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Let R+ be the set of positive real numbers, B a Banach space, f : R+ → B, and ε > 0, p, q, P,Q ∈
R with pqPQ/= 0. We prove the Hyers-Ulam stability of the Jensen type logarithmic functional
inequality ‖f(xpyq) − Pf(x) − Qf(y)‖ ≤ ε in restricted domains of the form {(x, y) : x > 0, y >
0, xkys ≥ d} for fixed k, s ∈ R with k /= 0 or s /= 0 and d > 0. As consequences of the results we
obtain asymptotic behaviors of the inequality as xkys → ∞.

1. Introduction

The stability problems of functional equations have been originated by Ulam in 1940 (see
[1]). One of the first assertions to be obtained is the following result, essentially due to Hyers
[2], that gives an answer for the question of Ulam.

Theorem 1.1. Suppose that 〈S,+〉 is an additive semigroup, B is a Banach space, ε ≥ 0, and f : S →
B satisfies the inequality

∥
∥f

(

x + y
) − f(x) − f

(

y
)∥
∥ ≤ ε (1.1)

for all x, y ∈ S. Then there exists a unique function A : S → B satisfying

A
(

x + y
)

= A(x) +A
(

y
)

(1.2)
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for which

∥
∥f(x) −A(x)

∥
∥ ≤ ε (1.3)

for all x ∈ S.

In 1950-1951 this result was generalized by the authors Aoki [3] and Bourgin [4, 5].
Unfortunately, no results appeared until 1978 when Th. M. Rassias generalized the Hyers’
result to a new approximately linear mappings [6]. Following the Rassias’ result, a great
number of the papers on the subject have been published concerning numerous functional
equations in various directions [6–16]. For more precise descriptions of the Hyers-Ulam
stability and related results, we refer the reader to the paper of Moszner [17]. Among the
results, the stability problem in a restricted domain was investigated by Skof, who proved
the stability problem of the inequality (1.1) in a restricted domain [16]. Developing this
result, Jung considered the stability problems in restricted domains for the Jensen functional
equation [11] and Jensen type functional equations [14]. The results can be summarized as
follows: let X and Y be a real normed space and a real Banach space, respectively. For fixed
d > 0, if f : X → Y satisfies the functional inequalities (such as that of Cauchy, Jensen and
Jensen type, etc.) for all x, y ∈ X with ‖x‖ + ‖y‖ ≥ d, the inequalities hold for all x, y ∈ X. We
also refer the reader to [18–26] for some interesting results on functional equations and their
Hyers-Ulam stabilities in restricted conditions.

Throughout this paper, we denote by R+ the set of positive real numbers, B a Banach
space, f : R+ → B, and p, q, P,Q ∈ R with pqPQ/= 0. We prove the Hyers-Ulam stability of
the Jensen type logarithmic functional inequality

∥
∥f

(

xpyq) − Pf(x) −Qf
(

y
)∥
∥ ≤ ε (1.4)

in the restricted domains of the formUk,s = {(x, y) : x > 0, y > 0, xkys ≥ d} for fixed k, s ∈ R

with k /= 0 or s /= 0, and d > 0. As a result, we prove that if the inequality (1.4) holds for all
(x, y) ∈ Uk,s, there exists a unique function L : R+ → B satisfying

L
(

xy
) − L(x) − L

(

y
)

= 0, x, y > 0 (1.5)

for which

∥
∥f(x) − L(x) − f(1)

∥
∥ ≤ 4ε (1.6)

for all x > 0 if k/p /= s/q,

∥
∥f(x) − L(x) − f(1)

∥
∥ ≤ 4ε

|P | (1.7)

for all x > 0 if s /= 0, and

∥
∥f(x) − L(x) − f(1)

∥
∥ ≤ 4ε

|Q| (1.8)
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for all x > 0 if k /= 0. As a consequence of the result we obtain the stability of the inequality

∥
∥f

(

px + qy
) − Pf(x) −Qf

(

y
)∥
∥ ≤ ε (1.9)

in the restricted domains of the form {(x, y) ∈ R
2 : kx + sy ≥ d} for fixed k, s ∈ R with k /= 0

or s /= 0, and d ∈ R. Also we obtain asymptotic behaviors of the inequalities (1.4) and (1.9) as
xkys → ∞ and kx + sy → ∞, respectively.

