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By using the critical point theory, we establish some existence criteria to guarantee that the
nonlinear difference equation Δ[p(n)(Δx(n − 1))δ] − q(n)(x(n))δ = f(n, x(n)) has at least one
homoclinic solution, where n ∈ Z, x(n) ∈ R, and f : Z × R → R is non periodic in n. Our
conditions on the nonlinear term f(n, x(n)) are rather relaxed, and we generalize some existing
results in the literature.

1. Introduction

Consider the nonlinear difference equation of the form

Δ
[
p(n)(Δu(n − 1))δ

]
− q(n)(x(n))δ = f(n, u(n)), n ∈ Z, (1.1)

where Δ is the forward difference operator defined by Δu(n) = u(n + 1) − u(n), Δ2u(n) =
Δ(Δu(n)), δ > 0 is the ratio of odd positive integers, {p(n)} and {q(n)} are real sequences,
{p(n)}/= 0. f : Z × R → R. As usual, we say that a solution u(n) of (1.1) is homoclinic (to 0)
if u(n) → 0 as n → ±∞. In addition, if u(n)/≡ 0, then u(n) is called a nontrivial homoclinic
solution.

Difference equations have attracted the interest of many researchers in the past
twenty years since they provided a natural description of several discrete models. Such
discrete models are often investigated in various fields of science and technology such
as computer science, economics, neural network, ecology, cybernetics, biological systems,
optimal control, and population dynamics. These studies cover many of the branches of
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difference equation, such as stability, attractiveness, periodicity, oscillation, and boundary
value problem. Recently, there are some new results on periodic solutions of nonlinear
difference equations by using the critical point theory in the literature; see [1–3].

In general, (1.1) may be regarded as a discrete analogue of a special case of the
following second-order differential equation:

(
p(t)ϕ

(
x′))′ + f(t, x) = 0, (1.2)

which has arose in the study of fluid dynamics, combustion theory, gas diffusion through
porous media, thermal self-ignition of a chemically active mixture of gases in a vessel,
catalysis theory, chemically reacting systems, and adiabatic reactor (see, e.g., [4–6] and their
references). In the case of ϕ(x) = |x|δ−2x, (1.2) has been discussed extensively in the literature;
we refer the reader to the monographs [7–10].

It is well known that the existence of homoclinic solutions for Hamiltonian systems
and their importance in the study of the behavior of dynamical systems have been already
recognized from Poincaré; homoclinic orbits play an important role in analyzing the chaos of
dynamical system. In the past decade, this problem has been intensively studied using critical
point theory and variational methods.

In some recent papers [1–3, 11–14], the authors studied the existence of periodic
solutions, subharmonic solutions, and homoclinic solutions of some special forms of (1.1) by
using the critical point theory. These papers show that the critical point method is an effective
approach to the study of periodic solutions for difference equations. Along this direction, Ma
and Guo [13] applied the critical point theory to prove the existence of homoclinic solutions
of the following special form of (1.1):

Δ
[
p(n)Δu(n − 1)

] − q(n)u(n) + f(n, u(n)) = 0, (1.3)

where n ∈ Z, u ∈ R, p, q : Z → R, and f : Z × R → R.

Theorem A (see [13]). Assume that p, q, and f satisfy the following conditions:

(p) p(n) > 0 for all n ∈ Z;

(q) q(n) > 0 for all n ∈ Z and lim|n|→+∞q(n) = +∞;

(f1) there is a constant μ > 2 such that

0 < μ

∫x

0
f(n, s)ds ≤ xf(n, x), ∀(n, x) ∈ Z × (R \ {0}); (1.4)

(f2) limx→ 0f(n, x)/x = 0 uniformly with respect to n ∈ Z.

Then (1.3) possesses a nontrivial homoclinic solution.

It is worth pointing out that to establish the existence of homoclinic solutions of (1.3),
condition (f1) is the special form (with N = 1) of the following so-called global Ambrosetti-
Rabinowitz condition onW ; see [15].
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(AR) For every n ∈ Z,W is continuously differentiable in x, and there is a constant μ >
2 such that

0 < μW(n, x) ≤ (∇W(n, x), x), ∀(n, x) ∈ Z ×
(
R

N \ {0}
)
. (1.5)

However, it seems that results on the existence of homoclinic solutions of (1.1) by
critical point method have not been considered in the literature. The main purpose of this
paper is to develop a new approach to the above problem by using critical point theory.

Motivated by the above papers [13, 14], we will obtain some new criteria for
guaranteeing that (1.1) has one nontrivial homoclinic solution without any periodicity and
generalize Theorem A. Especially, F(n, x) satisfies a kind of new superquadratic condition
which is different from the corresponding condition in the known literature.

In this paper, we always assume that F(n, x) =
∫x
0 f(n, s)ds, F1(n, x) =

∫x
0 f1(n, s)ds,

F2(n, x) =
∫x
0 f2(n, s)ds. Our main results are the following theorems.

