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The global existence of solution to a viscous coupled Camassa-Holm equation with the periodic
boundary condition is investigated. We obtain the compact and bounded absorbing set and the
existence of the global attractor for the viscous coupled Camassa-Holm equation inH2 by uniform
prior estimate.

1. Introduction

The Camassa-Holm equation

ut − uxxt + 3uux − 2uxuxx − uuxxx = 0, x ∈ R, t > 0, (1.1)

has been paid considerable attention due to its rich phenomenology all the time. Its
abstract derivation was first discovered by Fuchssteiner and Fokas [1], while in the physical
derivation of Camassa and Holm (see [2, 3]), the equation models unidirectional propa-
gation of shallow water waves, and u(x, t) represents the fluid velocity in the x direction,
equivalently the height of the fluid’s free surface above a flat bottom. They also found that
the solitary waves interact like solitons. Unlike the Korteweg-de Vries equation (which is an
approximation to the equations of motion), this model is obtained by approximating directly
in the Hamiltonian for Euler’s equations in the shallow water regime (see [3, 4]). Equation
(1.1) retains higher-order terms in a small amplitude expansion of incompressible Euler’s
equations for unidirectional motion of waves at the free surface under the influence of gravity.
Dropping these terms leads to the BBM equation, or at the same order, the KdV equation. The
Camassa-Holm has quite a few interesting features: it admits solitary waves called “peakons”



2 Advances in Difference Equations

with the form of u = ce−|x−ct|, x ∈ R, c > 0. The peakons of (1.1) are orbitally stable [5]—that
is, their shape is stable under small perturbations and therefore these waves are recognized
physically. For waves that approximate the peakons in a special way, a stability result was
proved by a variation method [6]. This is in sharp contrast to the Korteweg-de Vries equation,
where solitary waves are generally smooth. The peaked traveling waves of the Camassa-
Holm equation replicate a future that is characteristic for waves of great height–waves of
the largest amplitude that are exact solutions of the governing equations for water waves
(see [7, 8]). A breaking wave is a solution which remains bounded but whose slope becomes
unbounded in finite time, and, in contrast to the KdV equation, the Camassa-Holm equation
models breaking waves [9], as well as a breaking rod (see [4, 10]), since the equation models
the propagation of axisymmetric waves in hyperelastic rods. After breaking, the solution can
be continued either as a global conservative weak solution or as a global dissipative solution
(see [11–13]). Peakons interact “elastically” in the manner typical of all solitons, and their
wave dynamics are now wellunderstood (see [3, 14, 15]). Some authors have even argued
recently that the Camassa-Holm equation might be relevant to the modeling of tsunamis (see
[16, 17]). Moreover, the equation has a bi-Hamiltonian structure [2]. As the Camassa-Holm is
completely integrable, it has many conserved qualities. Especially for smooth solutions, the
qualities

∫
R

udx,

∫
R

(
u2 + u2

x

)
dx,

∫
R

(
u3 + uu2

x

)
dx (1.2)

are all time independent [18].
Up to now, great efforts have been already devoted to the Camassa-Holm equation.

A. Constantin (see [19–21]) considered the Cauchy problem, inverse spectral problem, and
inverse scatting transform for Camassa-Holm equation, proving that the corresponding
solution to (1.1) does not exist globally for smooth initial data. Rui et al. (see [22, 23])
employed both bifurcation method and numerical simulation to investigate bounded
traveling waves of (1.1) in a general compressible hyperelastic rod. Lenells [24] used the
inverse scattering transform to show that a solution of the Camassa-Holm equation is
identically zero whenever it vanishes on two horizontal half-lines in the x − t space. In
particular, a solution that has compact support at two different times vanishes everywhere,
proving that the Camassa-Holm equation has infinite propagation speed. Cohen et al.
[25] presented two new multisymplectic formulations for the Camassa-Holm equation,
and the associated local conservation laws were shown to correspond to certain well-
known Hamiltonian functionals. The multisymplectic discretisation of each formulation was
exemplified by means of the Euler box scheme. Yiping Meng and Lixin Tian [26] investigated
the boundary control of the viscous generalized Camassa-Holm equation on [0, 1]. Long et
al. [27] obtained the loop soliton solution and periodic loop soliton solution [28], solitary
wave solution and solitary cusp wave solution and smooth periodic wave solution and
nonsmooth periodic wave solution of (1.1) and also discussed their dynamic characters
and relations by the integral bifurcation method. Moreover, Ding and Tian (see [29, 30])
considered the existence of the global solution to dissipative Camassa-Holm equation and
the global attractor of semigroup of solutions of dissipative Camassa-Holm equation in H2.
Olson [31] showed that the Cauchy problem for a higher-order modification of (1.1) is locally
well posed for initial data in Hs(R) for s > s′, where 1/4 ≤ s′ < 1/2 and the value of
s′ depends on the order of equation, proved the existence and uniqueness of solutions of
(1.1) by a contraction mapping argument. Moreover, Zhou and Tian [32] investigated the
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initial boundary value problem of a generalized Camassa-Holm equation with dissipation
and established local well-posedness of this closed-loop system by using Kato’s theorem for
abstract quasilinear evolution equation of hyperbolic type. Then they obtained a conservation
law that enables us to present a blowup result by using multiplier technique. Lixin Tian et.
al. [33] discussed optimal control of the viscous Camassa-Holm equation; they deduce that
the norm of solution is related to the control item and initial value in the special Hilbert space
according to variational method, optimal control theories and distributed parameter system
control theories, The optimal control of the viscous Camassa-Holm equation under boundary
condition was given, and the existence of optimal solution of the viscous Camassa-Holm
equation was proved. Well-posedness problem and scattering problem for DGH equation
were also discussed in [34].

On the basis of deformation of bi-Hamiltonian structure of the hydrodynamic type,
Chen et al.[35] obtained the following two-component generalization of (1.1):

ut − uxxt + 3uux − 2uxuxx − uuxxx + ρρx = 0,

ρt +
(
ρu

)
x = 0.

(1.3)

Equation (1.3) is one of many multicomponent generalizations which are integrable (see [35–
37]). It has a Lax pair, and it is bi-Hamiltonian. Constantin and Ivanov [36] showed how
(1.3) arises in shallow water theory, and it was derived from the Green-Naghdi equations by
using expansions in terms of physical parameters. Recently, the infinite propagation speed
property for (1.3) was proved in [38]. Escher et al. [39] probed into well-posedness and
blowup phenomena of the two-component Camassa-Holm equation in details. Chen et al.
[35] obtained solutions of (1.3) by a reciprocal transformation between (1.3) and the first
negative flow of the AKNS hierarchy and stated some examples of peakon and multikink
solutions of (1.3). Guan and Yin [40] presented a new global existence result and several
new blowup results of strong solutions to (1.3) as ρ = ρ − 1, improving considerably
earlier results. Jibin Li and Yishen Li [41] obtained the existence of solitary wave solutions,
kink and antikink wave solutions, uncountable infinite many breaking wave solutions, and
smooth and nonsmooth periodic wave solutions with the method of dynamical systems to
the two-component generalization of the Camassa-Holm equation. Yujuan Wang et. al.[42]
showed that the two-component Camassa-Holm equation possesses a global continuous
semigroup of weak conservative solutions for initial data. In [43] a link between central
extensions of superconformal algebra and a supersymmetric two-component generalization
of the Camassa-Holm equation was concerned. Deformations of superconformal algebra give
rise to two compatible bracket structures. For ρ ≡ 0, the system (1.3) particularizes to the
Camassa-Holm equation which is a re-expression of geodesic flow on the diffeomorphism
group of the circle (see [44, 45]).

We know that it is of great use to construct an interacting system of equations [37]:

mt = −3m(2ux + vx) −mx(2u + v), m = u − uxx,

nt = −2n(2ux + vx) − nx(2u + v), n = v − vxx,
(1.4)

as n = v = 0 and m = u = 0, it, respectively, leads to the Degasperis-Procesi equation
and Camassa-Holm equation. Three independent conserved quantities have been obtained
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as follows:
∫
(m + n)dx,

∫
nλm−(1−2λ)/3 dx,

∫(
−9n2

xn
λ−2m−(1+2λ)/3 + 12nxmxn

λ−1m−(4+2λ)/3 − 4m2
xn

λm−(7+2λ)/3
)
dx,

(1.5)

here λ is an arbitrary constant.
Ying Fu and Changzheng Qu [46] considered the following coupled Camassa-Holm

equation:

mt = 2mux +mxu + (mv)x + nvx, m = u − uxx,

nt = 2nvx + nxv + (nu)x +mux, n = v − vxx,
(1.6)

which has peakon solitons in the form of a superposition ofmultipeakons. It has the following
conserved qualities:

G1(u) =
∫
R

u dx, G2(v) =
∫
R

v dx, G3(u) =
∫
R

mdx,

G4(v) =
∫
R

n dx, G5(u, v) =
∫
R

(
u2 + u2

x + v2 + v2
x

)
dx.

(1.7)

They investigated local well-posedness and blowup solutions of (1.6) by means of Kato’s
semigroup approach to nonlinear hyperbolic evolution equation and obtained a criterion and
condition on the initial data guaranteeing the development of singularities in finite time for
strong solutions of (1.6) by energy estimates; moreover, an existence result for a class of local
weak solutions was also given. They also showed that the solution of (1.6) is

d

dt

∫
R

(
u2 + αu2

x + βv2 + γv2
x

)
dx = 0, (1.8)

for some positive constants α, β, γ .
In the field of infinite-dimensional dynamical systems, one of the most important

issues is to obtain the existence of global attractors for the semigroups of solutions associated
with some concrete partial differential equations. For instance, Yongsheng Li and Xingyu
Yan [47] studied the existence and regularity of the global attractor for a weakly damped
forced shallow water equation in H1(R). Tian et al.[48] studied the global attractor for the
viscous weakly damped forced Korteweg-de Vries equations in H1(R). Yanhong Zhang and
Chengkui Zhong [49] investigated the existence of global attractors for a nonlinear wave
equation. Lixin Tian and Ruihua Tian [50] studied the attractor for the two-dimensional
weakly damped KdV equation in belt field. Ying Xu and Lixin Tian [51] investigated attractor
for a coupled nonhomogeneous Camassa-Holm equation with periodic boundary condition.
Lixin Tian and Jinglin Fan [52] discussed the global attractors for the viscous Degasperis-
Procesi equation inH2. Lixin Tian and YingGao [53] obtained global attractors for the viscous
Fornberg-Whitham equation [54] inH2. Here we investigate the existence of global attractor
for a viscous coupled Camassa-Holm equation with the periodic boundary condition in H2
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as follows:

mt − εmxx = 2mux +mxu + (mv)x + nvx, m = u − uxx, (1.9)

nt − εnxx = 2nvx + nxv + (nu)x +mux, n = v − vxx, (1.10)

u(x, 0) = u0, v(x, 0) = v0, (1.11)

u(0, t) = u(D, t), u′(0, t) = u′(D, t), u′′(0, t) = u′′(D, t), (1.12)

v(0, t) = v(D, t), v′(0, t) = v′(D, t), v′′(0, t) = v′′(D, t), (1.13)

where t > 0, x ∈ Ω, Ω = [0, D], D > 0, u, v ∈ H = L2(Ω). To the authors’ knowledge, the
problem of global attractor for (1.9)–(1.13) has not been discussed in previous publications.

Our paper is organized as follows. In Section 2, we give the main definitions and
Lemmas. In Section 3, main results are presented, as the core of the paper, and the proofs
of the main theorems are completed. Firstly, we prove that (1.9)–(1.13) has a unique solution
in infinite time interval then obtain the existence of global solution of (1.9)–(1.13) in H2(Ω)
by prior estimates. Meanwhile we obtain that the semigroup of the solution operator has an
absorbing set. Finally, we demonstrate the long-time behavior of solution of (1.9)–(1.13) that
is described by global attractor. In brief, we obtain the existence of the global attractor for
(1.9)–(1.13) inH2(Ω).

2. Preliminaries

Definition 2.1. Let (, ) stand for the L2 inner product and ‖ · ‖ the corresponding L2 norm. one also
denotes

‖u‖L2(Ω) �= |u|, ‖Du‖L2(Ω) �= ‖u‖,
‖Dmu‖L2(Ω) �= |Dmu|, ‖u‖L∞(Ω) �= esssup

x∈Ω
|u(x)|, (2.1)

and A = −Δ, where Δ is Laplace operators and A is a self-adjoint positive operators with
compact inverse. The eigenvalue of A is λk satisfying 0 < λ1 ≤ λ2 ≤ · · ·λk, λk → ∞ as
k → ∞, Aωk = λkωk, where ωk is the corresponding eigenvector ofA. For simplicity we will
give the following inequalities and only refer to their names wherever necessary.

Lemma 2.2 (consistent Gronwall inequality). Assume that g(t), y(t), and h(t) are three positive
locally integrable functions defined on [t0,+∞], y′(t) is a locally integrable function over [t0,+∞],
satisfying

y′(t) ≤ g(t)y(t) + h(t), ∀t ≥ t0,∫ t+r

t

g(s) ds ≤ k1,

∫ t+r

t

h(s) ds ≤ k2,

∫ t+r

t

y(s) ds ≤ k3, ∀t ≥ t0,
(2.2)

where r, k1, k2, and k3 are positive constants. one can get

y(t + r) ≤
(
k3
r

+ k2

)
exp(k1), ∀ ≥ t0. (2.3)
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Lemma 2.3 (Sobolev inequality). Suppose that u ∈ Lq(Ω) ∩Wm,r
0 (Ω),Ω ⊂ Rk, 1 ≤ q, r ≤ ∞, 0 ≤

j ≤ m, j/m ≤ α < 1, and 1 ≤ p < ∞, and there exists a constant c, such that

∥∥∥Dju
∥∥∥
LP

≤ c‖Dmu‖αLr‖u‖1−αLq ,
1
p
=

i

k
+
(
1
r
− m

k

)
+ (1 − α)

1
q
. (2.4)

Lemma 2.4 (Young inequality). ab ≤ (εap/p) + (ε−q/pbq/q) ≤ εap + ε−q/pbq, where 1 < p <
∞, (1/p) + (1/q) = 1. As p = q = 2, one has ab ≤ (εa2/2) + (b2/2ε) ≤ (εa2) + (1/εb2).

3. Main Results and the Proof of the Theorems

Based on Galerkin procedure, we will show the existence of global solution of (1.9)–(1.13).
Suppose that {ωk}∞k=1 is an orthonormal basis in the space H consisting of eigenfunctions of
the operator A. Hm = span{ω1, ω2, · · ·ωm}, andPm is orthogonal projection from H to Hm.
By Galerkin procedure [55], (1.9)–(1.13) can be reduced to ordinary differential system

mmt −mmxx = 2mm umx +mmx um + (mmvm)x + nm vmx, mm = um − umxx, (3.1)

nmt − nmxx = 2nmvmx + nmx vm + (nmum)x +mm umx, nm = vm − vmxx, (3.2)

um(x, 0) = Pm u0, vm(x, 0) = Pm v0. (3.3)

By means of existence theory of solution to ordinary differential equations, we know
that local smooth solution of (3.1)–(3.3) exists. Now we can establish consistent integral
estimate on approximate solution with respect tom by Galerkin method.

Theorem 3.1. If u0, ρ0 ∈ Hl(R), l ≥ 2, then (1.9)–(1.13) has a global solution inH2(Ω).

Proof. Taking the inner product of (3.1), and (3.2), respectively, with um, vm in Ω and noting
that

(umt − umxxt − ε(um − umxx)xx, um) =
1
2
d

dt

(
|um|2 + ‖um‖2

)
+ ε

(
‖um‖2 + |Aum|2

)
, (3.4)

(vmt − vmxxt − ε(vm − vmxx)xx, vm) =
1
2
d

dt

(
|vm|2 + ‖vm‖2

)
+ ε

(
‖vm‖2 + |Avm|2

)
, (3.5)

Pm[−2(umxumxx, um) − (umxxxum, um)]

= Pm

[∫
Ω
(−2umxumumxx)dx −

∫
Ω
u2
m dumxx

]

= Pm

[∫
Ω
(−2umumxumxx)dx +

∫
Ω
umxx

(
u2
m

)
x
dx

]
= 0,

Pm[(umxum, vm) + (umxvm + umvmx, um)]

= Pm

(
2
∫
Ω
umumxvm dx +

∫
Ω
u2
m dvm

)

= Pm

(
2
∫
Ω
umumxvm dx −

∫
Ω
2vmumumx dx

)
= 0,

(3.6)
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with the same reason, we obtain that

Pm[−2(vmxvmxx, vm) − (vmxxxvm, vm)] = 0, Pm[(vmxvm, um) + (vmxum + vmumx, vm)] = 0.
(3.7)

By integrating by parts we get

Pm[(−umxxxvm − umxxvmx − vmxxvmx, um) +(−vmxxxum − vmxxumx − umxxumx, vm)]

= Pm

(∫
Ω
−umvmdumxx −

∫
Ω
umumxxvmx dx −

∫
Ω
umvmxxvmx dx

−
∫
Ω
umvmdvmxx −

∫
Ω
umxvmxxvm dx −

∫
Ω
umxxvmumx dx

)

= Pm

(∫
Ω
umxxumxvm dx +

∫
Ω
umxxumvmx dx −

∫
Ω
umumxxvmx dx

−
∫
Ω
umvmxxvmx dx +

∫
Ω
vmxxumxvm dx +

∫
Ω
vmxxumvmx dx

−
∫
Ω
umxvmxxvmdx −

∫
Ω
umxxvmumxdx

)
= 0.

