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By applying the Banach fixed point theorem and using an inequality technique, we investigate a
kind of random impulsive integrodifferential equations of neutral type. Some sufficient conditions,
which can guarantee the existence, uniqueness, and exponential stability in mean square for such
systems, are obtained. Compared with the previous works, our method is new and our results can
generalize and improve some existing ones. Finally, an illustrative example is given to show the
effectiveness of the proposed results.

1. Introduction

Since impulsive differential systems have been highly recognized and applied in a
wide spectrum of fields such as mathematical modeling of physical systems, technology,
population and biology, etc., some qualitative properties of the impulsive differential
equations have been investigated by many researchers in recent years, and a lot of valuable
results have been obtained (see, e.g., [1–10] and references therein). For the general theory
of impulsive differential systems, the readers can refer to [11, 12]. For an impulsive
differential equations, if its impulsive effects are random variable, their solutions are
stochastic processes. It is different from the deterministic impulsive differential equations and
stochastic differential equations. Thus, the random impulsive differential equations are more
realistic than deterministic impulsive systems. The investigation for the random impulsive
differential equations is a new area of research. Recently, the p-moment boundedness,
exponential stability and almost sure stability of random impulsive differential systems
were studied by using the Lyapunov functional method in [13–15], respectively. In [16] Wu
and Duan have investigated the oscillation, stability and boundedness in mean square of
second-order random impulsive differential systems; Wu et al. in [17] studied the existence
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and uniqueness of the solutions to random impulsive differential equations, and in [18]
Zhao and Zhang discussed the exponential stability of random impulsive integro-differential
equations by employing the comparison theorem. Very recently, the existence, uniqueness
and stability results of random impulsive semilinear differential equations, the existence and
uniqueness for neutral functional differential equations with random impulses are discussed
by using the Banach fixed point theorem in [19, 20], respectively.

It is well known that the nonlinear impulsive delay differential equations of neutral
type arises widely in scientific fields, such as control theory, bioscience, physics, etc. This
class of equations play an important role in modeling phenomena of the real world. So it is
valuable to discuss the properties of the solutions of these equations. For example, Xu et al.
in [21], have considered the exponential stability of nonlinear impulsive neutral differential
equations with delays by establishing singular impulsive delay differential inequality and
transforming the n-dimensional impulsive neutral delay differential equation into a 2n-
dimensional singular impulsive delay differential equations; and the results about the global
exponential stability for neutral-type impulsive neural networks are obtained by using the
linear matrix inequality (LMI) in [9, 10], respectively.

However, most of these studies are in connection with deterministic impulses and
finite delay. And, to the best of author’s knowledge, there is no paper which investigates
the existence, uniqueness and exponential stability in mean square of random impulsive
integrodifferential equation of neutral type. One of the main reason is that the methods to
discuss the exponential stability of deterministic impulsive differential equations of neutral
type and the exponential stability for random differential equations can not be directly
adapted to the case of random impulsive differential equations of neutral type, especially,
random impulsive integrodifferential equations of neutral type. That is, the methods
proposed in [15, 16] are ineffective for the exponential stability in mean square for such
systems. Although the exponential stability of nonlinear impulsive neutral integrodifferential
equations can be derived in [22], the method used in [22] is only suitable for the deterministic
impulses. Besides, the methods introduced to deal with the exponential stability of random
impulsive integrodifferential equations in [18] and study the exponential stability in mean
square of random impulsive differential equations in [19], can not be applied to deal with
our problem since the neutral item arises. So, the technique and the method dealt with the
exponential stability in mean square of random impulsive integrodifferential equations of
neutral type are in need of being developed and explored. Thus, with these aims, we will
make the first attempt to study such problems to close this gap in this paper.

The format of this work is organized as follows. In Section 2, some necessary
definitions, notations and lemmas used in this paper will be introduced. In Section 3, The
existence and uniqueness of random impulsive integrodifferential equations of neutral type
are obtained by using the Banach fixed point theorem. Some sufficient conditions about the
exponential stability in mean square for the solution of such systems are given in Section 4.
Finally, an illustrative example is provided to show the obtained results.

2. Preliminaries

Let | · | denote the Euclidean norm in Rn. If A is a vector or a matrix, its transpose is denoted
by AT ; and if A is a matrix, its Frobenius norm is also represented by | · | =

√
trace(ATA).

Assumed thatΩ is a nonempty set and τk is a random variable defined fromΩ toDk � (0, dk)
for all k = 1, 2, . . ., where 0 < dk ≤ +∞. Moreover, assumed that τi and τj are independent
with each other as i /= j for i, j = 1, 2, . . ..
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Let BC(X,Y ) be the space of bounded and continuous mappings from the topological
space X into Y , and BC1(X,Y ) be the space of bounded and continuously differentiable
mappings from the topological space X into Y . In particular, Let BC � BC((−∞, 0], Rn) and
BC1 � BC1((−∞, 0], Rn). PC(J, Rn) = {φ : J → Rn|φ(s) is bounded and almost surely
continuous for all but at most countable points s ∈ J and at these points s ∈ J , φ(s+) and
φ(s−) exist, φ(s) = φ(s+)}, where J ⊂ R is an interval, φ(s+) and φ(s−) denote the right-hand
and left-hand limits of the function φ(s), respectively. Especially, let PC � PC((−∞, 0], Rn).
PC1(J, Rn) = {φ : J → Rn|φ(s) is bounded and almost surely continuously differentiable
for all but at most countable points s ∈ J and at these points s ∈ J , φ(s+) and φ(s−),
φ(s) � φ(s+), φ′(s) � φ′(s+)}, where φ′(s) denote the derivative of φ(s). Especially, let
PC1 � PC1((−∞, 0], Rn).