Theorem 1.1. Assume that p, q, and f satisfy the following conditions:

(p) p(n) > 0 for alln ∈ Z;

(q) q(n) > 0 for alln ∈ Z and lim|n|→+∞q(n) = +∞;

(F1) F(n, x) = F1(n, x) − F2(n, x), for every n ∈ Z, F1 and F2 are continuously differentiable
in x, and there is a bounded set J ⊂ Z such that

F2(n, x) ≥ 0, ∀(n, x) ∈ J × R, |x| ≤ 1,

1
q(n)

∣∣f(n, x)∣∣ = o
(
|x|δ
)

as x −→ 0
(1.6)

uniformly in n ∈ Z \ J ;
(F2) there is a constant μ > δ + 1 such that

0 < μF1(n, x) ≤ xf1(n, x), ∀(n, x) ∈ Z × (R \ {0}); (1.7)

(F3) F2(n, 0) ≡ 0, and there is a constant � ∈ (δ + 1, μ) such that

xf2(n, x) ≤ �F2(n, x), ∀(n, x) ∈ Z × R. (1.8)

Then (1.1) possesses a nontrivial homoclinic solution.
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Theorem 1.2. Assume that p, q, and F satisfy (p), (q), (F2), (F3), and the following assumption:

(F1’) F(n, x) = F1(n, x) − F2(n, x), for every n ∈ Z, F1 and F2 are continuously differentiable
in x, and

1
q(n)

∣∣f(n, x)∣∣ = o
(
|x|δ
)

as x −→ 0 (1.9)

uniformly in n ∈ Z. Then (1.1) possesses a nontrivial homoclinic solution.

Remark 1.3. Obviously, both conditions (F1) and (F ′
1) are weaker than (f1). Therefore, both Theorems

1.1 and 1.2 generalize Theorem A by relaxing conditions (f1) and (f2).
When F(n, x) is subquadratic at infinity, as far as the authors are aware, there is

no research about the existence of homoclinic solutions of (1.1). Motivated by the paper
[16], the intention of this paper is that, under the assumption that F(n, x) is indefinite sign
and subquadratic as |n| → +∞, we will establish some existence criteria to guarantee that
(1.1) has at least one homoclinic solution by using minimization theorem in critical point
theory.

Now we present the basic hypothesis on p, q, and F in order to announce the results
in this paper.

(F4) For every n ∈ Z, F is continuously differentiable in x, and there exist two constants
1 < γ1 < γ2 < δ + 1 and two functions a1, a2 ∈ l(δ+1)/(δ+1−γ1)(Z, [0,+∞)) such that

|F(n, x)| ≤ a1(n)|x|γ1 , ∀(n, x) ∈ Z × R, |x| ≤ 1,

|F(n, x)| ≤ a2(n)|x|γ2 , ∀(n, x) ∈ Z × R, |x| ≥ 1.
(1.10)

(F5) There exist two functions b ∈ l(δ+1)/(δ+1−γ1)(Z, [0,+∞)) and ϕ ∈ C([0,+∞), [0,+∞))
such that

∣∣f(n, x)∣∣ ≤ b(n)ϕ(|x|), ∀(n, x) ∈ Z × R (1.11)

where ϕ(s) = O(sγ1−1) as |s| ≤ c, c is a positive constant.

(F6) There exist n0 ∈ Z and two constants η > 0 and γ3 ∈ (1, δ + 1) such that

F(n0, x) ≥ η|x|γ3 , ∀x ∈ R, |x| ≤ 1. (1.12)

Up to now, we can state our main results.
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Theorem 1.4. Assume that p, q, and F satisfy (p), (q), (F4), (F5), and (F6). Then (1.1) possesses
at least one nontrivial homoclinic solution.

By Theorem 1.4, we have the following corollary.

Corollary 1.5. Assume that p, q, and F satisfy (p), (q), and the following conditions:
(F7) F(n, x) = a(n)V (x), where V ∈ C1(R,R) and a ∈ l(δ+1)/(δ+1−γ1)(Z, [0,+∞)), γ1 ∈

(1, δ + 1) is a constant such that a(n0) > 0 for some n0 ∈ Z.
(F8) There exist constants M,M′ > 0, γ2 ∈ [γ1, δ + 1), and γ3 ∈ (1, δ + 1) such that

M′|x|γ3 ≤ V (x) ≤ M|x|γ1 , ∀x ∈ R, |x| ≤ 1,

0 < V (x) ≤ M|x|γ2 , ∀x ∈ R, |x| ≥ 1,
(1.13)

(F9) V ′(x) = O(|x|γ1−1) as |x| ≤ c, c is a positive constant.

Then (1.1) possesses at least one nontrivial homoclinic solution.