(3.8)

From (3.4) and (3.5) we obtain that

1
2
d

dt

(
|um|2 + ‖um‖2 + |vm|2 + ‖vm‖2

)
+ ε

(
‖um‖2 + |Aum|2 + ‖vm‖2 + |Avm|2

)
= 0. (3.9)

Applying Poincaré inequality, we get

‖um‖2 > λ1|um|2, |Aum|2 > λ1‖um‖2, ‖vm‖2 > λ1|vm|2, |Avm|2 > λ1‖vm‖2.
(3.10)

Equality (3.9) implies that

d

dt

(
|um|2 + ‖um‖2 + |vm|2 + ‖vm‖2

)
+ 2ελ1

(
|um|2 + ‖um‖2 + |vm|2 + ‖vm‖2

)
≤ 0, (3.11)

|um| + ‖um‖2 + |vm|2 + ‖vm‖2

≤
(
|um(0)|2 + ‖um(0)‖2 + |vm(0)|2 + ‖vm(0)‖2

)
exp{−2ελ1t}

≤ |um(0)|2 + ‖um(0)‖2 + |vm(0)|2 + ‖vm(0) ‖2 � r1,

(3.12)

where r1 is nonnegative constant.
Integrating (3.9) over [t, t + r] yields

ε

∫ t+r

t

(
‖um(s)‖2 + |Aum(s)|2 + ‖vm(s)‖2 + |Avm(s)|2

)
ds ≤ r1. (3.13)



8 Advances in Difference Equations

Taking the inner product of (3.1) and (3.2), respectively, with −umxx,−vmxx in Ω, we get

(umt − umxxt − ε(um − umxx)xx,−umxx) =
1
2
d

dt

(
‖um‖2 + |Aum|2

)
+ ε

(
|Aum|2 + |∇Aum|2

)
,

(3.14)

(vmt − vmxxt − ε(vm − vmxx)xx,−vmxx) =
1
2
d

dt

(
‖vm‖2 + |Avm|2

)
+ ε

(
|Avm|2 + |∇Avm|2

)
(3.15)

since

|Pm(3umumx,−umxx)| ≤ 3
2
‖∇um‖L∞(Ω)‖um‖2,

|Pm(3vmvmx,−vmxx)| ≤ 3
2
‖∇vm‖L∞(Ω)‖vm‖2,

|Pm[(−2umxumxx,−umxx) − (umxxxum,−umxx)]|

=
∣∣∣∣Pm

[∫
Ω

(
2umxu

2
mxx

)
dx +

∫
Ω
umumxx dumxx

]∣∣∣∣

=
∣∣∣∣Pm

∫
Ω

3
2
umxu

2
mxx dx

∣∣∣∣ ≤ 3
2
‖∇um‖L∞(Ω)|Aum|2,

|Pm[(vmxum + vmumx,−vmxx) + (vmxvm,−umxx)]|

=
∣∣∣∣Pm

(
3
2

∫
Ω
v2
mxumx dx

)∣∣∣∣ ≤ 3
2
‖∇um‖L∞(Ω)‖vm‖2,

|Pm(−2vmxvmxx,−vmxx) − (vmxxxvm,−vmxx)| ≤ 3
2
‖vmx‖L∞(Ω)|Avm|2.

(3.16)

By means of integrating by parts frequently, we obtain that

|Pm[(umxvm + umvmx,−umxx) + (umxum,−vmxx)]|

=
∣∣∣∣Pm

(∫
Ω
−umxvmdumx −

∫
Ω
umxxumvmx dx −

∫
Ω
umumxdvmx

)∣∣∣∣

=

∣∣∣∣∣Pm

(∫
Ω

u2
mx

2
vmx dx −

∫
Ω
umumxx dx +

∫
Ω
u2
mxvmx dx +

∫
Ω
umumxxvmx dx

)∣∣∣∣∣

=
∣∣∣∣Pm

(
3
2

∫
Ω
u2
mxvmx dx

)∣∣∣∣ ≤ 3
2
‖∇vm‖L∞(Ω)‖um‖2,

|Pm[(−umxxxvm − umxxvmx − vmxxvmx,−umxx)

+(−vmxxxum − vmxxumx − umxxumx,−vmxx)]|
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=
∣∣∣∣Pm

(∫
Ω
vmumxxdumxx +

∫
Ω
vmxu

2
mxx dx +

∫
Ω
umxxvmxxvmx dx

+
∫
Ω
umvmxxdvmxx +

∫
Ω
umxv

2
mxx dx +

∫
Ω
umxxumxvmxx dx

)∣∣∣∣

=
∣∣∣∣Pm

(∫
Ω

1
2
u2
xxvx dx +

∫
Ω

1
2
v2
xxux dx

)∣∣∣∣ +
∣∣∣∣Pm

[∫
Ω

1
2

(
u2
mxx + v2

mxx

)
vmx dx

]∣∣∣∣

+
∣∣∣∣Pm

[∫
Ω

1
2

(
u2
mxx + v2

mxx

)
umx dx

]∣∣∣∣

=
∣∣∣∣Pm

∫
Ω
u2
mxxvmx dx

∣∣∣∣ +
∣∣∣∣Pm

∫
Ω
v2
mxxumx dx

∣∣∣∣

+
∣∣∣∣Pm

∫
Ω

1
2
u2
mxxumx dx

∣∣∣∣ +
∣∣∣∣Pm

∫
Ω

1
2
v2
mxxvmx dx

∣∣∣∣
≤ ‖∇vm‖L∞(Ω)|Aum|2 + ‖∇um‖L∞(Ω)|Avm|2

+
1
2
‖∇um‖L∞(Ω)|Aum|2 + 1

2
‖∇vm‖L∞(Ω)|Avm|2.

(3.17)

Associating all the above inequalities leads to

1
2
d

dt

(
‖um‖2 + |Aum|2 + ‖vm‖2 + |Avm|2

)

+ ε
(
|Aum|2 + |∇Aum|2 + |Avm|2 + |∇Avm|2

)

≤ 3
2
‖∇um‖L∞(Ω)‖um‖2 + 3

2
‖∇um‖L∞(Ω)|Aum|2

+
3
2
‖∇vm‖L∞(Ω)‖vm‖2 + 3

2
‖∇vm‖L∞(Ω)|Avm|2

+
3
2
‖∇vm‖L∞(Ω)‖um‖2 + 3

2
‖∇um‖L∞(Ω)‖vm‖2

+ ‖∇um‖L∞(Ω)|Avm|2 + ‖∇vm‖L∞(Ω)|Aum|2

+
1
2
‖∇um‖L∞(Ω)|Aum|2 + 1

2
‖∇vm‖L∞(Ω)|Avm|2

≤ 2‖∇um‖L∞(Ω)

(
‖um‖2 + |Aum|2 + ‖vm‖2 + |Avm|2

)

+ 2‖∇vm‖L∞(Ω)

(
‖um‖2 + |Aum|2 + ‖vm‖2 + |Avm|2

)

≤ 2c1‖um‖1/2|Aum|1/2
(
‖um‖2 + |Aum|2 + ‖vm‖2 + |Avm|2

)

+ 2c2‖vm‖1/2|Avm|1/2
(
‖um‖2 + |Aum|2 + ‖vm‖2 + |Avm|2

)
.

(3.18)
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Simplifying the above inequality and employing Young inequality, it follows that

1
2
d

dt

(
‖um‖2 + |Aum|2 + ‖vm‖2 + |Avm|2

)

+ ε
(
|Aum|2 + |∇Aum|2 + |Avm|2 + |∇Avm|2

)

≤ ελ1
(
‖um‖2 + |Aum|2 + ‖vm‖2 + |Avm|2

)

+ c3‖um‖|Aum|
(
‖um‖2 + |Aum|2 + ‖vm‖2 + |Avm|2

)

+ c4‖vm‖|Avm|
(
‖um‖2 + |Aum|2 + ‖vm‖2 + |Avm|2

)
,

(3.19)

where c3 = 2c21/ελ1, c4 = 2c22/ελ1. By means of Poincaré inequality, we obtain that

d

dt

(
‖um‖2 + |Aum|2 + ‖vm‖2 + |Avm|2

)

≤ 2(c3‖um‖|Aum| + c4‖vm‖|Avm|)
(
‖um‖2 + |Aum|2 + ‖vm‖2 + |Avm|2

)

≤
[
c3
(
‖um‖2 + |Aum|2

)
+ c4

(
‖vm‖2 + |Avm|2

)](
‖um‖2 + |Aum|2 + ‖vm‖2 + |Avm|2

)

≤ (c3 + c4)
(
‖um‖2 + |Aum|2 + ‖vm‖2 + |Avm|2

)2
.

(3.20)

Let

y = ‖um‖2 + |Aum|2 + ‖vm‖2 + |Avm|2,

g = (c3 + c4)
(
‖um‖2 + |Aum|2 + ‖vm‖2 + |Avm|2

)
;

(3.21)

from (3.13) we get

∫ t+r

t

y(s) ds ≤ r1
ε
,

∫ t+r

t

g(s) ds ≤ (c3 + c4)
r1
ε
. (3.22)

Finally we obtain that

‖um‖2 + |Aum|2 + ‖vm‖2 + |Avm|2 ≤
(
r1
εr

)
exp

{
(c3 + c4)

r1
ε

}
� r2. (3.23)
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Integrating (3.19) over [t, t + r] yields

∫ t+r

t

ε
(
|Aum(s)|2 + |∇Aum(s)|2 + |Avm(s)|2 + |∇Avm(s)|2

)
ds

≤
∫ t+r

t

ελ1
(
‖um(s)‖2 + |Aum(s)|2 + ‖vm(s)‖2 + |Avm(s)|2

)
ds

+
∫ t+r

t

(c3 + c4)
(
‖um(s)‖2 + |Aum(s)|2 + ‖vm(s)‖2 + |Avm(s)|2

)2
ds

+
(
‖um‖2 + |Aum|2 + ‖vm‖2 + |Avm|2

)

≤ ελ1r2r + (c3 + c4)r22r + r2 � r3,

(3.24)

where c1, c2, c3, c4, r2, and r3 are positive constants.
Taking the inner product of (3.1) and (3.2), respectively, with umxxxx, vmxxxx, in Ω, we

obtain that

(umt − umxxt − ε(um − umxx)xx, umxxxx) =
1
2
d

dt

(
|Aum|2 + |∇Aum|2

)
+ ε

(
|∇Aum|2 +

∣∣∣A2um

∣∣∣2
)
,

(vmt − vmxxt − ε(vm − vmxx)xx, vmxxxx) =
1
2
d

dt

(
|Avm|2 + |∇Avm|2

)
+ ε

(
|∇Avm|2 +

∣∣∣A2vm

∣∣∣2
)
,

|Pm(3umumx − 2umxumxx − umumxxx, umxxxx)| ≤ 3‖∇um‖L∞(Ω)|Aum|2 + 5
2
‖∇um‖L∞(Ω)|∇Aum|2,

|Pm(3vmvmx − 2vmxvmxx − vmvmxxx, vmxxxx)| ≤ 3‖∇vm‖L∞(Ω)|Avm|2 + 5
2
‖∇vm‖L∞(Ω)|∇Avm|2.