2. Hyers-Ulam Stability in Restricted Domains

We call the functions satisfying (1.5) logarithmic functions. As a direct consequence of
Theorem 1.1, we obtain the stability of the logarithmic functional equation, viewing 〈R+,×〉
as a multiplicative group (see also the result of Forti [9]).

Theorem A. Suppose that f : R+ → B, ε ≥ 0, and

∥
∥f

(

xy
) − f(x) − f

(

y
)∥
∥ ≤ ε (2.1)

for all x, y > 0. Then there exists a unique logarithmic function L : R+ → B satisfying

∥
∥f(x) − L(x)

∥
∥ ≤ ε (2.2)

for all x > 0.

We first consider the usual logarithmic functional inequality (2.1) in the restricted
domains Uk,s.

Theorem 2.1. Let ε, d > 0, k, s ∈ R with k /= 0 or s /= 0. Suppose that f : R+ → B satisfies

∥
∥f

(

xy
) − f(x) − f

(

y
)∥
∥ ≤ ε (2.3)

for all x, y > 0, with xkys ≥ d. Then there exists a unique logarithmic function L : R+ → B such
that

∥
∥f(x) − L(x)

∥
∥ ≤ 3ε (2.4)

for all x ∈ R+.
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Proof. From the symmetry of the inequality we may assume that s /= 0. For given x, y ∈ R+,
choose a z > 0 such that xkykzs ≥ d, xkyszs ≥ d, and ykzs ≥ d. Then we have

∥
∥f

(

xy
) − f(x) − f

(

y
)∥
∥ ≤ ∥

∥−f(xyz) + f
(

xy
)

+ f(z)
∥
∥

+
∥
∥f

(

xyz
) − f(x) − f

(

yz
)∥
∥

+
∥
∥f

(

yz
) − f

(

y
) − f(z)

∥
∥

≤ 3ε.

(2.5)

This completes the proof.

Now we consider the Hyers-Ulam stability of the Jensen type logarithmic functional
inequality (1.4) in the restricted domains Uk,s.

Theorem 2.2. Let ε, d > 0, k, s ∈ R, k/p /= s/q. Suppose that f : R+ → B satisfies

∥
∥f

(

xpyq) − Pf(x) −Qf
(

y
)∥
∥ ≤ ε (2.6)

for all x, y > 0, with xkys ≥ d. Then there exists a unique logarithmic function L : R+ → B such
that

∥
∥f(x) − L(x) − f(1)

∥
∥ ≤ 4ε (2.7)

for all x ∈ R+.

Proof. Replacing x by x1/p, y by y1/q in (2.6)we have

∥
∥
∥f

(

xy
) − Pf

(

x1/p
)

−Qf
(

y1/q
)∥
∥
∥ ≤ ε (2.8)

for all x, y > 0, with xk/pys/q ≥ d.
For given x, y ∈ R+, choose a z > 0 such that xk/pys/qzs/q−k/p ≥ d, xk/pzs/q−k/p ≥ d,

ys/qzs/q−k/p ≥ d, and zs/q−k/p ≥ d. Replacing x by xz−1, y by yz; x by xz−1, y by z; x by z−1, y
by yz; x by z−1, y by z in (2.8)we have

∥
∥f

(

xy
) − f(x) − f

(

y
)

+ f(1)
∥
∥ ≤

∥
∥
∥f

(

xy
) − Pf

(

x1/pz−1/p
)

−Qf
((

yz
)1/q

)∥
∥
∥

+
∥
∥
∥−f(x) + Pf

(

x1/pz−1/p
)

+Qf
(

z1/q
)∥
∥
∥

+
∥
∥
∥−f(y) + Pf

(

z−1/p
)

+Qf
((

yz
)1/q

)∥
∥
∥

+
∥
∥
∥f(1) − Pf

(

z−1/p
)

−Qf
(

z1/q
)∥
∥
∥

≤ 4ε.

(2.9)
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Now by Theorem A, there exists a unique logarithmic function L : R+ → B such that

∥
∥f(x) − L(x) − f(1)

∥
∥ ≤ 4ε (2.10)

for all x ∈ R+. This completes the proof.

As a matter of fact, we obtain that L = 0 in Theorem 2.2 provided that p /=P and p or P
is a rational number, or q /=Q and q or Q is a rational number.