2. Preliminaries

Let

S = {{u(n)}n∈Z
: u(n) ∈ R, n ∈ Z},

E =

{
u ∈ S :

∑
n∈Z

[
p(n)(Δu(n − 1))δ+1 + q(n)(u(n))δ+1

]
< +∞

}
,

(2.1)

and for u ∈ E, let

‖u‖ =

{∑
n∈Z

[
p(n)(Δu(n − 1))δ+1 + q(n)(u(n))δ+1

]
< +∞

}1/δ+1

, u ∈ E. (2.2)

Then E is a uniform convex Banach space with this norm.
As usual, for 1 ≤ p < +∞, let

lp(Z,R) =

{
u ∈ S :

∑
n∈Z

|u(n)|p < +∞
}
,

l∞(Z,R) =

{
u ∈ S : sup

n∈Z

|u(n)| < +∞
}
,

(2.3)
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and their norms are defined by

‖u‖p =

(∑
n∈Z

|u(n)|p
)1/p

, ∀u ∈ lp(Z,R); ‖u‖∞ = sup
n∈Z

|u(n)|, ∀u ∈ l∞(Z,R), (2.4)

respectively.
For any n1, n2 ∈ Z with n1 < n2, we let Z(n1, n2) = [n1, n2] ∩ Z, and for function

f : Z → R and a ∈ R, we set

Z
(
f(n) ≥ a

)
=
{
n ∈ Z : f(n) ≥ a

}
, Z

(
f(n) ≤ a

)
=
{
n ∈ Z : f(n) ≤ a

}
. (2.5)

Let I : E → R be defined by

I(u) =
1

δ + 1
‖u‖δ+1 −

∑
n∈Z

F(n, u(n)). (2.6)

If (p), (q), and (F1), (F1′), or (F4) holds, then I ∈ C1(E,R), and one can easily check that

〈
I ′(u), v

〉

=
∑
n∈Z

[(
p(n)(Δu(n−1))δΔv(n − 1)

)
+q(n)(u(n))δv(n)− f(n, u(n))v(n)

]
∀u, v ∈ E.

(2.7)

Furthermore, the critical points of I in E are classical solutions of (1.1) with u(±∞) = 0.
We will obtain the critical points of I by using the Mountain Pass Theorem. We recall

it and a minimization theorem as follows.

Lemma 2.1 (see [15, 17]). Let E be a real Banach space and I ∈ C1(E,R) satisfy (PS)-condition.
Suppose that I satisfies the following conditions:

(i) I(0) = 0;

(ii) there exist constants ρ, α > 0 such that I|∂Bρ(0) ≥ α;

(iii) there exists e ∈ E \ Bρ(0) such that I(e) ≤ 0.

Then I possesses a critical value c ≥ α given by

c = inf
g∈Γ

max
s∈[0,1]

I
(
g(s)
)
, (2.8)

where Bρ(0) is an open ball in E of radius ρ centered at 0 and Γ = {g ∈ C([0, 1], E) : g(0) =
0, g(1) = e}.
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Lemma 2.2. For u ∈ E

q‖u‖δ+1∞ ≤ ‖u‖δ+1, (2.9)

where q = infn∈Zq(n).

Proof. Since u ∈ E, it follows that lim|n|→∞|u(n)| = 0. Hence, there exists n∗ ∈ Z such that

|u(n∗)|= max
n∈Z

|u(n)|. (2.10)

So, we have

‖u‖δ+1E ≥
∑
n∈Z

q(n)(u(n))δ+1 ≥ q
∑
n∈Z

|u(n)|δ+1 ≥ q‖u‖δ+1∞ . (2.11)

The proof is completed.

Lemma 2.3. Assume that (F2) and (F3) hold. Then for every (n, x) ∈ Z × R,

(i) s−μF1(n, sx) is nondecreasing on (0,+∞);

(ii) s−�F2(n, sx) is nonincreasing on (0,+∞).

The proof of Lemma 2.3 is routine and so we omit it.

Lemma 2.4 (see [18]). Let E be a real Banach space and I ∈ C1(E,R) satisfy the (PS)-condition. If
I is bounded from below, then c = infEI is a critical value of I.

3. Proofs of Theorems

Proof of Theorem 1.1. In our case, it is clear that I(0) = 0. We show that I satisfies the (PS)-
condition. Assume that {uk}k∈N

⊂ E is a sequence such that {I(uk)}k∈N
is bounded and

I ′(uk) → 0 as k → +∞. Then there exists a constant c > 0 such that

|I(uk)| ≤ c,
∥∥I ′(uk)

∥∥
E∗ ≤ �c for k ∈ N. (3.1)

From (2.6), (2.7), (3.1), (F2), and (F3), we obtain

(δ + 1)c + (δ + 1)c‖uk‖

≥ (δ + 1)I(uk) − δ + 1
�

〈
I ′(uk), uk

〉

=
� − (δ + 1)

�
‖uk‖δ+1 + (δ + 1)

∑
n∈Z

[
F2(n, uk(n)) − 1

�
uk(n)f2(n, uk(n))

]

− (δ + 1)
∑
n∈Z

[
F1(n, uk(n)) − 1

�
uk(n)f1(n, uk(n))

]

≥ � − (δ + 1)
�

‖uk‖δ+1, k ∈ N.

(3.2)
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It follows that there exists a constant A > 0 such that

‖uk‖ ≤ A for k ∈ N. (3.3)

Then, uk is bounded in E. Going if necessary to a subsequence, we can assume that uk ⇀ u0

in E. For any given number ε > 0, by (F1), we can choose ζ > 0 such that

∣∣f(n, x)∣∣ ≤ εq(n)|x|δ for n ∈ Z \ J, x ∈ R, |x| ≤ ζ. (3.4)

Since q(n) → ∞, we can also choose an integer Π > max{|k| : k ∈ J} such that

q(n) ≥ Aδ+1

ζδ+1
, |n| ≥ Π. (3.5)

By (3.3) and (3.5), we have

|uk(n)|δ+1 = 1
q(n)

q(n)|uk(n)|δ+1 ≤ ζδ+1

Aδ+1
‖uk‖δ+1 ≤ ζδ+1, for |n| ≥ Π, k ∈ N. (3.6)

Since uk ⇀ u0 in E, it is easy to verify that uk(n) converges to u0(n) pointwise for all n ∈ Z,
that is,

lim
k→∞

uk(n) = u0(n), ∀n ∈ Z. (3.7)

Hence, we have by (3.6) and (3.7)

|u0(n)| ≤ ζ, for |n| ≥ Π. (3.8)

It follows from (3.7) and the continuity of f(n, x) on x that there exists k0 ∈ N such that

Π∑
n=−Π

∣∣f(n, uk(n)) − f(n, u0(n))
∣∣|uk(n) − u0(n)| < ε, for k ≥ k0. (3.9)
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On the other hand, it follows from (3.3), (3.4), (3.6), and (3.8) that

∑
|n|>Π

∣∣f(n, uk(n)) − f(n, u0(n))
∣∣ |uk(n) − u0(n)|

≤
∑
|n|>Π

(∣∣f(n, uk(n))
∣∣ + ∣∣f(n, u0(n))

∣∣)(|uk(n)| + |u0(n)|)

≤ ε
∑
|n|>Π

q(n)
(
|uk(n)|δ + |u0(n)|δ

)
(|uk(n)| + |u0(n)|)

≤ 2ε
∑
|n|>Π

q(n)
(
|uk(n)|δ+1 + |u0(n)|δ+1

)

≤ 2ε
(
‖uk‖δ+1 + ‖u0‖δ+1

)

≤ 2ε
(
Aδ+1 + ‖u0‖δ+1

)
, k ∈ N.

(3.10)

Since ε is arbitrary, combining (3.9) with (3.10), we get

∑
n∈Z

∣∣f(n, uk(n)) − f(n, u0(n))
∣∣|uk(n) − u0(n)| −→ 0 as k −→ ∞. (3.11)

It follows from (2.7) and the Hölder’s inequality that

〈
I ′(uk) − I ′(u0), uk − u0

〉

=
∑
n∈Z

p(n)(Δuk(n − 1))δ(Δuk(n − 1) −Δu0(n − 1))

+
∑
n∈Z

q(n)(uk(n))δ(uk(n) − u0(n))

−
∑
n∈Z

p(n)(Δu0(n − 1))δ(Δuk(n − 1) −Δu0(n − 1))

−
∑
n∈Z

q(n)(u0(n))δ(uk(n) − u0(n))

−
∑
n∈Z

(
f(n, uk(n)) − f(n, u0(n)), uk(n) − u0(n)

)

= ‖uk‖δ+1 + ‖u0‖δ+1 −
∑
n∈Z

p(n)(Δuk(n − 1))δΔu0(n − 1)

−
∑
n∈Z

q(n)(uk(n))δu0(n)

−
∑
n∈Z

p(n)(Δu0(n − 1))δΔuk(n − 1) −
∑
n∈Z

q(n)(u0(n))δuk(n)

−
∑
n∈Z

(
f(n, uk(n)) − f(n, u0(n)), uk(n) − u0(n)

)
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≥ ‖uk‖δ+1 + ‖u0‖δ+1 −
(∑

n∈Z

p(n)(Δu0(n − 1))δ+1
)1/δ+1(∑

n∈Z

p(n)(Δuk(n − 1))δ+1
)δ/δ+1

−
(∑

n∈Z

q(n)(u0(n))δ+1
)1/δ+1(∑

n∈Z

q(n)(uk(n))δ+1
)δ/δ+1

−
(∑

n∈Z

p(n)(Δuk(n − 1))δ+1
)1/δ+1(∑

n∈Z

p(n)(Δu0(n − 1))δ+1
)δ/δ+1

−
(∑

n∈Z

q(n)(uk(n))δ+1
)1/δ+1(∑

n∈Z

q(n)(u0(n))δ+1
)δ/δ+1

−
∑
n∈Z

(
f(n, uk(n)) − f(n, u0(n)), uk(n) − u0(n)

)

≥ ‖uk‖δ+1 + ‖u0‖δ+1

−
(∑

n∈Z

[
p(n)(Δu0(n − 1))δ+1 + q(n)(u0(n))δ+1

])1/δ+1

×
(∑

n∈Z

[
p(n)(Δuk(n − 1))δ+1 + q(n)(uk(n))δ+1

])δ/δ+1

−
(∑

n∈Z

[
p(n)(Δuk(n − 1))δ+1 + q(n)(uk(n))δ+1

])1/δ+1

×
(∑

n∈Z

[
p(n)(Δu0(n − 1))δ+1 + q(n)(u0(n))δ+1

])δ/δ+1

−
∑
n∈Z

(
f(n, uk(n)) − f(n, u0(n)), uk(n) − u0(n)

)

= ‖uk‖δ+1 + ‖u0‖δ+1 − ‖u0‖‖uk‖δ − ‖uk‖‖u0‖δ

−
∑
n∈Z

(
f(n, uk(n)) − f(n, u0(n)), uk(n) − u0(n)

)

=
(
‖uk‖δ − ‖u0‖δ

)
(‖uk‖ − ‖u0‖)

−
∑
n∈Z

(
f(n, uk(n)) − f(n, u0(n)), uk(n) − u0(n)

)
.