(3.25)

By integrating by parts and applying Sobolev inequality, we obtain that

|Pm[(umxvm + umvmx, umxxxx) + (umumx, vmxxxx)]|

=
∣∣∣Pm

[
−(umxxx, (umxxvm + 2umxvmx + umvmxx) −

(
vmxxx, u

2
mx + umumxx

)]∣∣∣
≤ ‖umxxx‖‖umxxvm + 2umxvmx + umvmxx‖ + ‖vmxxx‖

∥∥∥u2
mx + umumxx

∥∥∥
≤ ε

4
|∇Aum|2 + ε

4
|∇Avm|2 + C1

2
,

|Pm[(vmxum + vmumx, vmxxxx) + (vmvmx, umxxxx)]|

=
∣∣∣Pm

[
−(vmxxx, (vmxxum + 2vmxumx + vmumxx) −

(
umxxx, v

2
mx + vmvmxx

)]∣∣∣
≤ ‖vmxxx‖‖vmxxum + 2vmxumx + vmumxx‖ + ‖umxxx‖

∥∥∥v2
mx + vmvmxx

∥∥∥
≤ ε

4
|∇Aum|2 + ε

4
|∇Avm|2 + C1

2
,

(3.26)
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where C1 is a constant depending on |um|, ‖um‖, |vm|, and‖vm‖. As well as

|Pm[(−umxxxvm − umxxvmx − vmxxvmx, umxxxx)+(−vmxxxum − vmxxumx − umxxumx, vmxxxx)]|

=
∣∣∣∣Pm

(
3
2

∫
Ω
u2
mxxxvmx dx +

3
2

∫
Ω
v2
mxxxumx dx +

1
2

∫
Ω
umxxxv

2
mxx dx

+
1
2

∫
Ω
vmxxxu

2
mxx dx +

∫
Ω
umxxxvmxxxumx dx +

∫
Ω
umxxxvmxxxvmx dx

)∣∣∣∣

≤
∣∣∣∣Pm

(
2
∫
Ω
u2
mxxxvmx dx + 2

∫
Ω
v2
mxxxumx dx +

1
2

∫
Ω
umxxxv

2
mxx dx

+
1
2

∫
Ω
vmxxxu

2
mxxdx

)∣∣∣∣ +
∣∣∣∣Pm

(
1
2

∫
Ω
v2
mxxxvmx dx

)∣∣∣∣ +
∣∣∣∣Pm

(
1
2

∫
Ω
u2
mxxxumx dx

)∣∣∣∣
≤ 2‖∇vm‖L∞(Ω)|∇Aum|2 + 2‖∇um‖L∞(Ω)|∇Avm|2 + ε

4

(
|∇Aum|2 + |∇Avm|2

)

+ C2 +
1
2
‖∇vm‖L∞(Ω)|∇Avm|2 + 1

2
‖∇um‖L∞(Ω)|∇Aum|2,

(3.27)

where C2 is a constant depending on |um|, ‖um‖, |vm|, ‖vm‖, |Aum|, and|Avm|. Combining all
the above inequalities, we have

1
2
d

dt

(
|Aum|2 + |∇Aum|2 + |Avm|2 + |∇Avm|2

)

+
ε

4
|∇Aum|2 + ε

∣∣∣A2um

∣∣∣2 + ε

4
|∇Avm|2 + ε

∣∣∣A2vm

∣∣∣2

≤ 3‖∇um‖L∞(Ω)|Aum|2 + 3‖∇um‖L∞(Ω)|∇Aum|2

+ 2‖∇um‖L∞(Ω)|∇Avm|2 + 2‖∇vm‖L∞(Ω)|∇Aum|2

+ 3‖∇vm‖L∞(Ω)|Avm|2 + 3‖∇vm‖L∞(Ω)|∇Avm|2 + C1 + C2.

(3.28)

By employing Young inequality, it follows that

1
2
d

dt

(
|Aum|2 + |∇Aum|2 + |Avm|2 + |∇Avm|2

)
+
ε

4

(
|∇Aum|2 +

∣∣∣A2um

∣∣∣2 + |∇Avm|2 +
∣∣∣A2vm

∣∣∣2
)

≤ 3c5‖um‖1/2|Aum|1/2
(
|Aum|2 + |∇Aum|2 + |Avm|2 + |∇Avm|2

)

+ 3c6‖vm‖1/2|Avm|1/2
(
|Avm|2 + |∇Avm|2 + |Aum|2 + |∇Aum|2

)
+ C1 + C2
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≤ 1
4
ελ1

(
|Aum|2 + |∇Aum|2 + |∇Avm|2 + |Avm|2

)

+ c7‖um‖|Aum|
(
|Aum|2 + |∇Aum|2 + |∇Avm|2 + |Avm|2

)

+ c8‖vm‖|Avm|
(
|Aum|2 + |∇Aum|2 + |∇Avm|2 + |Avm|2

)
+ C1 + C2,

(3.29)

where c7 = 18c25/ελ1, c8 = 18c26/ελ1. Based on Poincaré inequality we obtain that

d

dt

(
|Aum|2 + |∇Aum|2 + |Avm|2 + |∇Avm|2

)

≤ c7
(
‖um‖2 + |Aum|2

)(
|Aum|2 + |∇Aum|2 + |Avm|2 + |∇Avm|2

)

+ c8
(
‖vm‖2 + |Avm|2

)(
|Aum|2 + |∇Aum|2 + |Avm|2 + |∇Avm|2

)
+ 2C2 + 2C1

≤ 2(C1 + C2) + (c7 + c8)
(
‖um‖2 + |Aum|2 + ‖vm‖2 + |Avm|2

)

×
(
|Aum|2 + |∇Aum|2 + |Avm|2 + |∇Avm|2

)
.

(3.30)

Let

y = |Aum|2 + |∇Aum|2 + |Avm|2 + |∇Avm|2,

g = (c7 + c8)
(
‖um‖2 + |Aum|2 + ‖vm‖2 + |Avm|2

)
,

h = 2(C1 + C2);

(3.31)

from (3.12) and (3.23), we conclude that h is bounded, so we suppose that
∫ t+r
t h(s)ds ≤ r4; by

(3.24), we have

∫ t+r

t

y(s) ds ≤ r3
ε
,

∫ t+r

t

g(s) ds ≤ (c7 + c8)r2r. (3.32)

Using Gronwall inequality, we obtain that

|Aum|2 + |∇Aum|2 + |Avm|2 + |∇Avm|2 ≤
(
r3
εr

+ r4

)
exp{(c7 + c8)r2r} � r5. (3.33)
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Integrating (3.29) over [t, t + r], we obtain that

∫ t+r

t

ε

4

(
|∇Aum(s)|2 +

∣∣∣A2um(s)
∣∣∣2 + |∇Avm(s)|2 +

∣∣∣A2vm(s)
∣∣∣2
)
ds

≤
∫ t+r

t

ε

4
λ1
(
|Aum(s)|2 + |∇Aum(s)|2 + |Avm(s)|2 + |∇Avm(s)|2

)
ds

+
∫ t+r

t

[C1 + C2]ds +
(
|Aum|2 + |∇Aum|2 + |Avm|2 + |∇Avm|2

)

+
∫ t+r

t

c7‖um(s)‖|Aum(s)|
(
|Aum(s)|2 + |∇Aum(s)|2 + |Avm(s)|2 + |∇Avm(s)|2

)
ds

+
∫ t+r

t

c8‖vm(s)‖|Avm(s)|
(
|Avm(s)|2 + |∇Avm(s)|2 + |Aum(s)|2 + |∇Aum(s)|2

)
ds

≤ ε

4
λ1r5r + (c7 + c8)r5r2r + r4 + r5 � r6,

(3.34)

where c5, c6, c7, c8, r4, r5, and r6 are nonnegative constants.
Respectively, taking the inner product of (3.1) and (3.2)withA3um,A

3vm inΩ, we can
also get |∇Aum|2 + |A2um|2 + |∇Avm|2 + |A2vm|2 ≤ r7. Connecting (3.12) and (3.23)with (3.33),
we can get that

|um|2 ≤ r1, ‖um‖2 ≤ r1, |Aum|2 ≤ r2, |∇Aum|2 ≤ r5,
∣∣∣A2um

∣∣∣2 ≤ r7,

|vm|2 ≤ r1, ‖vm‖2 ≤ r1, |Avm|2 ≤ r2, |∇Avm|2 ≤ r5,
∣∣∣A2vm

∣∣∣2 ≤ r7,

(3.35)

so |mm|, ‖mm‖, |Amm|, |nm|, ‖nm‖, and |Anm| are bounded.
Then we get that dum/dt, dvm/dt, dmm/dt, dnm/dt are bounded. Considering

Aubin’s compactness theorem, we conclude that there is a subsequence u′
m, v′

m, m′
m, n′

m, so
that u′

m → u, v′
m → v, m′

m → m, and n′
m → n. Now we replace um′ , vm′ , mm′ , and nm′

with um, vm, mm, and nm. We will prove that u, v, m, and n satisfy (1.9)–(1.10). That is to
say, approximate solution of (3.1)–(3.2) is convergent to solution of (1.9)–(1.10).