Theorem 2.3. Let ε, d > 0, k, s ∈ R, k/p /= s/q. Suppose that p /=P and p or P is a rational number,
or q /=Q and q or Q is a rational number, and f : R+ → B satisfies

∥
∥f

(

xpyq) − Pf(x) −Qf
(

y
)∥
∥ ≤ ε (2.11)

for all x, y > 0, with xkys ≥ d. Then one has

∥
∥f(x) − f(1)

∥
∥ ≤ 4ε (2.12)

for all x ∈ R+.

Proof. We prove (2.12) only for the case that p /=P and p or P is a rational number since the
other case is similarly proved. From (2.7) and (2.11), using the triangle inequality we have

∥
∥L

(

xpyq) − PL(x) −QL
(

y
)∥
∥ ≤ M (2.13)

for all x, y > 0, with xkys ≥ d, whereM = ε(5+ 4|P |+ 4|Q|) + |f(1)(1−P −Q)|. If k /= 0, putting
y = 1 in (2.13) we have

‖L(xp) − PL(x)‖ ≤ M (2.14)

for all x > 0, with xk ≥ d. It is easy to see that L(xr) = rL(x) for all x > 0 and all rational
numbers r. Thus if p is a rational number, it follows from (2.14) that

‖L(x)‖ ≤ M
∣
∣p − P

∣
∣

(2.15)

for all x > 0, with xk ≥ d. If there exists x0 > 0 such that L(x0)/= 0, we can choose a rational
number r such that xrk

0 ≥ d and ‖rL(x0)‖ > M/|p − P | (it is realized when r is large if xk
0 > 1,

and when −r is large if xk
0 < 1). Now we have

M
∣
∣p − P

∣
∣
< ‖rL(x0)‖ =

∥
∥L

(

xr
0

)∥
∥ ≤ M

∣
∣p − P

∣
∣
. (2.16)
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Thus it follows that L = 0. If P is a rational number, it follows from (2.14) that

∥
∥
∥L

(

xp−P
)∥
∥
∥ ≤ M (2.17)

for all x > 0, with xk ≥ d, which implies

‖L(x)‖ ≤ M (2.18)

for all x > 0, with xk/(p−P) ≥ d. Similarly, using (2.18) we can show that L = 0. If k = 0,
choosing y0 > 0 such that ys

0 ≥ d, putting y = y0 in (2.13) and using the triangle inequality
we have

‖L(xp) − PL(x)‖ ≤ M +
∣
∣
∣L

(

y
q

0

)

−QL
(

y0
)
∣
∣
∣ (2.19)

for all x > 0. Similarly, using (2.19)we can show that L = 0. Thus the inequality (2.12) follows
from (2.7). This completes the proof.

Theorem 2.4. Let ε, d > 0, k, s ∈ R with k /= 0 or s /= 0. Suppose that f : R+ → B satisfies

∥
∥f

(

xpyq) − Pf(x) −Qf
(

y
)∥
∥ ≤ ε (2.20)

for all x, y > 0, with xkys ≥ d. Then there exists a unique logarithmic function L : R+ → B such
that

∥
∥f(x) − L(x) − f(1)

∥
∥ ≤ 4ε

|P | (2.21)

for all x ∈ R+ if s /= 0, and

∥
∥f(x) − L(x) − f(1)

∥
∥ ≤ 4ε

|Q| (2.22)

for all x ∈ R+ if k /= 0.
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Proof. Assume that s /= 0. For given x, y ∈ R+, choose a z > 0 such that xkykzs ≥ d, xkyps/qzs ≥
d, ykzs ≥ d and yps/qzs ≥ d. Replacing x by xy, y by z; x by x, y by yp/qz; x by y, y by z; x
by 1, y by yp/qz in (2.20)we have

∥
∥Pf

(

xy
) − Pf(x) − Pf

(

y
)

+ Pf(1)
∥
∥ ≤ ∥

∥−f((xy)pzq) + Pf
(

xy
)

+Qf(z)
∥
∥

+
∥
∥
∥f

((

xy
)p
zq
) − Pf(x) −Qf

(

yp/qz
)∥
∥
∥

+
∥
∥f

(

ypzq
) − Pf

(

y
) −Qf(z)

∥
∥

+
∥
∥
∥−f(ypzq

)

+ Pf(1) +Qf
(

yp/qz
)∥
∥
∥

≤ 4ε.