(3.12)

Since 〈I ′(uk)−I ′(u0), uk−u0〉 → 0, it follows from (3.11) and (3.12) that uk → u0 in E. Hence,
I satisfies the (PS)-condition.
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We now show that there exist constants ρ, α > 0 such that I satisfies assumption (ii) of
Lemma 2.1. By (F1), there exists η ∈ (0, 1) such that

∣∣f(n, x)∣∣ ≤ 1
2
q(n)|x|δ for n ∈ Z \ J, x ∈ R, |x| ≤ η. (3.13)

It follows from F(n, 0) ≡ 0 that

|F(n, x)| ≤ 1
2(δ + 1)

q(n)|x|δ+1 for n ∈ Z \ J, x ∈ R, |x| ≤ η. (3.14)

Set

M = sup
{
F1(n, x)
q(n)

| n ∈ J, x ∈ R, |x| = 1
}
, (3.15)

υ = min

{(
1

2(δ + 1)M + 1

)δ+1−μ
, η

}
. (3.16)

If ‖u‖ = q1/(δ+1) υ := ρ, then by Lemma 2.2, |u(n)| ≤ υ ≤ η < 1 for n ∈ Z, we have by (q),
(3.15), and Lemma 2.3(i) that

∑
n∈J

F1(n, u(n)) ≤
∑

n∈J,u(n)/= 0

F1

(
n,

u(n)
|u(n)|

)
|u(n)|μ

≤ M
∑
n∈J

q(n)|u(n)|μ

≤ Mυμ−δ−1∑
n∈J

q(n)|u(n)|δ+1

≤ 1
2(δ + 1)

∑
n∈J

q(n)|u(n)|δ+1.

(3.17)

Set α = (1/2(δ + 1))qυδ+1. Hence, from (2.6), (3.14), (3.17), (q), and (F1), we have

I(u) =
1

δ + 1
‖u‖δ+1 −

∑
n∈Z

F(n, u(n))

=
1

δ + 1
‖u‖δ+1 −

∑
n∈Z\J

F(n, u(n)) −
∑
n∈J

F(n, u(n))

≥ 1
δ + 1

‖u‖δ+1 − 1
2(δ + 1)

∑
n∈Z\J

q(n)|u(n)|δ+1 −
∑
n∈J

F1(n, u(n))

≥ 1
δ + 1

‖u‖δ+1 − 1
2(δ + 1)

∑
n∈Z\J

q(n)|u(n)|δ+1 − 1
2(δ + 1)

∑
n∈J

q(n)|u(n)|δ+1

≥ 1
2(δ + 1)

‖u‖δ+1

= α.

(3.18)
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Equation (3.18) shows that ‖u‖ = ρ implies that I(u) ≥ α, that is, I satisfies assumption (ii) of
Lemma 2.1. Finally, it remains to show that I satisfies assumption (iii) of Lemma 2.1. For any
u ∈ E, it follows from (2.9) and Lemma 2.3(ii) that

2∑
n=−2

F2(n, u(n)) =
∑

{n∈[−2,2]:|u(n)|>1}
F2(n, u(n)) +

∑
{n∈[−2,2]:|u(n)|≤1}

F2(n, u(n))

≤
∑

{n∈[−2,2]:|u(n)| >1}
F2

(
n,

u(n)
|u(n)|

)
|u(n)|� +

2∑
n=−2

max
|x|≤1

|F2(n, x)|

≤ ‖u‖�∞
2∑

n=−2
max
|x|=1

|F2(n, x)| +
2∑

n=−2
max
|x|≤1

|F2(n, x)|

≤ q−�/(δ+1)‖u‖�
2∑

n=−2
max
|x|=1

|F2(n, x)| +
2∑

n=−2
max
|x|≤1

|F2(n, x)|

= M1‖u‖� +M2,

(3.19)

where

M1 = q−�/(δ+1)
2∑

n=−2
max
|x|=1

|F2(n, x)|, M2 =
2∑

n=−2
max
|x|≤1

|F2(n, x)|. (3.20)

Take ω ∈ E such that

|ω(n)| =
⎧
⎨
⎩
1, for |n| ≤ 1,

0, for |n| ≥ 2,
(3.21)

and |ω(n)| ≤ 1 for |n| ∈ (1, 2). For σ > 1, by Lemma 2.3(i) and (3.21), we have

1∑
n=−1

F1(n, σω(n)) ≥ σμ
1∑

n=−1
F1(n,ω(n)) = mσμ, (3.22)

where m =
∑1

n=−1 F1(n,ω(n)) > 0. By (2.6), (3.19), (3.21), and (3.22), we have for σ > 1

I(σω) =
1

δ + 1
‖σω‖δ+1 +

∑
n∈Z

[F2(n, σω(n)) − F1(n, σω(n))]

≤ σδ+1

δ + 1
‖ω‖δ+1 +

2∑
n=−2

F2(n, σω(n)) −
1∑

n=−1
F1(n, σω(n))

≤ σδ+1

δ + 1
‖ω‖δ+1 +M1σ

�‖ω‖� +M2 −mσμ.

(3.23)
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Since μ > � ≥ δ + 1 and m > 0, (3.23) implies that there exists σ0 > 1 such that ‖σ0ω‖ > ρ
and I(σ0ω) < 0. Set e = σ0ω(n). Then e ∈ E, ‖e‖ = ‖σ0ω‖ > ρ, and I(e) = I(σ0ω) < 0. By
Lemma 2.1, I possesses a critical value d ≥ α given by

d = inf
g∈Γ

max
s∈[0,1]

I
(
g(s)
)
, (3.24)

where

Γ =
{
g ∈ C([0, 1], E) : g(0) = 0, g(1) = e

}
. (3.25)

Hence, there exists u∗ ∈ E such that

I(u∗) = d, I ′(u∗) = 0. (3.26)

Then function u∗ is a desired classical solution of (1.1). Since d > 0, u∗ is a nontrivial
homoclinic solution. The proof is complete.

Proof of Theorem 1.2. In the proof of Theorem 1.1, the condition that F2(n, x) ≥ 0 for (n, x) ∈
J ×R, |x| ≤ 1 in (F1), is only used in the the proofs of assumption (ii) of Lemma 2.1. Therefore,
we only proves assumption (ii) of Lemma 2.1 still hold that using (F1’) instead of (F1). By
(F1’), there exists η ∈ (0, 1) such that

∣∣f(n, x)∣∣ ≤ 1
2
q(n)|x|δ for (n, x) ∈ Z × R, |x| ≤ η. (3.27)

Since F(n, 0) ≡ 0, it follows that

|F(n, x)|≤ 1
2(δ + 1)

q(n)|x|δ+1 for (n, x) ∈ Z × R, |x| ≤ η. (3.28)

If ‖u‖ = q1/(δ+1)η := ρ, then by Lemma 2.2, |u(n)| ≤ η for n ∈ Z. Set α = qηδ+1/2(δ + 1). Hence,
from (2.6) and (3.28), we have

I(u) =
1

δ + 1
‖u‖δ+1 −

∑
n∈Z

F(n, u(n))

≥ 1
δ + 1

‖u‖δ+1 − 1
2(δ + 1)

∑
n∈Z

q(n)(u(n))δ+1

≥ 1
δ + 1

‖u‖δ+1 − 1
2(δ + 1)

‖u‖δ+1

=
1

2(δ + 1)
‖u‖δ+1

= α.

(3.29)

Equation (3.29) shows that ‖u‖ = ρ implies that I(u) ≥ α, that is, assumption (ii) of Lemma 2.1
holds. The proof of Theorem 1.2 is completed.
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Proof of Theorem 1.4. In view of Lemma 2.4, I ∈ C1(E,R). We first show that I is bounded from
below. By (F4), (2.6), and Hölder inequality, we have

I(u) =
1

δ + 1
‖u‖δ+1 −

∑
n∈Z

F(n, u(n))

=
1

δ + 1
‖u‖δ+1 −

∑
Z(|u(n)|≤1)

F(n, u(n)) −
∑

Z(|u(n)|>1)
F(n, u(n))

≥ 1
δ + 1

‖u‖δ+1 −
∑

Z(|u(n)|≤1)
a1(n)|u(n)|γ1 −

∑
Z(|u(n)|>1)

a2(n)|u(n)|γ2

≥ 1
δ + 1

‖u‖δ+1

− q−γ1/(δ+1)

⎛
⎝ ∑

Z(|u(n)|≤1)
|a1(n)|(δ+1)/(δ+1−γ1)

⎞
⎠

(δ+1−γ1)/(δ+1)

×
⎛
⎝ ∑

Z(|u(n)|≤1)
q(n)(u(n))δ+1

⎞
⎠

γ1/(δ+1)

− q−γ1/(δ+1)

⎛
⎝ ∑

Z(|u(n)|>1)
|a2(n)|(δ+1)/(δ+1−γ1)

⎞
⎠

(δ+1−γ1)/(δ+1)

×
⎛
⎝ ∑

Z(|u(n)|>1)
|u(n)|(δ+1)(γ2−γ1)/γ1q(n)(u(n))δ+1

⎞
⎠

γ1/(δ+1)

≥ 1
δ + 1

‖u‖δ+1 − q−γ1/(δ+1)

⎛
⎝ ∑

Z(|u(n)|≤1)
|a1(n)|(δ+1)(δ+1−γ1)

⎞
⎠

(δ+1−γ1)/(δ+1)

‖u‖γ1

− q−γ1/(δ+1)‖u‖γ2−γ1∞

⎛
⎝ ∑

Z(|u(n)|>1)
|a2(n)|(δ+1)(δ+1−γ1)

⎞
⎠

(δ+1−γ1)/(δ+1)

‖u‖γ1

≥ 1
δ + 1

‖u‖δ+1 − q−γ1/(δ+1)

⎛
⎝ ∑

Z(|u(n)|≤1)
|a1(n)|(δ+1)/(δ+1−γ1)

⎞
⎠

(δ+1−γ1)/(δ+1)

‖u‖γ1

− q−γ1/(δ+1)q(γ1−γ2)/(δ+1)

⎛
⎝ ∑

Z(|u(n)|>1)
|a2(n)|(δ+1)/(δ+1−γ1)

⎞
⎠

(δ+1−γ1)/(δ+1)

‖u‖γ2

≥ 1
δ + 1

‖u‖δ+1 − q−γ1/(δ+1)‖a1‖(δ+1)/(δ+1−γ1)‖u‖γ1

− q−γ2/(δ+1)‖a2‖(δ+1)/(δ+1−γ1)‖u‖γ2 .

(3.30)
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Since 1 < γ1 < γ2 < δ + 1, (3.30) implies that I(u) → +∞ as ‖u‖ → +∞. Consequently, I is
bounded from below.

Next, we prove that I satisfies the (PS)-condition. Assume that {uk}k∈N
⊂ E is a

sequence such that {I(uk)}k∈N
is bounded and I ′(uk) → 0 as k → +∞. Then by (2.6), (2.9),

and (3.30), there exists a constant A > 0 such that

‖uk‖∞ ≤ q−1/(δ+1)‖uk‖ ≤ A, k ∈ N. (3.31)

So passing to a subsequence if necessary, it can be assumed that uk ⇀ u0 in E. It is easy to
verify that uk(n) converges to u0(n) pointwise for all n ∈ Z, that is,

lim
k→∞

uk(n) = u0(n), ∀n ∈ Z. (3.32)

Hence, we have, by (3.31) and (3.32),

‖u0‖∞ ≤ A. (3.33)

By (F5), there exists M2 > 0 such that

ϕ(|x|) ≤ M2|x|γ1−1, ∀x ∈ R, |x| ≤ A. (3.34)

For any given number ε > 0, by (F5), we can choose an integer Π > 0 such that

⎛
⎝∑

|n|>Π
|b(n)|(δ+1)/(δ+1−γ1)

⎞
⎠

(δ+1−γ1)/(δ+1)

< ε. (3.35)

It follows from (3.32) and the continuity of f(n, x) on x that there exists k0 ∈ N such that

Π∑
n=−Π

∣∣f(n, uk(n)) − f(n, u0(n))
∣∣|uk(n) − u0(n)| < ε, for k ≥ k0. (3.36)
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On the other hand, it follows from (3.31), (3.33), (3.34), (3.35), and (F5) that

∑
|n|>Π

∣∣f(n, uk(n)) − f(n, u0(n))
∣∣|uk(n) − u0(n)|

≤
∑
|n|>Π

|b(n)|[ϕ(|uk(n)|) + ϕ(|u0(n)|)
]
(|uk(n)| + |u0(n)|)

≤ M2

∑
|n|>Π

|b(n)|
(
|uk(n)|γ1−1 + |u0(n)|γ1−1

)
(|uk(n)| + |u0(n)|)

≤ 2M2

∑
|n|>Π

|b(n)|(|uk(n)|γ1 + |u0(n)|γ1
)

≤ 2M2q
−γ1/(δ+1)

⎛
⎝∑

|n|>Π
|b(n)|(δ+1)/(δ+1−γ1)

⎞
⎠

(δ+1−γ1)/(δ+1)(‖uk‖γ1 + ‖u0‖γ1
)

≤ 2M2q
−γ1/(δ+1)

⎛
⎝∑

|n|>Π
|b(n)|(δ+1)/(δ+1−γ1)

⎞
⎠

(δ+1−γ1)/δ+1[
qγ1/(δ+1)Aγ1 + ‖u0‖γ1

]

≤ 2M2q
−γ1/(δ+1)

[
qγ1/(δ+1)Aγ1 + ‖u0‖γ1

]
ε, k ∈ N.

(3.37)

Since ε is arbitrary, combining (3.36)with (3.37), we get

∑
n∈Z

(
f(n, uk(n)) − f(n, u0(n)), uk(n) − u0(n)

) −→ 0 as k −→ ∞. (3.38)

Similar to the proof of Theorem 1.1, it follows from (3.12) that

〈
I ′(uk) − I ′(u0), uk − u0

〉 ≥
(
‖uk‖δ − ‖u0‖δ

)
(‖uk‖ − ‖u0‖)

−
∑
n∈Z

(
f(n, uk(n)) − f(n, u0(n)), uk(n) − u0(n)

)
.

(3.39)

Since 〈I ′(uk)−I ′(u0), uk−u0〉 → 0, it follows from (3.38) and (3.39) that uk → u0 in E. Hence,
I satisfies (PS)-condition.

By Lemma 2.4, c = infEI(u) is a critical value of I, that is, there exists a critical point
u∗ ∈ E such that I(u∗) = c.
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Finally, we show that u∗ /= 0. Let u0(n0) = 1 and u0(n) = 0 for n/=n0. Then by (F4) and
(F6), we have

I(su0) =
sδ+1

δ + 1
‖u0‖δ+1 −

∑
n∈Z

F(n, su0)

=
sδ+1

δ + 1
‖u0‖δ+1 − F(n0, su0(n0))

≤ sδ+1

δ + 1
‖u0‖δ+1 − ηsγ3 |u0(n0)|γ3 , 0 < s < 1.

(3.40)

Since 1 < γ3 < δ + 1, it follows from (3.40) that I(su0) < 0 for s > 0 small enough. Hence
I(u∗) = c < 0, therefore u∗ is nontrivial critical point of I, and so u∗ = u∗(n) is a nontrivial
homoclinic solution of (1.1). The proof is complete.

Proof of Corollary 1.5. Obviously, (F7) and (F8) imply that (F4) holds, and (F7) and (F9) imply
that (F5) holds with a1(n) = a2(n) = b(n) = |a(n)|. In addition, by (F7) and (F8), we have

F(n0, x) = a(n0)V (x) ≥ M′a(n0)|x|γ3 , ∀x ∈ R, |x| ≤ 1. (3.41)

This shows that (F6) holds also. Hence, by Theorem 1.4, the conclusion of Corollary 1.5 is
true. The proof is complete.

4. Examples

In this section, we give some examples to illustrate our results.

Example 4.1. In (1.1), let p(n) > 0 and

F(n, x) = q(n)
[
a1|x|μ1 + a2|x|μ2 − (2 − |n|)|x|�1 − (2 − |n|)|x|�2], (4.1)

where q : Z → (0,∞) such that q(n) → +∞ as |n| → +∞, μ1 > μ2 > �1 > �2 > δ + 1,
a1, a2 > 0. Let μ = μ2, � = �1, J = {−2,−1, 0, 1, 2}, and

F1(n, x) = q(n)
(
a1|x|μ1 + a2|x|μ2

)
, F2(n, x) = q(n)

[
(2 − |n|)|x|�1 + (2 − |n|)|x|�2]. (4.2)

Then it is easy to verify that all conditions of Theorem 1.1 are satisfied. By Theorem 1.1, (1.1)
has at least a nontrivial homoclinic solution.

Example 4.2. In (1.1), let p(n) > 0, q(n) > 0 for all n ∈ Z and lim|n|→+∞q(n) = +∞, and let

F(n, x) = q(n)

⎛
⎝

m1∑
i=1

ai|x|μi −
m2∑
j=1

bj |x|�j
⎞
⎠, (4.3)
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where μ1 > μ2 > · · · > μm1 > �1 > �2 > · · · > �m2 > δ + 1, ai, bj > 0, i = 1, 2, . . . , m1, and j =
1, 2, . . . , m2. Let μ = μm1 , � = �1, and

F1(n, x) = q(n)
m1∑
i=1

ai|x|μi , F2(n, x) = q(n)
m2∑
j=1

bj |x|�j . (4.4)

Then it is easy to verify that all conditions of Theorem 1.2 are satisfied. By Theorem 1.2, (1.1)
has at least a nontrivial homoclinic solution.

Example 4.3. In (1.1), let q : Z → (0,∞) such that q(n) → +∞ as |n| → +∞ and

F(n, x) =
cosn
1 + |n| |x|

|4/3 +
sinn
1 + |n| |x|

3/2. (4.5)

Then

f(n, x) =
4 cosn

3(1 + |n|) |x|
−2/3x +

3 sinn

2(1 + |n|) |x|
−1/2x,

|F(n, x)| ≤ 2|x|4/3
1 + |n| , ∀(n, x) ∈ Z × R, |x| ≤ 1,

|F(n, x)| ≤ 2|x|3/2
1 + |n| , ∀(n, x) ∈ Z × R, |x| ≥ 1,

∣∣f(n, x)∣∣ ≤ 8|x|1/3 + 9|x|1/2
6(1 + |n|) , ∀(n, x) ∈ Z × R.

(4.6)

We can choose n0 such that

cosn0 > 0, sinn0 > 0. (4.7)

Let

η =
cosn0 + sinn0

1 + |n0| . (4.8)

Then

F(n0, x) ≥ η|x|3/2, ∀x ∈ R, |x| ≤ 1. (4.9)

These show that all conditions of Theorem 1.4 are satisfied, where

1 <
4
3
= γ1 < γ2 = γ3 =

3
2
< δ + 1, a1(n) = a2(n) = b(n) =

2
1 + |n| , ϕ(s) =

8s1/3 + 9s1/2

12
.

(4.10)

By Theorem 1.4, (1.1) has at least a nontrivial homoclinic solution.
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