Let ω ∈ D(A), |ω| is finite from the above discussion, and by ordinary differential
equation (3.1), we have

(mm(t), ω) + ε

∫ t

t0

(mm(s), PmAω)ds

= 2
∫ t

t0

(mm(s)∇um(s), Pmω)ds

+
∫ t

t0

(∇mm(s)um(s), Pmω)ds +
∫ t

t0

(∇mm(s)vm(s), Pmω)ds

+
∫ t

t0

(mm(s)∇vm(s), Pmω) ds +
∫ t

t0

(nm(s)∇vm(s), Pmω)ds + (mm(t0), ω).

(3.36)
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Now it is clear that

lim
m→∞

∫ t

t0

(mm(s), Aω)ds =
∫ t

t0

(m(s), Aω)ds,

lim
m→∞

|Pmω −ω| = 0, lim
m→∞

|PmAω −Aω| = 0,

(mm(t), ω) −→ (m(t), ω),
∫ t

t0

(mm(s), PmAω)ds =
∫ t

t0

(m(s), Aω)ds, m −→ ∞.

(3.37)

Note that

∣∣∣∣∣
∫ t

t0

(mm(s)∇um(s), Pmω)ds −
∫ t

t0

(m(s)∇u(s), ω)ds

∣∣∣∣∣

=

∣∣∣∣∣
∫ t

t0

(mm(s)∇um(s), Pmω −ω)ds +
∫ t

t0

(mm(s)∇um(s), ω)ds −
∫ t

t0

(m(s)∇u(s), ω)ds

∣∣∣∣∣

=

∣∣∣∣∣
∫ t

t0

(mm(s)∇um(s), Pmω −ω)ds +
∫ t

t0

(mm(s) −m(s))∇um(s), ω)ds

+
∫ t

t0

(m(s)(∇um(s) − ∇u(s)), ω)ds

∣∣∣∣∣

≤
∣∣∣∣∣
∫ t

t0

(mm(s)∇um(s), Pmω −ω)ds

∣∣∣∣∣ +
∣∣∣∣∣
∫ t

t0

(mm(s) −m(s))∇um(s), ω)ds

∣∣∣∣∣

+

∣∣∣∣∣
∫ t

t0

(m(s)(∇um(s) − ∇u(s)), ω)ds

∣∣∣∣∣

≤
∫ t

t0

|mm(s)|‖um(s)‖|Pmω −ω|ds +
∫ t

t0

|mm(s) −m(s)|‖um(s)‖|ω|ds

+
∫ t

t0

|m(s)|‖um(s) − u(s)‖|ω|ds −→ 0.

(3.38)

From the above statements we get

lim
m→∞

∫ t

t0

(mm(s)∇um(s), Pmω)ds =
∫ t

t0

(m(s)∇u(s), ω)ds. (3.39)
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Similarly, we have that

lim
m→∞

∫ t

t0

(um(s)∇mm(s), Pmω)ds =
∫ t

t0

(u(s)∇m(s), ω)ds,

lim
m→∞

∫ t

t0

(vm(s)∇mm(s), Pmω)ds =
∫ t

t0

(v(s)∇m(s), ω)ds,

lim
m→∞

∫ t

t0

(mm(s)∇vm(s), Pmω)ds =
∫ t

t0

(m(s)∇v(s), ω)ds,

lim
m→∞

∫ t

t0

(nm(s)∇vm(s), Pmω)ds =
∫ t

t0

(n(s)∇v(s), ω)ds.

(3.40)

For all ω ∈ D(A), we obtain that

(m(t), ω) + ε

∫ t

t0

(m(s), Aω)ds = 2
∫ t

t0

(m(s)∇u(s), ω)ds +
∫ t

t0

(∇m(s)u(s), ω)ds

+
∫ t

t0

(∇m(s)v(s), ω)ds +
∫ t

t0

(m(s)∇v(s), ω)ds

+
∫ t

t0

(n(s)∇v(s), ω)ds + (m(t0), ω).

(3.41)

From ordinary differential equation (3.2), we know that

(nm(t), ω) + ε

∫ t

t0

(nm(s), PmAω)ds

= 2
∫ t

t0

(nm(s)∇vm(s), Pmω)ds +
∫ t

t0

(∇nm(s)vm(s), Pmω)ds

+
∫ t

t0

(∇nm(s)um(s), Pmω)ds +
∫ t

t0

(nm(s)∇um(s), Pmω)ds

+
∫ t

t0

(mm(s)∇um(s), Pmω)ds + (nm(t0), ω),

(3.42)
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as we know that

(nm(t), ω) −→ (n(t), ω),
∫ t

t0

(nm(s), PmAω)ds =
∫ t

t0

(n(s), Aω)ds, m −→ ∞,

∣∣∣∣∣
∫ t

t0

(nm(s)∇vm(s), Pmω)ds −
∫ t

t0

(n(s)∇v(s), ω)ds

∣∣∣∣∣

=

∣∣∣∣∣
∫ t

t0

(nm(s)∇vm(s), Pmω −ω)ds +
∫ t

t0

(nm(s)∇vm(s), ω)ds −
∫ t

t0

(n(s)∇v(s), ω)ds

∣∣∣∣∣

=

∣∣∣∣∣
∫ t

t0

(nm(s)∇vm(s), Pmω −ω)ds +
∫ t

t0

(nm(s) − n(s))∇vm(s), ω)ds

+
∫ t

t0

(n(s)(∇vm(s) − ∇v(s)), ω)ds

∣∣∣∣∣

≤
∣∣∣∣∣
∫ t

t0

(nm(s)∇vm(s), Pmω −ω)ds

∣∣∣∣∣ +
∣∣∣∣∣
∫ t

t0

(nm(s) − n(s))∇vm(s), ω)ds

∣∣∣∣∣

+

∣∣∣∣∣
∫ t

t0

(n(s)(∇um(s) − ∇v(s)), ω)ds

∣∣∣∣∣

≤
∫ t

t0

|nm(s)|‖vm(s)‖|Pmω −ω|ds +
∫ t

t0

|nm(s) − n(s)|‖vm(s)‖|ω|ds

+
∫ t

t0

|n(s)|‖vm(s) − v(s)‖|ω|ds −→ 0.

(3.43)

From the above discussions we get

lim
m→∞

∫ t

t0

(nm(s)∇vm(s), Pmω)ds =
∫ t

t0

(n(s)∇v(s), ω)ds. (3.44)

Simultaneously, we have that

lim
m→∞

∫ t

t0

(vm(s)∇nm(s), Pmω)ds =
∫ t

t0

(v(s)∇n(s), ω)ds,

lim
m→∞

∫ t

t0

(um(s)∇nm(s), Pmω)ds =
∫ t

t0

(u(s)∇n(s), ω)ds,

lim
m→∞

∫ t

t0

(nm(s)∇um(s), Pmω)ds =
∫ t

t0

(n(s)∇u(s), ω)ds,

lim
m→∞

∫ t

t0

(mm(s)∇um(s), Pmω)ds =
∫ t

t0

(m(s)∇u(s), ω)ds.

(3.45)
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For all ω ∈ D(A), we obtain

(n(t), ω) + ε

∫ t

t0

(n(s), Aω)ds = 2
∫ t

t0

(n(s)∇v(s), ω)ds +
∫ t

t0

(∇n(s)v(s), ω)ds

+
∫ t

t0

(∇n(s)u(s), ω)ds +
∫ t

t0

(n(s)∇u(s), ω)ds

+
∫ t

t0

(m(s)∇u(s), ω)ds + (n(t0), ω).

(3.46)

All the above analysis shows that the global solution to (1.9)–(1.13) exists inH2(Ω).

Theorem 3.2. Denote S(t) as the semigroup of the solution operator to (1.9)–(1.13), S(t) :
H2(Ω) → H2(Ω), u(t) = S(t)u0, ρ(t) = S(t)ρ0. Then S(t) has an absorbing set inH2(Ω).