(2.23)

Dividing (2.23) by |P | and using Theorem A, we obtain that there exists a unique logarithmic
function L : R+ → B such that

∥
∥f(x) − L(x) − f(1)

∥
∥ ≤ 4ε

|P | (2.24)

for all x ∈ R+. Assume that k /= 0. For given x, y ∈ R+, choose a z > 0 such that xsyszk ≥
d, xqk/pyszk ≥ d, xszk ≥ d and xqk/pzk ≥ d. Replacing y by xy, x by z; y by y, x by xq/pz; y
by x, x by z; y by 1, x by xq/pz in (2.20) we have

∥
∥Qf

(

xy
) −Qf(x) −Qf

(

y
)

+Qf(1)
∥
∥ ≤ ∥

∥−f((xy)qzp) + Pf(z) +Qf
(

xy
)∥
∥

+
∥
∥
∥f

((

xy
)q
zp
) − Pf

(

xq/pz
)

−Qf
(

y
)
∥
∥
∥

+
∥
∥f(xqzp) − Pf(z) −Qf(x)

∥
∥

+
∥
∥
∥−f(xqzp) + Pf

(

xq/pz
)

+Qf(1)
∥
∥
∥

≤ 4ε.

(2.25)

Dividing (2.25) by |Q| and using Theorem A, we obtain that there exists a unique logarithmic
function L : R+ → B such that

∥
∥f(x) − L(x) − f(1)

∥
∥ ≤ 4ε

|Q| (2.26)

for all x ∈ R+. This completes the proof.

From Theorem 2.4, using the same approach as in the proof of Theorem 2.3 we have
the following.
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Theorem 2.5. Let ε, d > 0, k, s ∈ R with k /= 0 or s /= 0. Suppose that p /=P and p or P is a rational
number, or q /=Q and q or Q is a rational number, and f : R+ → B satisfies

∥
∥f

(

xpyq) − Pf(x) −Qf
(

y
)∥
∥ ≤ ε (2.27)

for all x, y > 0, with xkys ≥ d. Then one has

∥
∥f(x) − f(1)

∥
∥ ≤ 4ε

|P | (2.28)

for all x ∈ R+ if s /= 0, and

∥
∥f(x) − f(1)

∥
∥ ≤ 4ε

|Q| (2.29)

for all x ∈ R+ if k /= 0.

We call A : R → B an additive function provided that

A
(

x + y
)

= A(x) +A
(

y
)

(2.30)

for all x, y ∈ R. Using Theorem 2.2 we have the following.

Corollary 2.6 (see [22]). Let ε > 0, d, k, s ∈ R with k/p /= s/q. Suppose that g : R → B satisfies

∥
∥g

(

px + qy
) − Pg(x) −Qg

(

y
)∥
∥ ≤ ε (2.31)

for all x, y ∈ R, with kx + sy ≥ d. Then there exists a unique additive functionA : R → B such that

∥
∥g(x) −A(x) − g(0)

∥
∥ ≤ 4ε (2.32)

for all x ∈ R.

Proof. Replacing x by lnu, y by lnv in (2.31) and setting f(x) = g(lnx)we have

∥
∥f(upvq) − Pf(u) −Qf(v)

∥
∥ ≤ ε (2.33)

for all u, v ∈ R, with ukvs ≥ ed. Using Theorem 2.2, we have

∥
∥f(x) − L(x) − f(1)

∥
∥ ≤ 4ε (2.34)

for all x ∈ R+, which implies

∥
∥g(x) − L(ex) − g(0)

∥
∥ ≤ 4ε (2.35)

for all x ∈ R. Letting A(x) = L(ex)we get the result.



Advances in Difference Equations 9

Using Theorem 2.3, we have the following.

Corollary 2.7. Let ε > 0, d, k, s ∈ R with k/p /= s/q. Suppose that p /=P and p or P is a rational
number, or q /=Q and q or Q is a rational number, and g : R → B satisfies

∥
∥g

(

px + qy
) − Pg(x) −Qg

(

y
)∥
∥ ≤ ε (2.36)

for all x, y ∈ R, with kx + sy ≥ d. Then one has

∥
∥g(x) − g(0)

∥
∥ ≤ 4ε (2.37)

for all x ∈ R.

Using Theorem 2.4, we have the following.

Corollary 2.8. Let ε > 0, d, k, s ∈ R with k /= 0 or s /= 0. Suppose that g : R → B satisfies

∥
∥g

(

px + qy
) − Pg(x) −Qg

(

y
)∥
∥ ≤ ε (2.38)

for all x, y ∈ R, with kx + sy ≥ d. Then there exists a unique additive functionA : R → B such that

∥
∥g(x) −A(x) − g(0)

∥
∥ ≤ 4ε

|P | (2.39)

for all x ∈ R if s /= 0, and

∥
∥g(x) −A(x) − g(0)

∥
∥ ≤ 4ε

|Q| (2.40)

for all x ∈ R if k /= 0.

Using Theorem 2.5, we have the following.

Corollary 2.9. Let ε > 0, d, k, s ∈ R with k /= 0 or s /= 0. Suppose that p /=P and p or P is a rational
number, or q /=Q and q or Q is a rational number, and g : R → B satisfies

∥
∥g

(

px + qy
) − Pg(x) −Qg

(

y
)∥
∥ ≤ ε (2.41)

for all x, y ∈ R, with kx + sy ≥ d. Then one has

∥
∥g(x) − g(0)

∥
∥ ≤ 4ε

|P | (2.42)

for all x ∈ R if s /= 0, and

∥
∥g(x) − g(0)

∥
∥ ≤ 4ε

|Q| (2.43)

for all x ∈ R if k /= 0.
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3. Asymptotic Behavior of the Inequality

In this section, we consider asymptotic behaviors of the inequalities (1.4) and (2.1).

Theorem 3.1. Let k, s ∈ R satisfy one of the conditions; k /= 0, s /= 0. Suppose that f : R+ → B
satisfies the asymptotic condition

∥
∥f

(

xy
) − f(x) − f

(

y
)∥
∥ −→ 0 (3.1)

as xkys → ∞. Then f is a logarithmic function.

Proof. By the condition (3.1), for each n ∈ N, there exists dn > 0 such that

∥
∥f

(

xy
) − f(x) − f

(

y
)∥
∥ ≤ 1

n
(3.2)

for all x, y > 0, with xkys ≥ dn. By Theorem 2.1, there exists a unique logarithmic function
Ln : R+ → B such that

∥
∥f(x) − Ln(x)

∥
∥ ≤ 3

n
(3.3)

for all x ∈ R+. From (3.4)we have

‖Ln(x) − Lm(x)‖ ≤ 3
n
+

3
m

≤ 6 (3.4)

for all x ∈ R+ and all positive integers n,m. Now, the inequality (3.4) implies Ln = Lm. Indeed,
for all x > 0 and rational numbers r > 0 we have

‖Ln(x) − Lm(x)‖ =
1
r
‖Ln(xr) − Lm(xr)‖ ≤ 6

r
. (3.5)

Letting r → ∞ in (3.5), we have Ln = Lm. Thus, letting n → ∞ in (3.3), we get the result.

Theorem 3.2. Let k, s ∈ R satisfy one of the conditions; k /= 0, s /= 0, k/p /= s/q. Suppose that f :
R+ → B satisfies the asymptotic condition

∥
∥f

(

xpyq) − Pf(x) −Qf
(

y
)∥
∥ −→ 0 (3.6)

as xkys → ∞. Then there exists a unique logarithmic function L : R+ → B such that

f(x) = L(x) + f(1) (3.7)

for all x ∈ R+.
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Proof. By the condition (3.6), for each n ∈ N, there exists dn > 0 such that

∥
∥f

(

xpyq) − Pf(x) −Qf
(

y
)∥
∥ ≤ 1

n
(3.8)

for all x, y > 0, with xkys ≥ dn. By Theorems 2.2 and 2.4, there exists a unique logarithmic
function Ln : R+ → B such that

∥
∥f(x) − Ln(x) − f(1)

∥
∥ ≤ 4

n
(3.9)

if k/p /= s/q,

∥
∥f(x) − Ln(x) − f(1)

∥
∥ ≤ 4

n|P | (3.10)

if s /= 0, and

∥
∥f(x) − Ln(x) − f(1)

∥
∥ ≤ 4

n|Q| (3.11)

if k /= 0. For all cases (3.9), (3.10), and (3.11), there exists M > 0 such that

‖Ln(x) − Lm(x)‖ ≤ M (3.12)

for all x ∈ R+ and all positive integers n,m. Now as in the proof of Theorem 3.1, it follows
from (3.12) that Ln = Lm for all n,m ∈ N. Letting n → ∞ in (3.9), (3.10), and (3.11)we get the
result.

