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The mean square BIBO stability is investigated for stochastic control systems with mixed delays
and nonlinear perturbations. The systemwith mixed delays is transformed, then a class of suitable
Lyapunov functionals is selected, and some novel delay-dependent BIBO stabilization in mean
square criteria for stochastic control systems with mixed delays and nonlinear perturbations are
obtained by applying the technique of analyzing controller and the method of existing a positive
definite solution to an auxiliary algebraic Riccati matrix equation. A numerical example is given to
illustrate the validity of the main results.

1. Introduction

In recent years, Bounded-Input Bounded-Output (BIBO) stabilization has been investigated
by many researchers in order to track out the reference input signal in real world, see
[1–6] and some references therein. On the other hand, because of the finite switching
speed, memory effects, and so on, time delays are unavoidable in technology and nature,
commonly exist in various mechanical, chemical engineering, physical, biological, and
economic systems. They can make the concerned control system be of poor performance
and instable, which cause the hardware implementation of the control system to become
difficult. It is necessary to introduce the distributed delay in control systems, which can
describe mathematical modeling of many biological phenomena, for instance, in prey-
predator systems, see [7–9]. And so, BIBO stabilization analysis for mixed delays and
nonlinear systems is of great significance.

In [10, 11], the sufficient condition for BIBO stabilization of the control system with
no delays was proposed by the Bihari-type inequality. In [12, 13], employing the parameters
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technique and the Gronwall inequality investigated the BIBO stability of the system without
distributed time delays. In [14–16], based on Riccati-equations, by constructing appropriate
Lyapunov functions, some BIBO stabilization criteria for a class of delayed control systems
with nonlinear perturbations were established. In [17], the BIBO stabilization problem of a
class of piecewise switched linear systemwas further investigated. However, up to now, these
previous results have been assumed to be in deterministic systems, including continuous
time deterministic systems and discrete time deterministic systems, but seldom in stochastic
systems (see [18], Fu and Liao get several mean square BIBO stabilization criteria in terms of
Razumikhin technique and comparison principle). In practice, stochastic control systems are
more applicable to problems that are environmentally noisly in nature or related to biological
realities. Thus, the BIBO stabilization analysis problems for stochastic case are necessary.

Up to now, to the best of authors knowledge, the method of existence of a positive
definite solution to an auxiliary algebraic Riccati matrix equation is only used to deal with
the BIBO stabilization for deterministic differential equations [14–17], not for stochastic
differential equations.

Motivated by the above discussions, the main aim of this paper is to study the
BIBO stabilization in mean square for the stochastic control system with mixed delays and
nonlinear perturbations. Based on the technique of analyzing controller and transforming
of the system, various suitable Lyapunov functionals are selected, different Riccati matrix
equations are established, and some sufficient conditions guaranteeing BIBO stabilization
in mean square are obtained. Finally, a numerical example is provided to demonstrate the
effectiveness of the derived results.

2. Problem Formulation and Preliminaries

Consider the stochastic control system described by the following equation:

dx(t) =

[
Ax(t) + B1x(t − h1) + B2

∫ t

t−h2

x(s)ds + f(t, x(t)) +Du(t)

]
dt

+

[
C1x(t − τ1) + C2

∫ t

t−τ2
x(s)ds

]
dw(t), t ≥ t0 ≥ 0,

y(t) = Hx(t),

x(θ) = ϕ(θ) ∈ Cb
F0
([t0 − τ, t0];Rn), θ ∈ [t0 − τ, t0],

(2.1)

where x(t), u(t), y(t) are the state vector, control input, control output of the system,
respectively. τ1 > 0, h1 > 0 are discrete time delays, and h2 > 0, τ2 > 0 are distributed
time delays, τ = max{τ1, τ2, h1, h2}. A,B1, B2, C1, C2, D,H are constant matrices with
appropriate dimensional, andC2,D are nonsingular matrices.w(t) = (w1(t),w2(t), . . . ,wn(t))
is an n-dimensional standard Brownian motion defined on a complete probability space
(Ω, F, {Ft}t≥0, P) with a natural filtration {Ft}t≥0. f(t, x(t)) is the nonlinear vector-valued
perturbation bounded in magnitude as