Proof. Taking the inner product of (1.9) and (1.10),respectively, with u, v in Ω, noting that

(ut − uxxt − ε(u − uxx)xx, u) =
1
2
d

dt

(
|u|2 + ‖u‖2

)
+ ε

(
‖u‖2 + |Au|2

)
,

(vt − vxxt − ε(v − vxx)xx, v) =
1
2
d

dt

(
|v|2 + ‖v‖2

)
+ ε

(
‖v‖2 + |Av|2

)
,

− 2(uxuxx, u) − (uxxxu, u) =
∫
Ω
(−2uuxuxx)dx +

∫
Ω
uxx

(
u2
)
x
dx = 0,

(uxu, v) + (uxv + uvx, u) = 2
∫
Ω
uuxvdx −

∫
Ω
2vuux dx = 0,

(vxv, u) + (uvx + uxv, v) = 0,−2(vxvxx, v) − (vxxxv, v) = 0,

(−uxxxv − uxxvx − vxxvx, u) + (−vxxxu − vxxux − uxxux, v) = 0,

(3.47)

and associating with all the above statements, we obtain

1
2
d

dt

(
|u|2 + ‖u‖2 + |v|2 + ‖v‖2

)
+ ε

(
‖u‖2 + |Au|2 + ‖v‖2 + |Av|2

)
= 0. (3.48)

According to the Poincaré inequality, we obtain that

d

dt

(
|u|2 + ‖u‖2 + |v|2 + ‖v‖2

)
+ 2ελ1

(
|u|2 + ‖u‖2 + |v|2 + ‖v‖2

)
≤ 0,

|u| + ‖u‖2 + |v|2 + ‖v‖2

≤
(
|u(0)|2 + ‖u(0)‖2 + |v(0)|2 + ‖v(0)‖2

)
exp{−2ελ1t}

≤ |u(0)|2 + ‖u(0)‖2 + |v(0)|2 + ‖v(0)‖2 � r8,

(3.49)

where r8 is nonnegative constant.
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Integrating (3.48) over [t, t + r], we obtain that

ε

∫ t+r

t

(
‖v(x, s)‖2 + |Av(x, s)|2 + ‖u(x, s)‖2 + |Au(x, s)|2

)
ds ≤ r8. (3.50)

We will obtain the uniform estimate of (1.9)–(1.13) inH2(Ω) as follows.
Taking the inner product of (1.9) and (1.10), respectively, with −uxx,−vxx, we have

(ut − uxxt − ε(u − uxx)xx,−uxx) =
1
2
d

dt

(
‖u‖2 + |Au|2

)
+ ε

(
|Au|2 + |∇Au|2

)
,

(vt − vxxt − ε(v − vxx)xx,−vxx) =
1
2
d

dt

(
‖v‖2 + |Av|2

)
+ ε

(
|Av|2 + |∇Av|2

)
,

|(3uux,−uxx)| ≤ 3
2
‖∇u‖L∞(Ω)‖u‖2, |(3vvx,−vxx)| ≤ 3

2
‖∇v‖L∞(Ω)‖v‖2,

|(−2uxuxx,−uxx) − (uxxxu,−uxx)| =
∣∣∣∣
∫
Ω

(
2uxu

2
xx

)
dx +

∫
Ω
uuxx duxx

∣∣∣∣

=
∣∣∣∣
∫
Ω

3
2
uxu

2
xx dx

∣∣∣∣ ≤ 3
2
‖∇u‖L∞(Ω)|Au|2,

|(−2vxvxx,−vxx) − (vxxxv,−vxx)| ≤ 3
2
‖∇v‖L∞(Ω)|Av|2,

|(uxv + uvx,−uxx) + (uxu,−vxx)|

=

∣∣∣∣∣
∫
Ω

u2
x

2
vx dx −

∫
Ω
uuxxvx dx +

∫
Ω
u2
xvx dx +

∫
Ω
uuxxvx dx

∣∣∣∣∣

=
∣∣∣∣32

∫
Ω
u2
xvx dx

∣∣∣∣ ≤ 3
2
‖∇v‖L∞(Ω)‖u‖2,

|(vxu + vux,−vxx) + (vxv,−uxx)| =
∣∣∣∣32

∫
Ω
v2
xux dx

∣∣∣∣ ≤ 3
2
‖∇u‖L∞(Ω)‖v‖2; (3.51)

we also obtain

|(−uxxxv − uxxvx − vxxvx,−uxx) + (−vxxxu − vxxux − uxxux,−vxx)|

≤
∣∣∣∣
∫
Ω
u2
xxvx dx

∣∣∣∣ +
∣∣∣∣
∫
Ω
v2
xxux dx

∣∣∣∣ +
∣∣∣∣
∫
Ω

1
2
u2
xxux dx

∣∣∣∣ +
∣∣∣∣
∫
Ω

1
2
v2
xxvx dx

∣∣∣∣

≤ ‖∇v‖L∞(Ω)|Au|2 + ‖∇u‖L∞(Ω)|Av|2 + 1
2
‖∇u‖L∞(Ω)|Au|2 + 1

2
‖∇v‖L∞(Ω)|Av|2.

(3.52)
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From all the previous statements we obtain that

1
2
d

dt

(
‖u‖2 + |Au|2 + ‖v‖2 + |Av|2

)
+ ε

(
|Au|2 + |∇Au|2 + |Av|2 + |∇Av|2

)

≤ 2‖∇u‖L∞(Ω)

(
‖u‖2 + |Au|2 + ‖v‖2 + |Av|2

)

+ 2‖∇v‖L∞(Ω)

(
‖u‖2 + |Au|2 + ‖v‖2 + |Av|2

)

≤ 2c9‖u‖1/2|Au|1/2
(
‖u‖2 + |Au|2 + ‖v‖2 + |Av|2

)

+ 2c10‖v‖1/2|Av|1/2
(
‖u‖2 + |Au|2 + ‖v‖2 + |Av|2

)

≤ ελ1
2

(
‖u‖2 + |Au|2 + ‖v‖2 + |Av|2

)
+ c11‖u‖|Au|

(
‖u‖2 + |Au|2 + ‖v‖2 + |Av|2

)

+
ελ1
2

(
‖u‖2 + |Au|2 + ‖v‖2 + |Av|2

)
+ c12‖v‖|Av|

(
‖u‖2 + |Au|2 + ‖v‖2 + |Av|2

)
,

(3.53)

where c11 = 2c29/ελ1, c12 = 2c210/ελ1. From Poincaré inequality, we get

d

dt

(
‖u‖2 + |Au|2 + ‖v‖2 + |Av|2

)

≤
[
c11

(
‖u‖2 + |Au|2

)
+ c12

(
‖v‖2 + |Av|2

)](
‖u‖2 + |Au|2 + ‖v‖2 + |Av|2

)

≤ (c11 + c12)
(
‖u‖2 + |Au|2 + ‖v‖2 + |Av|2

)2
.

(3.54)

Let

y = ‖u‖2 + |Au|2 + ‖v‖2 + |Av|2, g = (c11 + c12)
(
‖u‖2 + |Au|2 + ‖v‖2 + |Av|2

)
(3.55)

From (3.50) we have that

∫ t+r

t

y(s) ds ≤ r8
ε
,

∫ t+r

t

g(s) ds ≤ (c11 + c12)
r8
ε
,

‖u‖2 + |Au|2 + ‖v‖2 + |Av|2 ≤
(
r8
εr

)
exp

{
(c11 + c12)

r8
ε

}
� r9.

(3.56)

Integrating (3.53) over [t, t + r], it follows that

∫ t+r

t

ε
(
|Au(x, s)|2 + |∇Au(x, s)|2 + |Av(x, s)|2 + |∇Av(x, s)|2

)
ds

≤ ελ1r9r + (c11 + c12)r29r + r9 � r10,

(3.57)
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where c9, c10, c11, c12, r8, r9, and r10 are nonnegative constants. Taking the inner product of (1.9)
and (1.10), respectively, with uxxxx, vxxxx, we have that

(ut − uxxt − ε(u − uxx)xx, uxxxx) =
1
2
d

dt

(
|Au|2 + |∇Au|2

)
+ ε

(
|∇Au|2 +

∣∣∣A2u
∣∣∣2
)
,

(vt − vxxt − ε(v − vxx)xx, vxxxx) =
1
2
d

dt

(
|Av|2 + |∇Av|2

)
+ ε

(
|∇Av|2 +

∣∣∣A2v
∣∣∣2
)
,

|(3uux − 2uxuxx − uuxxx, uxxxx)| ≤ 3‖∇u‖L∞(Ω)|Au|2 + 5
2
‖∇u‖L∞(Ω)|∇Au|2,

|(3vvx − 2vxvxx − vvxxx, vxxxx)| ≤ 3‖∇v‖L∞(Ω)|Av|2 + 5
2
‖∇v‖L∞(Ω)|∇Av|2.

(3.58)

Integrating by parts and employing Sobolev inequality, we get

|(uxv + uvx, uxxxx) + (uux, vxxxx)| =
∣∣∣−(uxxx , (uxv + uvx)x −

(
vxxx, u

2
x + uuxx

)∣∣∣

≤ ε

4
|∇Au|2 + ε

4
|∇Av|2 + C3

2
,

|(vxu + vux, vxxxx) + (vvx, uxxxx)| =
∣∣∣−(vxxx, (vxu + vux)x −

(
uxxx, v

2
x + vvxx

)∣∣∣

≤ ε

4
|∇Au|2 + ε

4
|∇Av|2 + C3

2
,

(3.59)

where C3 is a constant depending on |u|, ‖u‖, |v|, and ‖v‖.

|(−uxxxv − uxxvx − vxxvx, uxxxx) + (−vxxxu − vxxux − uxxux, vxxxx)|

=
∣∣∣∣32

∫
Ω
u2
xxxvx dx +

3
2

∫
Ω
v2
xxxux dx +

1
2

∫
Ω
uxxxv

2
xx dx

+
1
2

∫
Ω
vxxxu

2
xx dx +

∫
Ω
uxxxvxxxux dx +

∫
Ω
uxxxvxxxvx dx

∣∣∣∣

≤
∣∣∣∣2

∫
Ω
u2
xxxvx dx + 2

∫
Ω
v2
xxxux dx +

1
2

∫
Ω
uxxxv

2
xx dx +

1
2

∫
Ω
vxxxu

2
xx dx

∣∣∣∣

+
∣∣∣∣12

∫
Ω
v2
xxxvx dx

∣∣∣∣ +
∣∣∣∣12

∫
Ω
u2
xxxux dx

∣∣∣∣
≤ 2‖∇v‖L∞(Ω)|∇Au|2 + 2‖∇u‖L∞(Ω)|∇Av|2 + ε

4

(
|∇Au|2 + |∇Av|2

)

