ext =
∞∑

n=0

En,χ(x)
tn

n!
, (2.25)

where En,χ(x) are called the nth generalized Euler polynomials attached to χ.
For s ∈ C, we now consider the Mellin transformation for the generating function of

Fq(t, x). That is,

1
Γ(s)

∫∞

0
Fq(−t, x)ts−1dt = 2

∞∑

n=0

(−1)n
[n + x]sq

, (2.26)

for s ∈ C, and x /= 0,−1,−2, . . . .
From (2.26), we define the zeta function as follows:

ζ∗(s, x) =
∞∑

n=0

(−1)n
[n + x]sq

, s ∈ C, x /= 0,−1,−2, . . . . (2.27)

Note that ζ∗(s, x) is analytic function in whole complex s-plane. Using the Laurent series and
the Cauchy residue theorem, we have

ζ∗(−n, x) = En,q(x), for n ∈ Z+. (2.28)

By the same method, we can also obtain the following equation:

1
Γ(s)

∫∞

0
Fq,χ(−t, x)ts−1dt = 2

∞∑

n=0

χ(n)(−1)n
[n + x]sq

. (2.29)

For s ∈ C, we define Dirichlet type q-l-function as

lq
(
s, x | χ) = 2

∞∑

n=0

χ(n)(−1)n
[n + x]sq

, (2.30)
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where x /= 0,−1,−2, . . . . Note that lq(s, x | χ) is also holomorphic function in whole complex
s-plane. From the Laurent series and the Cauchy residue theorem, we can also derive the
following equation:

lq
(−n, x | χ) = En,χ,q(x), for n ∈ Z+. (2.31)

Remark 2.7. It is easy to see that

En,q(x) =
∫

Zp

[
x + y

]n
qdμ−1

(
y
)
,

En,X,q(x) =
∫

X

[
x + y

]n
qX
(
y
)
dμ−1

(
y
)
,

(2.32)

see [19, Lemma 1].
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