∥∥f(t, x(t))∥∥ ≤ α‖x(t)‖, (2.2)

where α is known positive constant.
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To obtain the control law described by (2.1) of tracking out the reference input of the
system, we let the controller be in the form of

u(t) = u1(t) + u2(t) + u3(t), (2.3)

with

u1(t) = K1(t)x(t) + r(t),

u2(t) = K2(t)x(t − h1) + r(t − h1),

u3(t) = K3(t)x(t − h2) + r(t − h2),

(2.4)

where K1(t), K2(t), K3(t) are the feedback gain matrices, r(t), r(t − h1), r(t − h2) are the
reference inputs.

To derive ourmain results, we need to introduce the following definitions and lemmas.

Definition 2.1 (see [18]). A vector function r(t) = (r1(t), r2(t), . . . , rn(t))
T is said to be an element

of Ln
∞ if ‖r‖∞ = supt∈[t0,+∞)‖r(t)‖ < +∞, where ‖ · ‖ denotes the Euclid norm in Rn or the norm of a

matrix.

Definition 2.2 (see [18]). The nonlinear stochastic control system (2.2) is said to be BIBO stabilized
in mean square if one can construct a controller (2.5) such that the output y(t) satisfies

E

(
‖y(t)‖2

)
≤ N1 +N2‖r‖2∞, (2.5)

where N1,N2 are positive constants.

Definition 2.3 (L-operator). Let Lyapunov functional V : C([−τ, 0];Rn)×R+ → R; its infinitesimal
operator, L, acting on functional V is defined by

LV (x(t), t) = lim
Δ→ 0+

sup
1
Δ
[EV (x(t + Δ), t + Δ) − V (x(t), t)]. (2.6)

Lemma 2.4 (see [19]). For any constant symmetric matrix M ∈ Rn×n, M = MT > 0, scalar r > 0,
vector function g : [0, r] → Rn, such that the integrations in the following are well defined:

r

∫ r

0
gT (s)Mg(s)ds ≥

[∫ r

0
g(s)ds

]T
M

[∫ r

0
g(s)ds

]
. (2.7)

Lemma 2.5 (see [20]). Let x, y ∈ Rn and any n × n positive-definite matrix Q > 0. Then, one has

2xTy ≤ xTQ−1x + yTQy. (2.8)
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3. BIBO Stabilization for Nonlinear Stochastic Systems

Transform the original system (2.1) to the following system:

d

[
x(t) + B1

∫ t

t−h1

x(s)ds

]
=

[
(A + B1)x(t) + B2

∫ t

t−h2

x(s)ds + f(t, x(t))

]
dt

+

[
C1x(t − τ1) + C2

∫ t

t−τ2
x(s)ds

]
dw(t) +Du(t)dt, t ≥ t0 ≥ 0,

y(t) = Hx(t),

x(θ) = ϕ(θ) ∈ Cb
F0
([t0 − τ, t0];Rn), θ ∈ [t0 − τ, t0].

(3.1)

Theorem 3.1. The nonlinear stochastic control system (2.1) or (3.1) with the control law (2.3) is
BIBO stabilized in mean square if ‖h1B1‖ < 1 and there exist symmetric positive-definite matrices
Ri > 0, i = 1, 2, . . . , 10, and Q1 > 0 such that

λmin(Q1) − 2α‖P‖ > 0 (3.2)

and P is the symmetric positive solution of the Riccati equation

P(A + B1) + (A + B1)TP + PΣ1P + Ξ1 + Δ1 = −Q1, (3.3)

where

Σ1 = B2R
−1
1 BT

2 + 2DR10D
T + R−1

5 + R−1
6 +DR10D

TPB1R
−1
7 BT

1 PDR10D
T

+ B1R
−1
8 BT

1 + B1R
−1
9 BT

1 ,

Ξ1 = h2
2(R1 + R3) + h2

1(R2 + R7 + R8 + R9) + R5 + R6 + τ22R4,

Δ1 = (A + B1)TPB1R
−1
2 BT

1 P(A + B1) + CT
1PC1 + CT

1PC2R
−1
4 CT

2PC1

+ τ22C
T
2PC2 + h2

1B
T
1 PB2R

−1
3 BT

2 PB1,

K1 = R10DTP, K2 = K3 = D−1.