+ C4 +
1
2
‖∇v‖L∞(Ω)|∇Av|2 + 1

2
‖∇u‖L∞(Ω)|∇Au|2,

(3.60)
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where C4 is a constant depending on |u|, ‖u‖, |v|, ‖vm‖, |Au|, and |Av|. From all the above
inequalities we obtain that

1
2
d

dt

(
|Au|2 + |∇Au|2 + |Av|2 + |∇Av|2

)
+ ε

(
|∇Au|2 +

∣∣∣A2u
∣∣∣2 + |∇Av|2 +

∣∣∣A2v
∣∣∣2
)

≤ 3‖∇u‖L∞(Ω)|Au|2 + 5
2
‖∇u‖L∞(Ω)|∇Au|2 + 3‖∇v‖L∞(Ω)|Av|2

+
5
2
‖∇v‖L∞(Ω)|∇Av|2 + ε

2
|∇Au|2 + ε

2
|∇Av|2 + C3

+ 2‖∇v‖L∞(Ω)|∇Au|2 + 2‖∇u‖L∞(Ω)|∇Av|2 + ε

4

(
|∇Au|2 + |∇Av|2

)

+ C4 +
1
2
‖∇v‖L∞(Ω)|∇Av|2 + 1

2
‖∇u‖L∞(Ω)|∇Au|2.

(3.61)

Then it follows that

1
2
d

dt

(
|Au|2 + |∇Au|2 + |Av|2 + |∇Av|2

)
+
ε

4

(
|∇Au|2 +

∣∣∣A2u
∣∣∣2 + |∇Av|2 +

∣∣∣A2v
∣∣∣2
)

≤ 3c13‖u‖1/2|Au|1/2
(
|Au|2 + |∇Au|2 + |∇Av|2 + |Av|2

)
+ C3

+ 3c14‖v‖1/2|Av|1/2
(
|Av|2 + |∇Av|2 + |∇Au|2 + |Au|2

)
+ C4

≤ ε

8
λ1
(
|Au|2 + |∇Au|2 + |Av|2 + |∇Av|2

)

+ c15‖u‖|Au|
(
|Au|2 + |∇Au|2 + |Av|2 + |∇Av|2

)
+ C3

+
ε

8
λ1
(
|Au|2 + |∇Au|2 + |Av|2 + |∇Av|2

)

+ c16‖v‖|Av|
(
|Au|2 + |∇Au|2 + |Av|2 + |∇Av|2

)
+ C4,

(3.62)

where c15 = 18c213/ελ1, c16 = 18c214/ελ1. By means of Poincaré inequality, we obtain that

d

dt

(
|Au|2 + |∇Au|2 + |Av|2 + |∇Av|2

)

≤ c15
(
‖u‖2 + |Au|2

)(
|Au|2 + |∇Au|2 + |Av|2 + |∇Av|2

)

+ c16
(
‖v‖2 + |Av|2

)(
|Au|2 + |∇Au|2 + |Av|2 + |∇Av|2

)
+ C3 + C4

≤ 2(C3 + C4) + (c15 + c16)
(
‖u‖2 + |Au|2 +‖v‖2 + |Av|2

)(
|Au|2 + |∇Au|2 + |Av|2 + |∇Av|2

)
.

(3.63)
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Let

y = |Au|2 + |∇Au|2 + |Av|2 + |∇Av|2,

g = (c15 + c16)
(
‖u‖2 + |Au|2 + ‖v‖2 + |Av|2

)
, h = 2(C3 + C4);

(3.64)

from (3.49) and (3.56), we conclude that h is bounded; assume that
∫ t+r
t h(s) ds ≤ r11. From

(3.57), we have

∫ t+r

t

y(s)ds ≤ r10
ε
,

∫ t+r

t

g(s)ds ≤ (c15 + c16)r9r. (3.65)

Then through Gronwall inequality, we obtain

|Au|2 + |∇Au|2 + |Av|2 + |∇Av|2 ≤
(
r10
εr

+ r11

)
exp{(c15 + c16)r9r} � ρ1. (3.66)

Integrating (3.62) on [t, t + r], we have that

∫ t+r

t

ε

4

(
|∇Au(x, s)|2 +

∣∣∣A2u(x, s)
∣∣∣2 + |∇Av(x, s)|2 +

∣∣∣A2v(x, s)
∣∣∣2
)
ds

≤ ε

4
λ1ρ1r + (c15 + c16)r9ρ1r + r11 + ρ1 � r12,

(3.67)

where c13, c14, c15, c16, r11, r12, and r13 are nonnegative constants. Then from (3.66), we can
get |Au|2 ≤ ρ1, |Av|2 ≤ ρ1. In other words, open ball B(0, ρ1) is the attracting set of S(t) in
H2(Ω).

Theorem 3.3. Suppose that u0, ρ0 ∈ Hl(R), l ≥ 2, then the semigroup of the solution operator S(t)
to (1.9)–(1.13) has a global attractor inH2(Ω).

Proof. To obtain the existence of the global attractor, we will prove that it is a compact
operator. Taking inner product of (1.9) and (1.10)with t2Δ3u, t2Δ3v in Ω, we obtain

(
ut − uxxt − ε(u − uxx)xx, t

2uxxxxxx

)

= −1
2
d

dt

(
|t∇Au|2 +

∣∣∣tA2u
∣∣∣2
)
+ t

(
|∇Au|2 +

∣∣∣A2u
∣∣∣2
)
− ε

(
|tΔAu|2 +

∣∣∣∇A2u
∣∣∣2
)
,

(3.68)

(
vt − vxxt − ε(v − vxx)xx, t

2vxxxxxx

)

= −1
2
d

dt

(
|t∇Av|2 +

∣∣∣tA2v
∣∣∣2
)
+ t

(
|∇Av|2 +

∣∣∣A2v
∣∣∣2
)
− ε

(
|tΔAv|2 +

∣∣∣∇A2v
∣∣∣2
)
.

(3.69)
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By integrating by parts, we obtain that

∣∣∣(3uux − 2uxuxx − uuxxx, t
2uxxxxxx

)∣∣∣

= t2
∣∣∣∣−3

∫
Ω
u2
xuxxxxx dx − 3

∫
Ω
uuxxuxxxxx dx + 2

∫
Ω
u2
xxuxxxxx dx

+2
∫
Ω
uxuxxxuxxxxx dx +

∫
Ω
uxuxxxuxxxxx dx +

∫
Ω
uuxxxxuxxxxx dx

∣∣∣∣

= t2
∣∣∣∣
∫
Ω
6uxuxxuxxxx dx + 3

∫
Ω
uxuxxuxxxx dx + 3

∫
Ω
uuxxxuxxxx dx

− 4
∫
Ω
uxxuxxxuxxxx dx − 2

∫
Ω
uxxuxxxuxxxx dx − 2

∫
Ω
uxu

2
xxxx dx

−
∫
Ω
uxxuxxxuxxxx dx −

∫
Ω
uxu

2
xxxx dx − 1

2

∫
Ω
uxu

2
xxxx dx

∣∣∣∣

= t2
∣∣∣∣212

∫
Ω
uxu

2
xxx dx +

7
2

∫
Ω
u3
xxx dx +

7
2

∫
Ω
uxu

2
xxxx dx

∣∣∣∣

≤ 21
2
‖∇u‖L∞(Ω)|t∇Au|2 + 7

2

(
‖∇Au‖L∞(Ω)|t∇Au|2 + ‖∇u‖L∞(Ω)

∣∣∣tA2u
∣∣∣2
)
.

(3.70)

Similarly, we obtain

∣∣∣(3vvx − 2vxvxx − vvxxx, t
2vxxxxxx

)∣∣∣

≤ 21
2
‖∇v‖L∞(Ω)|t∇Av|2 + 7

2

(
‖∇Av‖L∞(Ω)|t∇Av|2 + ‖∇v‖L∞(Ω)

∣∣∣tA2v
∣∣∣2
)
,

∣∣∣(uxv + uvx, t
2uxxxxxx

)
+
(
uux, t

2vxxxxxx

)∣∣∣
=
∣∣∣(t2uxxxx, uxxxv + 3uxxvx + 3uxvxx + uvxxx

)
+
(
t2vxxxx, 3uxuxx + uuxxx

)∣∣∣
≤ ε

4

∣∣∣tA2u
∣∣∣2 + ε

4

∣∣∣tA2v
∣∣∣2 + 1

3
C5,

∣∣∣(vxu + vux, t
2vxxxxxx

)
+
(
vvx, t

2uxxxxxx

)∣∣∣
=
∣∣∣(t2vxxxx, vxxxu + 3vxxux + 3vxuxx + vuxxx

)
+
(
t2uxxxx, 3vxvxx + vvxxx

)∣∣∣
≤ ε

4

∣∣∣tA2u
∣∣∣2 + ε

4

∣∣∣tA2v
∣∣∣2 + 1

3
C5,

(3.71)
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where C5 is a constant depending on |u|, ‖u‖, |v|, ‖vm‖, |Au|, |Av|, and t. Integrating by parts
frequently, we obtain

∣∣∣(−uxxxv − uxxvx − vxxvx, t
2uxxxxxx

)
+
(
−vxxxu − vxxux − uxxux, t

2vxxxxxx

)∣∣∣

≤ t2
[∣∣∣∣3

∫
Ω
v2
xxxxvx dx

∣∣∣∣ +
∣∣∣∣3

∫
Ω
u2
xxxxux dx

∣∣∣∣ + 1
2

∫
Ω
u2
xxxxvx dx +

1
2

∫
Ω
v2
xxxxux dx

]

+
ε

4

∣∣∣tA2u
∣∣∣2 + ε

4

∣∣∣tA2v
∣∣∣2 + C5

3
,

≤ 3‖vx‖L∞(Ω)

(∣∣∣tA2v
∣∣∣2 +

∣∣∣tA2u
∣∣∣2
)
+ 3‖ux‖L∞(Ω)

(∣∣∣tA2v
∣∣∣2 +

∣∣∣tA2u
∣∣∣2
)

+
ε

4

∣∣∣tA2u
∣∣∣2 + ε

4

∣∣∣tA2v
∣∣∣2 + C5

3
.