Similarly using Theorems 2.3 and 2.5, we have the following.

Theorem 3.3. Let k, s ∈ R satisfy one of the conditions; k /= 0, s /= 0, k/p /= s/q. Suppose that p /=P
and p or P is a rational number, or q /=Q and q or Q is a rational number, and f : R+ → B satisfies
the asymptotic condition

∥
∥f

(

xpyq) − Pf(x) −Qf
(

y
)∥
∥ −→ 0 (3.13)

as xkys → ∞. Then f is a constant function.
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Using Corollaries 2.6 and 2.8 we have the following.

Corollary 3.4. Let ε > 0, k, s ∈ R satisfy one of the conditions k /= 0, s /= 0, or k/p /= s/q. Suppose
that g : R → B satisfies

∥
∥g

(

px + qy
) − Pg(x) −Qg

(

y
)∥
∥ −→ 0 (3.14)

as kx + sy → ∞. Then there exists a unique additive function A : R → B such that

g(x) = A(x) + g(0) (3.15)

for all x ∈ R.

Using Corollaries 2.7 and 2.9 we have the following.

Corollary 3.5. Let ε > 0, k, s ∈ R satisfy one of the conditions k /= 0, s /= 0, or k/p /= s/q. Suppose
that p /=P and p or P is a rational number, or q /=Q and q or Q is a rational number, and g : R → B
satisfies

∥
∥g

(

px + qy
) − Pg(x) −Qg

(

y
)∥
∥ −→ 0 (3.16)

as kx + sy → ∞. Then g is a constant function.

Acknowledgments

The author expresses his sincere gratitude to a referee of the paper for many useful comments
and introducing the interesting related recent results including the papers [17–26]. This work
was supported by Basic Science Research Program through theNational Research Foundation
of Korea (NRF) funded by the Ministry of Education, Science and Technology (MEST) (no.
2010-0016963).

References

[1] S. M. Ulam, A Collection of Mathematical Problems, Interscience, New York, NY, USA, 1960.
[2] D. H. Hyers, “On the stability of the linear functional equation,” Proceedings of the National Academy of

Sciences of the United States of America, vol. 27, pp. 222–224, 1941.
[3] T. Aoki, “On the stability of the linear transformation in Banach spaces,” Journal of the Mathematical

Society of Japan, vol. 2, pp. 64–66, 1950.
[4] D. G. Bourgin, “Multiplicative transformations,” Proceedings of the National Academy of Sciences of the

United States of America, vol. 36, pp. 564–570, 1950.
[5] D. G. Bourgin, “Classes of transformations and bordering transformations,” Bulletin of the American

Mathematical Society, vol. 57, pp. 223–237, 1951.
[6] T. M. Rassias, “On the stability of the linear mapping in Banach spaces,” Proceedings of the American

Mathematical Society, vol. 72, no. 2, pp. 297–300, 1978.
[7] J. Chung, “A distributional version of functional equations and their stabilities,” Nonlinear Analysis:

Theory, Methods & Applications, vol. 62, no. 6, pp. 1037–1051, 2005.
[8] J. Chung, “Stability of approximately quadratic Schwartz distributions,” Nonlinear Analysis: Theory,

Methods & Applications, vol. 67, no. 1, pp. 175–186, 2007.



Advances in Difference Equations 13

[9] G. L. Forti, “The stability of homomorphisms and amenability, with applications to functional
equations,” Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, vol. 57, pp. 215–
226, 1987.

[10] D. H. Hyers, G. Isac, and T. M. Rassias, Stability of Functional Equations in Several Variables, vol. 34 of
Progress in Nonlinear Differential Equations and their Applications, Birkhäuser, Boston, Mass, USA, 1998.
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[22] J. Brzdȩk, “On stability of a family of functional equations,” Acta Mathematica Hungarica, vol. 128, no.
1-2, pp. 139–149, 2010.
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