(3.4)

Proof. We define a Lyapunov functional V (t, x(t)) as

V (t, x(t)) = V1(t, x(t)) + V2(t) + V3(t) + V4(t) + V5(t) + V6(t) + V7(t), (3.5)
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where

V1(t, x(t)) =

(
x(t) + B1

∫ t

t−h1

x(s)ds

)T

P

(
x(t) + B1

∫ t

t−h1

x(s)ds

)
,

V2(t) =
∫ t

t−h1

xT (s)
(
R5 + PB1R

−1
8 BT

1 P
)
x(s)ds,

V3(t) =
∫ t

t−h2

xT (s)
(
R6 + PB1R

−1
9 BT

1 P
)
x(s)ds,

V4(t) =
∫ t

t−τ1
xT (s)

(
CT

1PC1 + CT
1PC2R

−1
4 CT

2PC1

)
x(s)ds,

V5(t) = h2

∫ t

t−h2

(s − t + h2)xT (s)(R1 + R3)x(s)ds,

V6(t) = τ2

∫ t

t−τ2
(s − t + τ2)xT (s)

(
R4 + CT

2PC2

)
x(s)ds,

V7(t) = h1

∫ t

t−h1

(s − t + h1)xT (s)
(
R2 + R7 + R8 + R9 + BT

1 PB2R
−1
3 BT

2 PB1

)
x(s)ds.

(3.6)

Taking the operator L of V1(t, x(t)) along the trajectory of system (3.1), by Lemmas 2.4 and
2.5, we have

LV1(t, x(t)) = 2

[
x(t) + B1

∫ t

t−h1

x(s)ds)T
]

× P

[
(A + B1)x(t) + B2

∫ t

t−h2

x(s)ds +Du(t) + f(t, x(t))

]

+
1
2
trace

[
C1x(t − τ1) + C2

∫ t

t−τ2
x(s)ds

]
2P

[
C1x(t − τ1) + C2

∫ t

t−τ2
x(s)ds

]

≤ xT (t)
[
P(A + B1) + (A + B1)TP + PB2R

−1
1 BT

2 P

+(A + B1)TPB1R
−1
2 BT

1 P(A + B1)
]
x(t) + 2xTPDf(t, x(t))

+ h2

∫ t

t−h2

xT (s)(R1 + R3)x(s)ds + 2
∫ t

t−h1

xT (s)dsBT
1 PDu(t)

+ xT (t − τ1)
(
CT

1PC1 + CT
1PC2R

−1
4 CT

2PC1

)
x(t − τ1)

+ h1

∫ t

t−h1

xT (s)
(
R2 + BT

1 PB2R
−1
3 BT

2 PB1

)
x(s)ds

+ 2
∫ t

t−h1

xT (s)dsBT
1 Pf(t, x(t)) + 2xTPDu(t) + τ2

∫ t

t−τ2
xT (s)

(
R4 + CT

2PC2

)
ds.

(3.7)
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By the Lemma 2.5, (2.3) and (3.5), we conclude

LV1(t, x(t)) ≤ xT (t)
[
P(A + B1) + (A + B1)TP + PB2R

−1
1 BT

2 P + PR−1
5 P

+ (A + B1)TPB1R
−1
2 BT

1 P(A + B1) + 2PDR10D
TP

+PR−1
6 P + PDR10D

TPB1R
−1
7 BT

1 PDR10D
TP

]
x(t)

+ xT (t − τ1)
(
CT

1PC1 + CT
1PC2R

−1
4 CT

2PC1

)
x(t − τ1)

+ xT (t − h1)
(
R5 + PB1R

−1
8 BT

1 P
)
x(t − h1)

+ xT (t − h2)
(
R6 + PB1R

−1
9 BT

1 P
)
x(t − h2)

+ h1

∫ t

t−h1

xT (s)
(
R2 + BT

1 PB2R
−1
3 B2TPB1 + R7 + R8 + R9

)
x(s)ds

+ τ2

∫ t

t−τ2
xT (s)

(
R4 + CT

2PC2

)
ds + h2

∫ t

t−h2

xT (s)(R1 + R3)x(s)ds

+ 2α
(
‖P‖ + h1‖BT

1 P‖
)
‖x(t)‖2 + 6

(
‖PD‖ + h1‖BT

1 P‖
)
‖r(t)‖∞‖x(t)‖.

(3.8)

Taking the operator L of Vi(t), i = 2, 3, . . . , 7 along the trajectory of system (3.1), we get

LV2(t) = xT (t)
(
R5 + PB1R

−1
8 BT

1 P
)
x(t)

− xT (t − h1)
(
R5 + PB1R

−1
8 BT

1 P
)
x(t − h1),

LV3(t) = xT (t)
(
R6 + PB1R

−1
9 BT

1 P
)
x(t)

− xT (t − h2)
(
R6 + PB1R

−1
9 BT

1 P
)
x(t − h2),

LV4(t) = xT (t)
(
CT

1PC1 + CT
1PC2R

−1
4 CT

2PC1

)
x(t)

− xT (t − τ1)
(
CT

1PC1 + CT
1PC2R

−1
4 CT

2PC1

)
x(t − τ1),

LV5(t) = h2
2x

T (t)(R1 + R3)x(t) − h2

∫ t

t−h2

xT (s)(R1 + R3)x(s)ds,

LV6(t) = τ22x
T (t)

(
R4 + CT

2PC2

)
x(t) − τ2

∫ t

t−τ2
xT (s)

(
R4 + CT

2PC2

)
x(s)ds,

LV7(t) = h2
1x

T (t)
(
R2 + R7 + R8 + R9 + BT

1 PB2R
−1
3 BT

2 PB1

)
x(t)

− h1

∫ t

t−h1

xT (s)
(
R2 + R7 + R8 + R9 + BT

1 PB2R
−1
3 BT

2 PB1

)
x(s)ds.

(3.9)
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Combining (3.8) and (3.9), we have

LV (t, x(t)) ≤ xT (t)
[
P(A + B1) + (A + B1)TP + PB2R

−1BT
2 P + PR−1

6 P

+ (A + B1)TPB1R
−1
2 BT

1 P(A + B1) + 2PDR10D
TP + R5

+ PDR10D
TPB1R

−1
7 BT

1 PDR10D
TP + h2

2(R1 + R3) + R6

+ PB1R
−1
8 BT

1 P + PB1R
−1
9 BT

1 P + CT
1PC2R

−1
4 CT

2PC1

+ h2
1

(
R2 + BT

1 PB2R
−1
3 BT

2 PB1 + R7 + R8 + R9

)
+ CT

1PC1

+τ22
(
R4 + CT

2PC2

)
+ PR−1

5 P
]
x(t) + 2αh1‖BT

1 P‖‖x(t)‖2

+ 2α‖P‖‖x(t)‖2 + 6
(
‖PD‖ + h1‖BT

1 P‖
)
‖r(t)‖∞‖x(t)‖

≤ −
(
λmin(Q1) − 2α

(
‖P‖ + h1‖BT

1 P‖
))

‖x(t)‖2

+ 6
(
‖PD‖ + h1‖BT

1 P‖
)
‖r(t)‖∞‖x(t)‖.

(3.10)

Let ρ1 = λmin(Q1) − 2α(‖P‖ + h1‖BT
1 P‖), ρ2 = 6(‖PD‖ + h1‖BT

1 P‖)‖r(t)‖∞; we have

LV (t, x(t)) ≤ −ρ1‖x(t)‖2 + ρ2‖x(t)‖. (3.11)

Set

β1 = λmax(P) + h1λmax(PB1) + h1λmax

(
BT
1 P

)
+ h2

1λmax

(
BT
1 PB1

)
,

β2 = h1λmax

(
R5 + PB1R

−1
8 BT

1 P
)
, β3 = h2λmax

(
R6 + PB1R

−1
9 BT

1 P
)
,

β4 = τ1λmax

(
CT

1PC1 + CT
1PC2R

−1
4 CT

2PC1

)
, β6 = τ32λmax

(
R4 + CT

2PC2

)
,

β5 = h3
2λmax(R1 + R3), β7 = h3

1λmax

(
R2 + BT

1 PB2R
−1
3 BT

2 PB1 + R7 + R8 + R9

)
,

(3.12)

under an assumption that V (t, x(t)) ≤ V (t0, x(t0)) for all t ≥ t0, then

λmin(P)E

∥∥∥∥∥x(t) + B1

∫ t

t−h1

x(s)ds

∥∥∥∥∥
2

≤ V (t, x(t)) ≤ V (t0, x(t0)) ≤
7∑
i=1

βiE
∥∥ϕ(θ)∥∥2

, (3.13)

so

E

∥∥∥∥∥x(t) + B1

∫ t

t−h1

x(s)ds

∥∥∥∥∥
2

≤
∑7

i=1 βiE
∥∥ϕ(θ)∥∥2

λmin(P)
. (3.14)
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Thus, according to [21, Theorem 1.3 page 331], we have

E‖x(t)‖2 ≤
(
1 + h1‖B1‖
1 − h1‖B1‖

)2∑7
i=1 βiE‖ϕ(θ)‖2
λmin(P)

. (3.15)

If not, there exist t > t0, such that V (t, x(t)) ≥ V (s, x(s)) for all s ∈ [t0, t), and one has

D+
EV (t, x(t)) ≥ 0. (3.16)

In view of Ito’s formula, we obtain

D+
EV (t, x(t)) = ELV (t, x(t)). (3.17)

By (3.16) and (3.17), it is easy to derive that

0 ≤ D+
EV (t, x(t)) = ELV (t, x(t)) ≤ −ρ1E‖x(t)‖2 + ρ2E‖x(t)‖, (3.18)

so E‖x(t)‖ ≤ ρ2/ρ1. By (3.18), we can conclude that

E‖x(t)‖2 ≤ ρ2
ρ1

E‖x(t)‖ ≤
(
ρ2
ρ1

)2

. (3.19)

By (3.15) and (3.19), we get

E‖x(t)‖2 ≤ ρ22
ρ21

+
(
1 + h1‖B1‖
1 − h1‖B1‖

)2∑7
i=1 βiE‖ϕ(θ)‖2
λmin(P)

, (3.20)

Thus

E‖y(t)‖2 ≤ ‖H‖2E‖x(t)‖2

≤ ‖H‖2ρ22
ρ21

+
(
1 + h1‖B1‖
1 − h1‖B1‖

)2 ‖H‖2 ∑7
i=1 βiE‖ϕ(θ)‖2
λmin(P)

≤ N1 +N2‖r‖2∞,

(3.21)

where

N1 =
(
1 + h1‖B1‖
1 − h1‖B1‖

)2∑7
i=1 βi‖H‖2
λmin(P)

E‖ϕ(θ)‖2, N2 =
36‖H‖2(‖PD‖ + h1‖BT

1 P‖
)

λmin(Q1) − 2α
(‖P‖ − h1‖BT

1 P‖
) .
(3.22)

By Definition 2.2, the nonlinear stochastic control system (3.1) with the control law (2.3) is
said to be BIBO stabilized in mean square. This completes the proof.
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If we transform the original system (2.1) to the following system

d

[
x(t) + B2

∫ t

t−h2

(s − t + h2)x(s)ds

]
=
[
(A + h2B2)x(t) + B1x(t − h1) + f(t, x(t))

]
dt +Du(t)dt

+

[
C1x(t − τ1) + C2

∫ t

t−τ2
x(s)ds

]
dw(t), t ≥ t0 ≥ 0

y(t) = Hx(t)

x(θ) = ϕ(θ) ∈ Cb
F0
([t0 − τ, t0];Rn), θ ∈ [t0 − τ, t0],

(3.23)

we can get the following result.

Theorem 3.2. The nonlinear stochastic control system (3.23) with the control law (2.3) is BIBO
stabilized in mean square if there exist symmetric positive-definite matrices Si > 0, i = 1, 2, . . . , 10,
and Q2 > 0 such that

λmin(Q2) − 2α‖P̂‖ > 0 (3.24)

and P̂ is the symmetric positive solution of the Riccati equation

P̂(A + h2B2) + (A + h2B2)
T P̂ + P̂Σ2P̂ + Δ2 + Ξ2 = −Q2, (3.25)

where

Σ2 = B1S
−1
2 BT

1 + 2DS10D
T + S−1

5 + S−1
6 ,

Δ2 = (A + h2B2)
T P̂B2S

−1
1 BT

2 P̂(A + h2B2) +DTP̂S−1
7 P̂D + τ22C

T
2 P̂C2

+DTP̂S−1
8 P̂D + CT

1 P̂C1 + CT
1 P̂C2S

−1
4 CT

2 P̂C1 +DTP̂S−1
9 P̂D

+ BT
1 P̂B2S

−1
3 BT

2 P̂B1,

Ξ2 = S2 + S5 + S6 +
1
3
h4
2(S1 + S3 + S7 + S8 + S9) + τ22S4,

K1 = S10D
TP̂ , K2 = K3 = D−1.

(3.26)

Proof. We define a Lyapunov functional V (t, x(t)) as

V (t, x(t)) = V1(t, x(t)) + V2(t) + V3(t) + V4(t) + V5(t) + V6(t), (3.27)
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where

V1(t, x(t)) =

(
x(t) + B2

∫ t

t−h2

(s − t + h2)x(s)ds

)T

P̂

(
x(t) + B2

∫ t

t−h2

(s − t + h2)x(s)ds

)
,

V2(t) =
∫ t

t−h1

xT (s)
(
S2 + S5 + BT

1 P̂B2S
−1
3 BT

2 P̂B1 +DTP̂S−1
8 P̂D

)
x(s)ds,

V3(t) =
∫ t

t−h2

xT (s)
(
S6 +DTP̂S−1

9 P̂D
)
x(s)ds,

V4(t) =
∫ t

t−τ1
xT (s)

(
CT

1 P̂C1 + CT
1 P̂C2S

−1
4 CT

2 P̂C1

)
x(s)ds,

V5(t) = τ2

∫ t

t−τ2
(s − t + τ2)xT (s)

(
S4 + CT

2 P̂C2

)
x(s)ds,

V6(t) =
1
3

∫ t

t−h2

(s − t + h2)
3xT (s)(S1 + S3 + S7 + S8 + S9)x(s)ds.

(3.28)

Let ρ1 = λmin(Q2)−2α(1+h2
2)‖P̂‖), ρ2 = 6(1+h2

2)‖P̂D‖‖r(t)‖∞. The rest of the proof is essentially
as that of Theorem 3.1, and hence is omitted. This completes the proof.

Remark 3.3. If we transform the original system (2.1) to the following system

d

[
x(t) + B1

∫ t

t−h1

x(s)ds + B2

∫ t

t−h2

(s − t + h2)x(s)ds

]

=
[
Ax(t) + f(t, x(t)) +Du(t)

]
dt

+

[
C1x(t − τ1) + C2

∫ t

t−τ2
x(s)ds

]
dw(t), t ≥ t0 ≥ 0

y(t) = Hx(t)

x(θ) = ϕ(θ) ∈ Cb
F0
([t0 − τ, t0];Rn), θ ∈ [t0 − τ, t0],

(3.29)

using the same process of Theorem 3.1, we can get the corresponding BIBO stability in mean
square results. Here we omitted it.

Theorem 3.4. The nonlinear stochastic control system (2.1) with the control law (2.3) is BIBO
stabilized in mean square if there exist symmetric positive-definite matrices Ωi > 0, i = 1, 2, . . . , 6,
and Q3 > 0 such that

λmin(Q3) − 2α‖P̃‖ > 0 (3.30)
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and P̃ is the symmetric positive solution of the Riccati equation

P̃A +ATP̃ + P̃Σ3P̃ + Δ3 + Ξ3 = −Q3, (3.31)

where

Σ3 = B1Ω−1
1 BT

1 + h2B2Ω−1
2 BT

2 + 2DΩ6D
T + Ω−1

4 + Ω−1
5 ,

Δ3 = CT
1 P̃C1 + τ2C

T
2 P̃C1Ω−1

3 CT
1 P̃C2 + τ22C

T
2 P̃C2,

Ξ3 = Ω1 + h2Ω2 + τ2Ω3 + Ω4 + Ω5,

K1 = Ω6D
TP̃ , K2 = K3 = D−1.

(3.32)

Proof. We define a Lyapunov functional V (t, x(t)) as

V (t, x(t)) = V1(t, x(t)) + V2(t) + V3(t) + V4(t) + V5(t), (3.33)

where

V1(t, x(t)) = x(t)T P̃x(t),

V2(t) =
∫ t

t−h1

xT (s)(Ω1 + Ω4)x(s)ds +
∫ t

t−h2

xT (s)Ω5x(s)ds,

V3(t) =
∫ t

t−h2

(s − t + h2)xT (s)Ω2x(s)ds,

V4(t) =
∫ t

t−τ1
xT (s)

(
CT

1 P̃C1 + τ2C
T
2 P̃C1Ω−1

3 CT
1 P̃C2

)
x(s)ds,

V5(t) =
∫ t

t−τ2
(s − t + τ2)xT (s)

(
Ω3 + τ2C

T
2 P̃C2

)
x(s)ds.

(3.34)

Let ρ1 = λmin(Q3) − 2α‖P̃‖), ρ2 = 6‖P̃D‖‖r(t)‖∞. The following proof runs as that of
Theorem 3.1., and hence is omitted. This completes the proof.

Remark 3.5. The systems (2.1), (3.1), and (3.23) are also asymptotically stable in mean square
when all the conditions in Theorems 3.1–3.4 are satisfied, if r(t) = 0, r(t− h1) = 0, r(t− h2) = 0
in (2.3).

Remark 3.6. In [18], the authors studied the BIBO stabilization of stochastic delayed systems
with uncertainty in terms of Razumikhin technique and comparison principle. In the present
paper, we are the first to introduce a newway in the study of BIBO stabilization for stochastic
delayed systems by using algebraic Riccati matrix equation, which makes the stability
conditions be morefeasible.
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Remark 3.7. In [18], researchers investigate the BIBO stabilization of stochastic delayed
systems with uncertainty without distributed time delays and nonlinear perturbations. In
[15], the authors discussed the BIBO stabilization of mixed time-delayed systems with
nonlinear perturbations, but the environmental noise is not taken into account in the models.
Therefore, compared with (see [14–18]), the systems reported in this paper are more general.

Remark 3.8. The criteria given in Theorem 3.1–3.4 are delay dependent with respect to delays.
Generally speaking, the delay-dependent stability criterion is less conservative than delay-
independent stability when the time delay is small.

4. Example

In this section, a numerical example will be presented to show the effectiveness of the main
results derived in this paper.

Example 4.1. As a simple application of Theorem 3.4, consider the stochastic control system
(2.1) with control law (2.3); the parameters are given by

A =

(−2 0

0 −1

)
, B1 =

(−1 1

1 −2

)
, B2 = C1 =

(
1 0

0 1

)
, D =

(−1 0

0 −1

)
, (4.1)

C2 = 0, f = [0.25 sin(t), 0.25 cos(t)]T .

For

Ωi =

(
1 0

0 1

)
i = 1, 2, . . . , 6, Q3 =

(
11 7

7 14

)
, (4.2)

solving for P̃ in the Riccati matrix (3.31) gives us

P =

(
1 1

1 4

)
, (4.3)

therefore, the stabilizing feedback gain matrix is given by

K1 =

(−11 −7
−7 −14

)
, K2 = K3 =

(−1 0

0 −1

)
. (4.4)

Meanwhile, we obtain the maximum value τmax = 0.6667.

5. Conclusions

The problem of delay-dependent BIBO stabilization in mean square for the stochastic control
systems with mixed delays and nonlinear perturbations was investigated. A suitable class of
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Lyapunov functional combinedwith the descriptor model transformation and decomposition
technique of controller were constructed to derive some novel mean square BIBO stability
criteria. This paper was the first to successfully introduce the method of Riccati matrix
equation to stochastic BIBO stabilization. A numerical example was given to illustrate the
validity of the main results.
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