For φ ∈ PC1, we introduce the following norm:

‖φ‖∞ = max

{

sup
−∞<θ≤0

∣
∣φ(θ)

∣
∣, sup

−∞<θ≤0

∣
∣φ′(θ)

∣
∣
}

. (2.1)

In this paper, we consider the following random impulsive integrodifferential
equations of neutral type:

x′(t) = Ax(t) +Dx′(t − r) + f1(t, x(t − h(t))) +
∫0

−∞
f2(θ, x(t + θ))dθ, t /= ξk, t ≥ 0, (2.2)

x(ξk) = bk(τk)x
(
ξ−k

)
, k = 1, 2, . . . , (2.3)

xt0 = ϕ ∈ PC1, (2.4)

where A, D are two matrices of dimension n × n; f1 : [0,+∞) × Rn → Rn and f2 : (−∞, 0] ×
Rn → Rn are two appropriate functions; bk : Dk → Rn×n is a matrix valued functions for
each k = 1, 2, . . .; assume that t0 ∈ [0,+∞) is an arbitrary real number, ξ0 = t0 and ξk = ξk−1 + τk
for k = 1, 2, . . .; obviously, t0 = ξ0 < ξ1 < ξ2 < · · · < ξk < · · · ; x(ξ−k) = limt→ ξk−0x(t); h :
[0,+∞) → [0, ρ] (ρ > 0) is a bounded and continuous function and τ = max{r, ρ} (r > 0).
xt : xt(s) = x(t + s) for all s ∈ (−∞, 0]. Let us denote by {Bt, t ≥ 0} the simple counting
process generated by {ξn}, that is, {Bt ≥ n} = {ξn ≤ t}, and present It the σ-algebra generated
by {Bt, t ≥ 0}. Then, (Ω, {It}, P) is a probability space.

Firstly, define the space B consisting of PC1((−∞, T], Rn) (T > t0)-valued stochastic
process ϕ : (−∞, T] → Rn with the norm

∥∥ϕ
∥∥2 = E sup

−∞<θ≤T

∣∣ϕ(θ)
∣∣2. (2.5)

It is easily shown that the space (B, ‖ · ‖) is a completed space.

Definition 2.1. A function x ∈ B is said to be a solution of (2.2)–(2.4) if x satisfies (2.2) and
conditions (2.3) and (2.4).

Definition 2.2. The fundamental solution matrix {Φ(t) = exp(At), t ≥ 0} of the equation
x′(t) = Ax(t) is said to be exponentially stable if there exist two positive numbersM ≥ 1 and
a > 0 such that |Φ(t)| ≤Me−at, for all t ≥ 0.
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Definition 2.3. The solution of system (2.2) with conditions (2.3) and (2.4) is said to be
exponentially stable in mean square, if there exist two positive constants C1 > 0 and λ > 0
such that

E|x(t)|2 ≤ C1e
−λt, t ≥ 0. (2.6)

Lemma 2.4 (see [23]). For any two real positive numbers a, b > 0, then

(a + b)2 ≤ ν−1a2 + (1 − ν)−1b2, (2.7)

where ν ∈ (0, 1).

Lemma 2.5 (see [23]). Let u, ψ, and χ be three real continuous functions defined on [a, b] and
χ(t) ≥ 0, for t ∈ [a, b], and assumed that on [a, b], one has the inequality

u(t) ≤ ψ(t) +
∫ t

a

χ(s)u(s)ds. (2.8)

If ψ is differentiable, then

u(t) ≤ ψ(a) exp
(∫ t

a

χ(s)ds

)

+
∫ t

a

exp

(∫ t

s
χ(r)dr

)

ψ ′(s)ds, (2.9)

for all t ∈ [a, b].

In order to obtain our main results, we need the following hypotheses.

(H1) The function f1 satisfies the Lipschitz condition: there exists a positive constant
L1 > 0 such that

∣∣f1(t, x) − f1
(
t, y

)∣∣ ≤ L1
∣∣x − y∣∣, (2.10)

for x, y ∈ Rn, t ∈ [0, T], and f1(t, 0) = 0.
(H2) The function f2 satisfies the following condition: there also exist a positive constant

L2 > 0 and a function k : (−∞, 0] → [0,+∞) with two important properties,
∫0
−∞ k(t)dt = 1 and

∫0
−∞ k(t)e−ltdt < +∞ (l > 0), such that
∣∣f2(t, x) − f2

(
t, y

)∣∣ ≤ L2k(t)
∣∣x − y∣∣, (2.11)

for x, y ∈ Rn, t ∈ [0, T], and f2(t, 0) = 0.
(H3) E(maxi,k{

∏k
j=i|bj(τj)|2}) is uniformly bounded. That is, there exists a positive

constant L > 0 such that

E

⎛

⎝max
i,k

⎧
⎨

⎩

k∏

j=i

∣∣bj
(
τj
)∣∣2

⎫
⎬

⎭

⎞

⎠ ≤ L, (2.12)

for all τj ∈ Dj and j = 1, 2, . . ..
(H4) κ �

√
max{L, 1}|D| ∈ (0, 1).
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3. