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The synchronization problem of new discrete-time complex networks with randomly occurring
coupling and distributed time-varying delay is investigated. Compared with the previous work,
the distributed delay is assumed to be timevarying. Moreover, the effects of both variation
range and probability distribution of distributed time-varying delay are taken into consideration.
The randomly occurring coupling and distributed delay in complex networks are considered
by introducing two Bernoulli stochastic variables. By using some novel analysis techniques,
Kronecker product and Lyapunov functional candidate, some delay-distribution-dependent
conditions are derived to ensure that the discrete-time complex network with randomly coupling
and distributed time-varying delay is synchronized in mean square. A numerical simulation
example is provided to verify the effectiveness and the applicability of the proposed approach.

1. Introduction

Synchronization is an important property of complex networks, which can be seen in natural,
social, physical and biological fields, and has been found applications in everywhere of
real world [1–17]. In engineering applications such as network-based control, time-series
analysis, and image processing, it is often necessary to formulate a discrete-time analog of
the continuous-time networks. Recently, synchronization of discrete-time complex networks
has drawn much interests [8, 9, 11–14].

In practical situations, timedelays in complex networks are necessary to be taken into
account for modeling a realistic networks since the information transmission within complex
networks is in general not instantaneous [18–28]. Synchronization problem of complex
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networks with timedelay has been investigated by many researchers [4, 6–12, 16, 17]. It
is worth mentioning that the distributed delay occurs frequently in networks and it has
been drawing increasing research attention [6, 16, 17]. Very recently,Liu et al. introduced
the distributed delay in the form of constant delay into the discrete-time systems [9, 10].
However, in practice, time-varying delay in networks occurs commonly in most designs.
Therefore, the study of complex networks with distributed time-varying delay is more
important than those with constant delays.

In the existing references for complex networks, the deterministic time-delay case was
wellstudied; see, for example, [6, 7, 9, 11, 12]. Actually, the time delay, in such networks exist
in a stochastic fashion [18, 29]. In [29], if some values of the time delay in a probabilistic
universal learning networks are very large but the probabilities of the delay taking such
large values are very small, then it may lead to a more conservative result if only the
information of variation range of the time delay is considered. For this case, if one derives
the criteria by only using the variation range of time delay, the results could lead to more
conservative. In [18], the randomly discrete delay in networks was introduced without
considering distributed delay. On the other hand, another interesting random phenomenon,
randomly occurring coupling term in complex networks, has been largely overlooked. For
networks with communication constraints, such random occurring coupling may be subject
to random abrupt changes, which may have resulted from abrupt phenomena such as
random failures, changes in the interconnections of subsystems and sudden environment
changes, and so forth. An example for randomly occurring coupling is the blackouts in
complex bulk power grids in many nations [30], which result in huge losses. To the best of our
knowledge, the synchronization problem for discrete-time complex networks with distributed
time-varying delay has received very little attention, not to mention the case that randomly
occurring coupling and randomly distributed delay are also involved.

Motivated by the above discussions, the aim of this paper is to investigate the
synchronization of discrete-time complex networks with randomly occurring coupling and
distributed delay in mean square. By using two stochastic variables which satisfy Bernoulli
random binary distribution, we propose a new model of complex networks. The effects of
both variation range and probability distribution of distributed delay are considered to derive
the stability criteria. The proposed results take some well-studied models as special cases.
Via a Lyapunov-Krasovskii functional and some new analysis techniques, some sufficient
conditions for synchronization in mean square are established for the addressed networks
with randomly occurring coupling and distributed delay. An illustrative example is given to
show the effectiveness of the proposed results.

2. Preliminaries

Notations

Throughout this paper, R
n and R

n×m denote, respectively, the n-dimensional Euclidean space
and the set of all real matrices. The superscript “T” denotes matrix transposition and the
notation X ≥ Y (resp., X > Y ), where X and Y are symmetric matrices, means that X − Y
is positive semidefinite (resp., positive definite). In symmetric block matrices, the symbol ∗
is used as an ellipsis for terms induced by symmetry. Z≥0 denotes the set including zero and
positive integers. E{x} and E{x | y} denote the expectation of x and the expectation of x
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conditional on y. | · | stands for the Euclidean vector norm in R
n. The Kronecker product of

matrices Q ∈ R
m×n and R ∈ R

p×q is a matrix in R
mp×nq and denoted as Q ⊗ R.

Consider complex networks with mixed time-varying delays and randomly occurring
coupling:

xi(k + 1) = f(xi(k)) + g(xi(k − τ(k))) +
−1∑

m=−d(k)
h(xi(k +m)) + ρ(k)

N∑

j=1

w1ijΓxj(k)

+
(
1 − ρ(k)

) N∑

j=1

w2ijΓxj(k), i = 1, 2, . . . ,N,

(2.1)

where xi(k) = [xi1(k), xi2(k), . . . , xin(k)]
T ∈ R

n is the state vector of the ith node;
f(xi(k)) = (f1(xi1(k)), . . . , fn(xin(k)))

T , g(xi(k)) = (g1(xi1(k)), . . . , gn(xin(k)))
T , and

h(xi(k)) = (h1(xi1(k)), . . . , hn(xin(k)))
T are unknown but sector-bounded nonlinear function;

τ(k) and d(k) denote discrete and distributed time-varying delays, respectively; Γ > 0
represents the inner coupling matrix between the subsystems;Wq = (wqij)N×N is the coupling
configuration matrices representing the coupling strength and the topological structure of the
networks satisfying

wqij = wqji ≥ 0
(
i /= j

)
, wqii =

N∑

j=1,j /= i

wqij , q = 1, 2, i, j = 1, 2, . . . ,N. (2.2)

ρ(k) is a stochastic variable that describes the following random events for the system (2.1):

Event 1: system (2.1) experiences W1,

Event 2: system (2.1) experiences W2.
(2.3)

Let ρ(k) be a Bernoulli distributed sequence defined by

ρ(k) =

{
1, if Event 1 occurs,
0, if Event 2 occurs,

(2.4)

where ρ(k) satisfies Prob{ρ(k) = 1} = E{ρ(k)} = ρ0, and Prob{ρ(k) = 0} = ρ0.

Remark 2.1. Recently,Liu et al. introduced the distributed delay in discrete-time systems [9,
10]. However, the distributed delay in their well-studied works is considered as constant
distributed delay or infinite distributed delay. Due to the fact that time-varying delay takes
the usual time delay as special case, in this paper, we aim to investigate synchronization
of complex networks with the time-varying distributed delay. In next section, we use some
novel techniques to deal with the interval time-varying distributed delay in discrete-time
systems.

Remark 2.2. In the existing results, the synchronization of complex networks with determinis-
tic coupling or coupling with stochastic disturbances has been well studied; see, for example,
[4, 11, 12]. Different with these works, in this paper, the random variable ρ(k) is used to model
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the probability distribution of the coupling terms. To our knowledge, this represents the first
attempt to take into account the occurrence of different coupling terms in a probabilistic way
by binary description for the addressed complex networks. In this paper, we call this coupling
term as randomly occurring coupling.

Remark 2.3. As mentioned in the introduction, randomly occurring coupling in complex
system resides in every field of our world. For example, the blackouts in complex bulk power
girds are a case of randomly occurring coupling. In usual time, the connections are normal,
which means that ρ0 � ρ0. If the blackouts happen in complex bulk power girds, the case of
ρ(k) = 0 occurs and the connections break down.

Throughout this paper, the following assumptions and definitions are needed.

Assumption 2.4. For for all u, v ∈ R
n, the nonlinear function f(·) and g(·) are assumed to

satisfy the following sector-bounded condition

(
f(u) − f(v) −H1(u − v)

)T(
f(u) − f(v) −H2(u − v)

)
≤ 0,

(
g(u) − g(v) −M1(u − v)

)T(
g(u) − g(v) −M2(u − v)

)
≤ 0,

(h(u) − h(v) − L1(u − v))T (h(u) − h(v) − L2(u − v)) ≤ 0,

(2.5)

where H1, H2, M1, M2, L1, and L2 are real constant matrices.

Remark 2.5. This assumption was first introduced in [25] and has been subsequently used
in many recent networks papers (see, e.g., [9, 11, 12, 16]). The nonlinear functions in
Assumption 2.4 are known as sector-like descriptions of the nonlinearities, which are in a
more general form than the usual Lipschitz condition.

Assumption 2.6. The discrete time-varying delay τ(k) and distributed time-varying delay
d(k) are bounded, namely, 0 < τm ≤ τ(k) ≤ τM, 0 < dm ≤ d(k) ≤ dM. And the distributed
delay’s probability distribution can be observed; that is, assume that d(k) takes values in
[dm1 : dM1 ] or [dm2 : dM2 ] and Prob{d(k) ∈ [dm1 : dM1 ]} = ξ0, where dm ≤ dm1 < dM1 < dm2 < dM2 ≤
dM, and 0 ≤ ξ0 ≤ 1.

Define the two mapping functions

d1(k) : Z≥0 −→
[
dm1 : dM1

]
, d2(k) : Z≥0 −→

[
dm2 : dM2

]
, (2.6)

where for any k0 ∈ Z≥0 such that dk0 ∈ [dmi : dMi ], we have dk0
i = dk0 (i = 1, 2). Then, define

the two sets

R1 = {k | k ∈ Z≥0, d(k) = d1(k)}, R2 = {k | k ∈ Z≥0, d(k) = d2(k)}. (2.7)

Clearly, R1 ∪ R2 = Z≥0 and R1 ∩ R2 = Φ (empty set). Define a stochastic variable as

ξ(k) =

{
1, k ∈ R1,

0, k ∈ R2.
(2.8)
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In the following, we denote x(k), x(k + i), x(k − τ(k)), τ(k), d(k), d1(k), d2(k), ρ(k), and
ξ(k), by xk, xk+i, xτ , τk, dk, dk,1, dk,2, ρk, and ξk, respectively. From the above discussion,
the complex networks with randomly distributed time-varying delay and coupling can be
described in compact form by using Kronecker product “⊗′′ of matrices:

xk+1 = F(xk) +G(xτ) + ξk
−1∑

i=−dk,1
H(xk+i) + (1 − ξk)

−1∑

i=−dk,2
H(xk+i)

+ ρk(W1 ⊗ Γ)xk +
(
1 − ρk

)
(W2 ⊗ Γ)xk,

(2.9)

where xk = (xT
k,1, x

T
k,2, . . . , x

T
k,N

)T , F(xk) = (fT (xk,1), fT (xk,2), . . . , fT (xk,N))T , G(xτ) =

(gT (xτ,1), gT (xτ,2), . . . , gT (xτ,N))T , H(xk) = (hT (xk,1), hT (xk,2), . . . , hT (xk,N))T .

Remark 2.7. Clearly, in [9, 11, 12], the variation range of the discrete delay is employed
to derive the stability criteria. However, in practical situation, if some values of the delay
are very large but the probabilities of the delay taking such large values are very small, it
may result in a more conservative result if only the variation range of mixed time delays is
considered. By using the new functions dk,1, dk,2, ξk, (2.1) can be converted into an equivalent
form (2.9). In (2.9), the probabilistic effects of the mixed time delays have been translated
into the parameter matrices of the transformed system. Thus, it can be seen that, based on the
new model (2.9), the synchronization conditions can be derived.

Remark 2.8. Note that the introduction of time delay in the form of binary stochastic variable
was first proposed in [31] and then successfully used in [18, 32, 33]. In [18], the authors
employ stochastic discrete time-varying delay to investigate the stability of neural networks.
Different with this paper, we consider the randomly distributed time-varying delay in
networks. It is also worth mentioning that it is easy to extend our main results to randomly
discrete delay in complex networks.

Remark 2.9. From Assumption 2.6 and the definitions of ρk and ξk, it can be seen that ρk and
ξk are Bernoulli distributed white sequences with Prob{ξk = 1} = E{ξk} = ξ0 and Prob{ξk =
0} = ξ0. Moreover, it can be shown that E{ρk − ρ0} = 0, E{ξk − ξ0} = 0, E{(ρk − ρ0)

2} = ρ0ρ0,
and E{(ξk − ξ0)

2} = ξ0ξ0.

Definition 2.10. The discrete-time complex networks with randomly distributed time-varying
delay and occurring coupling are synchronized in mean square if the following holds:

lim
k→+∞

E

{∣∣xk,i − xk,j
∣∣2
}
= 0, ∀1 ≤ i < j ≤N. (2.10)

3. Main Results

Before we give the main results of this paper, the following lemmas are needed.

Lemma 3.1. The Kronecker product has the following properties:

(1) (αA) ⊗ B = A ⊗ (αB),
(2) (A + B) ⊗ C = A ⊗ C + B ⊗ C,
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(3) (A ⊗ B)(C ⊗D) = (AC) ⊗ (BD),

(4) (A ⊗ B)T = AT ⊗ BT .

Lemma 3.2. Let U = (αij)N×N, P ∈ R
n×n, x = (xT1 , x

T
2 , . . . , x

T
N)T , where xi = (xi1, xi2, . . . , xin)

T ∈
R
n, and y = (yT1 , y

T
2 , . . . , y

T
N)T , where yi = (yi1, yi2, . . . , yin)

T ∈ R
n (k = 1, 2, . . . ,N). If U = UT

and each row sum of U is zero, then

xT (U ⊗ P)y = −
∑

1≤i<j≤N
αij
(
xi − xj

)T
P
(
yi − yj

)
. (3.1)

Lemma 3.3 (see [9]). LetM ∈ R
n×n be a positive semidefinite matrix, let xi ∈ R

n be a vector, and
let ai ≥ 0 (i = 1, 2, . . .) be scalars. If the series concerned are convergent, then the following inequality
holds:

(
+∞∑

i=1

aixi

)T

M
(

+∞∑

i=1

aixi

)
≤
(

+∞∑

i=1

ai

)
+∞∑

i=1

aix
T
iMxi. (3.2)

Lemma 3.4 (see [9]). Let A = (aij)m×n, B = (bij)p×q, and C = (cij)m×q = AB. If the sum of all
elements in each column of A (row of B) is zero, then the sum of all elements in each column (row) of
C is zero. Moreover, if A is a symmetric matrix and the sum of all elements in each row of A is zero,
then, for any positive integer n, the sum of all elements in each row of An is zero.

For the sake of simplicity, we denote by w
(2)
qij , q = 1, 2, the (i, j) entry of the matrix

W2
q (q = 1, 2). Now, we give our main result in this paper as follows.

Theorem 3.5. Under Assumptions (A1)-(A2), the discrete-time complex networks with randomly
coupling and distributed time-varying delays are synchronized in mean square, if there exist positive
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definite matrices P,Q,R1, R2 and diagonal matrices V, S,Z with appropriate dimensions such that the
following matrix inequalities hold:

Ξij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ξij11 Ξij12 SM̌ Ξij14 ZĽ Ξij16 Ξij17

∗ Ξij22 0 P 0 ξ0P ξ0P
∗ ∗ Ξij33 0 0 0 0
∗ ∗ ∗ P −Q 0 ξ0P ξ0P
∗ ∗ ∗ ∗ Ξij55 0 0
∗ ∗ ∗ ∗ ∗ Ξij66 0
∗ ∗ ∗ ∗ ∗ ∗ Ξij77

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, 1 ≤ i < j ≤N (3.3)

Ξij11 = −ρ0Nw
(2)
1ij ΓPΓ − ρ0Nw

(2)
2ij ΓPΓ − P − VĤ − SM̂ − ZL̂,

Ξij12 = −ρ0Nw1ijPΓ − ρ0Nw2ijPΓ + VȞ,

Ξij14 = −ρ0Nw1ijPΓ − ρ0Nw2ijPΓ,

Ξij16 = −ξ0ρ0Nw1ijPΓ − ξ0ρ0Nw2ijPΓ,

Ξij17 = −ξ0ρ0Nw1ijPΓ − ξ0ρ0Nw2ijPΓ,

Ξij22 = P − V,
Ξij33 = (τM − τm + 1)Q − S,

Ξij55 =
[
dM1 +

1
2

(
dM1 − d

m
1

)(
dM1 + dm1 − 1

)]
R1

+
[
dM2 +

1
2

(
dM2 − d

m
2

)(
dM2 + dm2 − 1

)]
R2 − Z,

Ξij66 = ξ0P −
1
dM1

R1,

Ξij77 = ξ0P −
1
dM2

R2.

(3.4)

Proof. We construct the following Lyapunov-Krasovskii functional V (xk, k) by

V (xk, k) =
4∑

i=1

Vi(xk, k), (3.5)
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where

V1(xk, k) = xTk (U ⊗ P)xk,

V2(xk, k) =
k−1∑

i=k−τk,1
GT (xi)(U ⊗Q)G(xi) +

−τm∑

i=−τM+1

k−1∑

j=k+i

GT(xj
)
(U ⊗Q)G

(
xj
)
,

V3(xk, k) =
−1∑

i=−dk,1

k−1∑

j=k+i

HT(xj
)
(U ⊗ R1)H

(
xj
)

+
−dm1 −1∑

i=−dM1

−1∑

j=i+1

k−1∑

l=k+j

HT (xl)(U ⊗ R1)H(xl),

V4(xk, k) =
−1∑

i=−dk,2

k−1∑

j=k+i

HT(xj
)
(U ⊗ R2)H

(
xj
)

+
−dm2 −1∑

i=−dM2

−1∑

j=i+1

k−1∑

l=k+j

HT (xl)(U ⊗ R2)H(xl),

(3.6)

with

U =

⎡
⎢⎢⎣

N − 1 −1 · · · −1
−1 N − 1 · · · −1
· · · · · · · · · · · ·
−1 −1 · · · N − 1

⎤
⎥⎥⎦

N×N

. (3.7)

Calculating the difference of V (xk, k), we have

E{ΔV (xk, k)} =
4∑

i=1

E{ΔVi(xk, k)}, (3.8)
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where

E{ΔV1(xk, k)} = E{V1(xk+1, k + 1) | xk} − V1(xk, k)

= FT (xk)(U ⊗ P)F(xk) +GT (xτ)(U ⊗ P)G(xτ) + ξ0

−1∑

i=−dk,1
HT (xk+i)(U ⊗ P)

×
−1∑

i=−dk,1
H(xk+i) + ξ0

−1∑

i=−dk,2
HT (xk+i)(U ⊗ P)

−1∑

i=−dk,2
H(xk+i)

+ ρ0x
T
k (W1 ⊗ Γ)T (U ⊗ P)(W1 ⊗ Γ)xk + ρ0x

T
k (W2 ⊗ Γ)T (U ⊗ P)(W2 ⊗ Γ)xk

+ 2FT (xk)(U ⊗ P)G(xτ) + 2ξ0F
T (xk)(U ⊗ P)

−1∑

i=−dk,1
H(xk+i)

+ 2ξ0F
T (xk)(U ⊗ P)

−1∑

i=−dk,2
H(xk+i) + 2ρ0F

T (xk)(U ⊗ P)(W1 ⊗ Γ)xk

+ 2ρ0F
T (xk)(U ⊗ P)(W2 ⊗ Γ)xk + 2ξ0G

T (xτ)(U ⊗ P)
−1∑

i=−dk,1
H(xk+i)

+ 2ξ0G
T (xτ)(U ⊗ P)

−1∑

i=−dk,2
H(xk+i) + 2ρ0G

T (xτ)(U ⊗ P)(W1 ⊗ Γ)xk

+ 2ρ0G
T (xτ)(U ⊗ P)(W2 ⊗ Γ)xk + 2ξ0ρ0

−1∑

i=−dk,1
HT (xk+i)(U ⊗ P)(W1 ⊗ Γ)xk

+ 2ξ0ρ0

−1∑

i=−dk,1
HT (xk+i)(U ⊗ P)(W2 ⊗ Γ)xk

+ 2ξ0ρ0

−1∑

i=−dk,2
HT (xk+i)(U ⊗ P)(W1 ⊗ Γ)xk

+ 2ξ0ρ0

−1∑

i=−dk,2
HT (xk+i)(U ⊗ P)(W2 ⊗ Γ)xk − xTk (U ⊗ P)xk,

E{ΔV2(xk, k)} = E{V2(xk+1, k + 1) | xk} − V2(xk, k)

≤ (τM − τm + 1)GT (xk)(U ⊗Q)G(xk) −GT (xτ)(U ⊗Q)G(xτ).
(3.9)
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By using Lemma 3.1, we have

E{ΔV3(xk, k)} = E{V3(xk+1, k + 1) | xk} − V3(xk, k)

=
−1∑

i=−dk+1,1

k∑

j=k+i+1

HT(xj
)
(U ⊗ R1)H

(
xj
)
−

−1∑

i=−dk,1

k−1∑

j=k+i

HT(xj
)
(U ⊗ R1)H

(
xj
)

+
−dm1 −1∑

i=−dM1

−1∑

j=i+1

⎡

⎣
k∑

l=k+j+1

−
k−1∑

l=k+j

⎤

⎦HT (xl)(U ⊗ R1)H(xl)

=
−1∑

i=−dk+1,1

k−1∑

j=k+i+1

HT(xj
)
(U ⊗ R1)H

(
xj
)
+

−1∑

i=−dk+1,1

HT (xk)(U ⊗ R1)H(xk)

−
−1∑

i=−dk,1

k−1∑

j=k+i+1

HT(xj
)
(U ⊗ R1)H

(
xj
)
−

k−1∑

i=k−dk,1
HT (xi)(U ⊗ R1)H(xi)

+
−dm1 −1∑

i=−dM1

−1∑

j=i+1

[
HT (xk)(U ⊗ R1)H(xk) −HT(xk+j

)
(U ⊗ R1)H

(
xk+j

)]

≤
−1∑

i=−dm1

k−1∑

j=k+i+1

HT(xj
)
(U ⊗ R1)H

(
xj
)
+
−dm1 −1∑

i=−dM1

k−1∑

j=k+i+1

HT(xj
)
(U ⊗ R1)H

(
xj
)

+ dM1 HT (xk)(U ⊗ R1)H(xk) −
−1∑

i=−dm1

k−1∑

j=k+i+1

HT(xj
)
(U ⊗ R1)H

(
xj
)

−
−1∑

i=−dk,1
HT (xk+i)(U ⊗ R1)H(xk+i)

+
1
2

(
dM1 − d

m
1

)(
dM1 + dm1 − 1

)
HT (xk)(U ⊗ R1)H(xk)

−
−dm1 −1∑

i=−dM1

k−1∑

j=k+i+1

HT(xj
)
(U ⊗ R1)H

(
xj
)

≤ dM1 HT (xk)(U ⊗ R1)H(xk) −
−1∑

i=−dk,1
HT (xk+i)(U ⊗ R1)H(xk+i)

+
1
2

(
dM1 − d

m
1

)(
dM1 + dm1 − 1

)
HT (xk)(U ⊗ R1)H(xk) (Lemma 3.1)

≤ dM1 HT (xk)(U ⊗ R1)H(xk)

+
1
2

(
dM1 − d

m
1

)(
dM1 + dm1 − 1

)
HT (xk)(U ⊗ R1)H(xk)

− 1
dM1

⎛

⎝
−1∑

i=−dk,1
H(xk+i)

⎞

⎠
T

(U ⊗ R1)

⎛

⎝
−1∑

i=−dk,1
H(xk+i)

⎞

⎠.

(3.10)
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Similarly, we have

E{ΔV4(xk, k)} ≤ dM2 HT (xk)(U ⊗ R2)H(xk)

+
1
2

(
dM2 − d

m
2

)(
dM2 + dm2 − 1

)
HT (xk)(U ⊗ R2)H(xk)

− 1
dM2

⎛

⎝
−1∑

i=−dk,2
H(xk+i)

⎞

⎠
T

(U ⊗ R2)

⎛

⎝
−1∑

i=−dk,2
H(xk+i)

⎞

⎠.

(3.11)

Noting that UWi =WiU =NWi (i = 1, 2), for any matrix H, with appropriate dimension, we
have from Lemma 3.1 that

(U ⊗H)(Wi ⊗ Γ) = (UWi) ⊗ (HΓi) = (NWi) ⊗ (HΓ),

(Wi ⊗ Γ)T (U ⊗H)(Wi ⊗ Γ) =
(
WT

i ⊗ ΓT
)
(U ⊗H)(Wi ⊗ Γ)

=
(
WT

i UWi

)
⊗
(
ΓTHΓ

)

=
(
NW2

i

)
⊗ (ΓHΓ).

(3.12)

Let xk,ij = xk,i − xk,j , fk,ij = f(xk,i) − f(xk,j), gk,ij = g(xk,i) − g(xk,j), ĝk,ij = g(xτ,i) −
g(xτ,j), hk,ij = h(xk,i) − h(xk,j), ĥk,ij = (

∑−1
m=−dk,1 h(xk+m,i)) − (

∑−1
m=−dk,1 h(xk+m,j)), and h̃k,ij =

(
∑−1

m=−dk,2 h(xk+m,i)) − (
∑−1

m=−dk,2 h(xk+m,j)).
Combining (3.9)–(3.12) into (3.8) and using Lemmas 3.2 and 3.4, we have

E{ΔV (k)} ≤
∑

1≤i<j≤N

{
fTk,ijPfk,ij + ĝTk,ijP ĝk,ij + ξ0ĥTk,ijP ĥk,ij + ξ0h̃

T
k,ijP h̃k,ij

− ρ0xTk,ij
(
Nw

(2)
1ij ΓPΓ

)
xk,ij − ρ0x

T
k,ij

(
Nw

(2)
2ij ΓPΓ

)
xk,ij + 2fTk,ijP ĝk,ij

+ 2ξ0fTk,ijP ĥk,ij + 2ξ0f
T
k,ijP h̃k,ij − 2ρ0fTk,ij

(
Nw1ijPΓ

)
xk,ij

− 2ρ0f
T
k,ij

(
Nw2ijPΓ

)
xk,ij + 2ξ0ĝTk,ijP ĥk,ij + 2ξ0ĝ

T
k,ijP h̃k,ij

− 2ρ0ĝTk,ij
(
Nw1ijPΓ

)
xk,ij − 2ρ0ĝ

T
k,ij

(
Nw2ijPΓ

)
xk,ij

− 2ξ0ρ0ĥTk,ij
(
Nw1ijPΓ

)
xk,ij − 2ξ0ρ0ĥ

T
k,ij

(
Nw2ijPΓ

)
xk,ij

− 2ξ0ρ0h̃Tk,ij
(
Nw1ijPΓ

)
xk,ij − 2ξ0ρ0h̃

T
k,ij

(
Nw2ijPΓ

)
xk,ij

+ (τM − τm + 1)gTk,ijQgk,ij − ĝTk,ijQĝk,ij

+
[
dM1 +

1
2

(
dM1 − d

m
1

)(
dM1 + dm1 − 1

)]
hTk,ijR1hk,ij −

1
dM1

ĥTk,ijR1ĥk,ij

+
[
dM2 +

1
2

(
dM2 − d

m
2

)(
dM2 + dm2 − 1

)]
hTk,ijR2hk,ij

− 1
dM2

h̃Tk,ijR2h̃k,ij − xTk,ijPxk,ij

}
.

(3.13)
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Then, one can derive from (A2) that

[
xk,ij
fk,ij

]T[−VĤ V Ȟ
V ȞT −V I

][
xk,ij
fk,ij

]
+
[
xk,ij
gk,ij

]T[−SM̂ SM̌
SM̌T −SI

][
xk,ij
gk,ij

]
+
[
xk,ij
hk,ij

]T[−ZL̂ ZĽ
ZĽT −ZI

][
xk,ij
hk,ij

]
≥ 0,

(3.14)

with Ĥ = (HT
1 H2 + HT

2 H1)/2, Ȟ = (HT
1 + HT

2 )/2, M̂ = (MT
1M2 +MT

2M1)/2, M̌ = (MT
1 +

MT
2 )/2, L̂ = (LT1L2 + LT2L1)/2, and Ľ = (LT1 + LT2 )/2.

Using (3.13) and (3.14), we obtain

E{ΔV (k)} ≤
∑

1≤i<j≤N
ηTij(k)Ξijηij(k), (3.15)

where ηij(k) = [xT
k,ij
, fT
k,ij
,gT

k,ij
, ĝT

k,ij
,hT

k,ij
, ĥT

k,ij
, h̃T

k,ij
]
T

and Ξij is defined in (3.3). It follows that

E{ΔV (k)} ≤ λmax
(
Ξij
) ∑

1≤i<j≤N

∣∣ηij(k)
∣∣2. (3.16)

Note that λmax(Ξij) < 0 and let λ0 = max1≤i<j≤N(λmax(Ξij)). We have λ0 < 0, and then, it follows
readily from (3.16) that

E{ΔV (k)} ≤ λ0E

⎧
⎨

⎩
∑

1≤i<j≤N

∣∣xk,ij
∣∣2
⎫
⎬

⎭. (3.17)

Letting m be a positive integer, the summation of both sides of (3.17) from 1 tom with respect
to k yields

E{ΔV (k)} ≤ λ0

∑

1≤i<j≤N

m∑

k=1

E

{∣∣xk,ij
∣∣2
}
, (3.18)

which implies that

−λ0

∑

1≤i<j≤N

m∑

k=1

E

{∣∣xk,ij
∣∣2
}
≤ E{V (1)}. (3.19)

It is can be concluded that the series
∑+∞

k=1 E{|xk,ij |2} is convergent, and therefore

lim
k→+∞

E

{∣∣xk,i − xk,j
∣∣2
}
= lim

k→+∞
E

{∣∣xk,ij
∣∣2
}
= 0. (3.20)

This completes the proof of the theorem.
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Remark 3.6. If the distributed time-varying delay reduces to infinite distributed delay and
binary descriptions were removed from (3.5), the model reduces to model studied in [9],
and then the results obtained in this paper are equivalent to those of Theorem 1 in [9]. On
the other hand, the authors studied the stability problem in neural networks with randomly
discrete delay [18]. It is worth mentioning that we can easily extend our results to the case of
stability problem of neural networks with randomly distributed delay.

Remark 3.7. In [6, 7, 9], the synchronization problem of complex networks with deterministic
coupling has been studied. In practical situations, the coupling in networks may be subject to
some noise. In [4, 11, 12], synchronization of complex networks with stochastic disturbances
has been well studied. However, another interesting phenomenon, randomly occurring
coupling term in complex networks, has been largely overlooked. In this paper, we introduce
a Bernoulli stochastic variable to describe the stochastic occurring coupling.

If the randomly occurring coupling does not happen in complex networks, that is,
ρ(k) = 1, then we can obtain the following results.

Corollary 3.8. Under Assumptions (A1)-(A2), the discrete-time complex networks with randomly
distributed time-varying delays are synchronized in mean square, if there exist positive definite
matrices P,Q,R1, R2 and diagonal matrices V, S,Z with appropriate dimensions such that the
following matrix inequalities hold:

Ξij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ξij11 Ξij12 SM̌ Ξij14 ZĽ Ξij16 Ξij17

∗ Ξij22 0 P 0 ξ0P ξ0P
∗ ∗ Ξij33 0 0 0 0
∗ ∗ ∗ P −Q 0 ξ0P ξ0P
∗ ∗ ∗ ∗ Ξij55 0 0
∗ ∗ ∗ ∗ ∗ Ξij66 0
∗ ∗ ∗ ∗ ∗ ∗ Ξij77

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, 1 ≤ i < j ≤N,

Ξij11 = −Nw
(2)
1ij ΓPΓ − P − VĤ − SM̂ − ZL̂,

Ξij12 = −Nw1ijPΓ + VȞ,

Ξij14 = −Nw1ijPΓ,

Ξij16 = −ξ0Nw1ijPΓ,

Ξij17 = −ξ0Nw1ijPΓ,

Ξij22 = P − V,
Ξij33 = (τM − τm + 1)Q − S,

Ξij55 =
[
dM1 +

1
2

(
dM1 − d

m
1

)(
dM1 + dm1 − 1

)]
R1

+
[
dM2 +

1
2

(
dM2 − d

m
2

)(
dM2 + dm2 − 1

)]
R2 − Z,

Ξij66 = ξ0P −
1
dM1

R1,

Ξij77 = ξ0P −
1
dM2

R2.

(3.21)
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If the distributed time-varying delays do not occur stochastically, that is, ξ(k) = 1, then
we have the following results.

Corollary 3.9. Under assumptions (A1)-(A2), the discrete-time complex networks with distributed
time-varying delays is synchronized in mean square, if there exist positive definite matrices P,Q,R1

and diagonal matrices V, S,Z with appropriate dimensions such that the following matrix inequalities
hold:

Ξij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ξij11 Ξij12 SM̌ Ξij14 ZĽ Ξij16

∗ Ξij22 0 P 0 P
∗ ∗ Ξij33 0 0 0
∗ ∗ ∗ P −Q 0 P
∗ ∗ ∗ ∗ Ξij55 0
∗ ∗ ∗ ∗ ∗ Ξij66

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

< 0, 1 ≤ i < j ≤N,

Ξij11 = −ρ0Nw
(2)
1ij ΓPΓ − ρ0Nw

(2)
2ij ΓPΓ − P − VĤ − SM̂ − ZL̂,

Ξij12 = −ρ0Nw1ijPΓ − ρ0Nw2ijPΓ + VȞ,

Ξij14 = −ρ0Nw1ijPΓ − ρ0Nw2ijPΓ,

Ξij16 = −ρ0Nw1ijPΓ − ρ0Nw2ijPΓ,

Ξij22 = P − V,
Ξij33 = (τM − τm + 1)Q − S,

Ξij55 =
[
dM1 +

1
2

(
dM1 − d

m
1

)(
dM1 + dm1 − 1

)]
R1 − Z,

Ξij66 = P − 1
dM1

R1.

(3.22)

If both coupling and distributed time-varying delays do not occur randomly, that is,
ξ(k) = 1 and ρ(k) = 1, then we have the following results.

Corollary 3.10. Under Assumptions (A1)-(A2), the discrete-time complex networks with distributed
time-varying delays are synchronized in mean square, if there exist positive definite matrices P,Q,R1
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and diagonal matrices V, S,Z with appropriate dimensions such that the following matrix inequalities
hold:

Ξij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ξij11 Ξij12 SM̌ Ξij14 ZĽ Ξij16

∗ Ξij22 0 P 0 P
∗ ∗ Ξij33 0 0 0
∗ ∗ ∗ P −Q 0 P
∗ ∗ ∗ ∗ Ξij55 0
∗ ∗ ∗ ∗ ∗ Ξij66

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

< 0, 1 ≤ i < j ≤N,

Ξij11 = −Nw
(2)
1ij ΓPΓ − P − VĤ − SM̂ − ZL̂,

Ξij12 = −Nw1ijPΓ + VȞ,

Ξij14 = −Nw1ijPΓ,

Ξij16 = −Nw1ijPΓ,

Ξij22 = P − V,
Ξij33 = (τM − τm + 1)Q − S,

Ξij55 =
[
dM1 +

1
2

(
dM1 − d

m
1

)(
dM1 + dm1 − 1

)]
R1 − Z,

Ξij66 = P − 1
dM1

R1.

(3.23)

4. Numerical Simulation

We consider the following discrete-time complex networks with randomly coupling and
distributed time-varying delay consisting of three nodes:

xi(k + 1) = f(xi(k)) + g(xi(k − τ(k))) + ξ(k)
−1∑

m=−d1(k)

h(xi(k +m))

+ (1 − ξ(k))
−1∑

m=−d2(k)

h(xi(k +m)) + ρ(k)
N∑

j=1

w1ijΓxj(k)

+
(
1 − ρ(k)

) N∑

j=1

w2ijΓxj(k), i = 1, 2, . . . ,N,

(4.1)

with xi(k) = (xi1(k), xi2(k))
T (i = 1, 2, 3) being the state vector of the ith subsystem. The

discrete delay is chosen as τ(k) = 3 + (1 + (−1)k). It can be verified that τm = 3, τM = 5. We
select ρ0 = 0.6, ξ0 = 0.8, dm1 = 1, dM1 = 3, dm2 = 4,and dM2 = 10.

W1 =

⎛

⎝
−0.2 0.1 0.1
0.1 −0.2 0.1
0.1 0.1 −0.2

⎞

⎠, W2 =

⎛

⎝
−0.3 0.15 0.15
0.15 −0.3 0.15
0.15 0.15 −0.3

⎞

⎠, Γ =
(

0.5 0
0 0.5

)
. (4.2)
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Figure 1: Variation of τk and dk .

Let the nonlinear vector-valued functions be given by

f(xi(k)) = (−0.5xi1(k) + tanh(0.2xi1(k)) + 0.2xi2(k), 0.95xi2(k) − tanh(0.75xi2(k)))
T ,

g(xi(k)) = h(xi(k)) = (0.2xi1(k) − tanh(0.1xi1(k)), 0.1xi2(k))
T , i = 1, 2, 3.

(4.3)

It can be verified that

H1 =
(
−0.5 0.2

0 0.95

)
, H2 =

(
−0.3 0.2

0 0.2

)
,

M1 = L1 =
(

0.2 0
0 0.1

)
, M2 = L2 =

(
0.1 0
0 0.1

)
.

(4.4)

We can obtain LMI solution in the following:

P =
(

0.9268 0.0011
0.0011 0.9188

)
, Q =

(
62.4010 0.0334
0.0334 60.4689

)
, R1 =

(
37.5891 −0.0266
−0.0266 37.7721

)
,

R2 =
(

6.0396 0.0244
0.0244 5.7941

)
, V =

(
81.5029 0

0 94.2456

)
,

S =
(

270.1472 0
0 262.9662

)
, Z =

(
619.6532 0

0 595.8848

)
.

(4.5)

It is clear that the condition of Theorem 3.5 is satisfied. Therefore, the synchronization of
complex networks (2.9) can be achieved. For this example, all the stability criteria in [9, 11, 12]
fail to draw a conclusion. This is because, by applying to this example, the LMI conditions
in [9, 11, 12] cannot generate a feasible solution since the distributed delay is timevarying, as
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Figure 2: Synchronization errors.

well as the coupling term and distributed delay occur randomly. However, using our criterion
in Theorem 3.5, we conclude that the complex networks with randomly occurring coupling
and distributed time-varying delays (2.9) can be uniformly synchronized in mean square
since the LMI in (3.3) is feasible using LMI Toolbox.

Figure 1 shows the variation of τk and dk. It can be observed from Figure 2 that
the discrete-time complex networks with randomly occurring coupling and stochastic
distributed time-varying delay can be synchronized in mean square.

5. Conclusion

In this paper, we have investigated the synchronization of novel discrete-time complex
networks with randomly occurring coupling and distributed time-varying delay. By
employing some new techniques, the Kronecker product and linear matrix inequality (LMI)
techniques, the synchronization criteria have been established for discrete-time complex
networks with randomly distributed time-varying delay, as well as randomly occurring
coupling. In the end of this paper, we have exploited a numerical example to show the
usefulness of our results.
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[3] J. Lü and G. Chen, “A time-varying complex dynamical network model and its controlled
synchronization criteria,” IEEE Transactions on Automatic Control, vol. 50, no. 6, pp. 841–846, 2005.

[4] J. Cao, Z. Wang, and Y. Sun, “Synchronization in an array of linearly stochastically coupled networks
with time delays,” Physica A, vol. 385, no. 2, pp. 718–728, 2007.

[5] J. Cao, P. Li, and W. Wang, “Global synchronization in arrays of delayed neural networks with
constant and delayed coupling,” Physics Letters A, vol. 353, no. 4, pp. 318–325, 2006.

[6] J. Cao, G. Chen, and P. Li, “Global synchronization in an array of delayed neural networks with hybrid
coupling,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 38, no. 2, pp. 488–498, 2008.
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