(3.72)

From (3.68) and (3.69), we know that

1
2
d

dt

(
|t∇Au|2 +

∣∣∣tA2u
∣∣∣2 + |t∇Av|2 +

∣∣∣tA2v
∣∣∣2
)

+
ε

4
|tΔAu|2 + ε

∣∣∣∇A2u
∣∣∣2 + ε

4
|tΔAv|2 + ε

∣∣∣∇A2v
∣∣∣2

≤ 21
2
‖∇u‖L∞(Ω)|t∇Au|2 + 7

2

(
‖∇Au‖L∞(Ω)|t∇Au|2 + ‖∇u‖L∞(Ω)

∣∣∣tA2u
∣∣∣2
)

+
21
2
‖∇v‖L∞(Ω)|t∇Av|2 + 7

2

(
‖∇Av‖L∞(Ω)|t∇Av|2 + ‖∇v‖L∞Ω

∣∣∣tA2v
∣∣∣2
)

+ 3‖∇v‖L∞(Ω)

(∣∣∣tA2v
∣∣∣2 +

∣∣∣tA2u
∣∣∣2
)
+ 3‖∇u‖L∞(Ω)

(∣∣∣tA2v
∣∣∣2 +

∣∣∣tA2u
∣∣∣2
)

+ t

(
|∇Au|2 +

∣∣∣A2u
∣∣∣2 + |∇Av|2 +

∣∣∣A2v
∣∣∣2
)
+ C5

≤
(
11‖∇u‖L∞(Ω) + 11‖∇v‖L∞(Ω)

)(
|t∇Au|2 +

∣∣∣tA2u
∣∣∣2 + |t∇Av|2 +

∣∣∣tA2v
∣∣∣2
)

+
7
2
‖∇Au‖L∞(Ω)|t∇Au|2 + 7

2
‖∇Av‖L∞(Ω) |t∇Av|2

+ t

(
|∇Au|2 +

∣∣∣A2u
∣∣∣2 + |∇Av|2 +

∣∣∣A2v
∣∣∣2
)
+ C5

≤
(
11c17‖u‖1/2|Au|1/2 + 11c18‖v‖1/2|Av|1/2

)(
|t∇Au|2 +

∣∣∣tA2u
∣∣∣2 + |t∇Av|2 +

∣∣∣tA2v
∣∣∣2
)

+
7
2
c19|∇Au|1/2

∣∣∣A2u
∣∣∣1/2|t∇Au|2 + 7

2
c20|∇Av|1/2

∣∣∣A2v
∣∣∣1/2|t∇Av|2

+ t

(
|∇Au|2 +

∣∣∣A2u
∣∣∣2 + |∇Av|2 +

∣∣∣A2v
∣∣∣2
)
+ C5
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≤ 11c21
(
‖u‖1/2|Au|1/2 + ‖v‖1/2|Av|1/2 + |∇Au|1/2

∣∣∣A2u
∣∣∣1/2 + |∇Av|1/2

∣∣∣A2v
∣∣∣1/2

)

×
(
|t∇Au|2 +

∣∣∣tA2u
∣∣∣2 + |t∇Av|2 +

∣∣∣tA2v
∣∣∣2
)

+ t

(
|∇Au|2 +

∣∣∣A2u
∣∣∣2 + |∇Av|2 +

∣∣∣A2v
∣∣∣2
)
+ C5,

(3.73)

where c21 = max{4c17, 4c18, 14c19, 14c20}. Employing Young inequality, we obtain that

1
2
d

dt

(
|t∇Au|2 +

∣∣∣tA2u
∣∣∣2 + |t∇Av|2 +

∣∣∣tA2v
∣∣∣2
)

+
ε

4

(
|tΔAu|2 +

∣∣∣∇A2u
∣∣∣2 + |tΔAv|2 +

∣∣∣∇A2v
∣∣∣2
)

≤ ε

4
λ1

(
|t∇Au|2 +

∣∣∣tA2u
∣∣∣2 + |t∇Av|2 +

∣∣∣tA2v
∣∣∣2
)

+ c22
(
‖u‖|Au| + ‖v‖|Av| + |∇Au|

∣∣∣A2u
∣∣∣|∇Av|

∣∣∣A2v
∣∣∣)

×
(
|t∇Au|2 +

∣∣∣tA2u
∣∣∣2 + |t∇Av|2 +

∣∣∣tA2v
∣∣∣2
)

+ c23

(
|∇Au|2 +

∣∣∣A2u
∣∣∣2 + |∇Av|2 +

∣∣∣A2v
∣∣∣2
)
+ C5,

(3.74)

where c22 = 242c221/ελ1, c23 = 2/ελ1. From Poincaré inequality, we obtain that

d

dt

(
|t∇Au|2 +

∣∣∣tA2u
∣∣∣2 + |t∇Av|2 +

∣∣∣tA2v
∣∣∣2
)

≤ 2c22
(
‖u‖|Au| + ‖v‖|Av| + |∇Au|

∣∣∣A2u
∣∣∣ + |∇Av|

∣∣∣A2v
∣∣∣)

×
(
|∇Au|2 +

∣∣∣A2u
∣∣∣2 + |∇Av|2 +

∣∣∣A2v
∣∣∣2
)

+ 2c23
(
|∇Au|2 +

∣∣∣A2u
∣∣∣2 + |∇Av|2 +

∣∣∣2v
∣∣∣2
)
+ 2C5.

(3.75)

Let

y = |t∇Au|2 +
∣∣∣tA2u

∣∣∣2 + |t∇Av|2 +
∣∣∣tA2v

∣∣∣2,
g = 2c22

(
‖u‖|Au| + ‖v‖|Av| + |∇Au|

∣∣∣A2u
∣∣∣ + |∇Av|

∣∣∣A2v
∣∣∣),

h = 2c23
(
|∇Au|2 +

∣∣∣A2u
∣∣∣2 + |∇Av|2 +

∣∣∣A2v
∣∣∣2
)
+ 2C5.

(3.76)
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Through (3.67), we have

∫ t+r

t

(
|∇Au(x, s)|2 +

∣∣∣A2u(x, s)
∣∣∣2 + |∇Av(x, s)|2 +

∣∣∣A2v(x, s)
∣∣∣2
)
ds ≤ 4r12

ε
. (3.77)

We also get

∫ t+r

t

(
|t∇Au(x, s)|2 +

∣∣∣tA2u(x, s)
∣∣∣2 + |t∇Av(x, s)|2 +

∣∣∣tA2v(x, s)
∣∣∣2
)
ds ≤ (t + r)2

4r12
ε

,

∫ t+r

t

2c22
(
‖u‖|Au| + ‖v‖|Av| + |∇Au|

∣∣∣A2u
∣∣∣ + |∇Av|

∣∣∣A2v
∣∣∣)ds

≤
∫ t+r

t

2c22
(
‖u‖2 + |Au|2 + ‖v‖2 + |Av|2 + |∇Au|2 +

∣∣∣A2u
∣∣∣2 + |∇Av|2 +

∣∣∣A2v
∣∣∣2
)
ds

≤ 2c22
(
r9r +

4r12
ε

)
.

(3.78)

Through (3.49), (3.56), and (3.66), we assume that

∫ t+r

t

C5 ds ≤ r13. (3.79)

Then we have

∫ t+r

t

[
2c23

(
|∇Au|2 +

∣∣∣A2u
∣∣∣2 + |∇Av|2 +

∣∣∣A2v
∣∣∣2
)
+ 2C5

]
ds ≤ 2c23

4r12
ε

+ 2r13, (3.80)

and all the analysis indicates that

|t∇Au|2 +
∣∣∣tA2u

∣∣∣2 + |t∇Av|2 +
∣∣∣tA2v

∣∣∣2

≤
[
(t + r)2

4r12
εr

+ 2c23
4r12
ε

+ 2r13
]
exp

{
2c22

(
r9r +

4r12
ε

)}

� E2(λ1, ρ1, ε, t).

(3.81)

Finally we obtain that

|∇Au| ≤ E
(
λ1, ρ1, ε, t

)
t

, |∇Av| ≤ E
(
λ1, ρ1, ε, t

)
t

. (3.82)

We know that the injection of H3(Ω) into H2(Ω) is compact, then we can conclude that S(t)
is equi-continuity. From Ascoli-Arzela’s theorem, we know that S(t) has the global attractor
in H2(Ω).
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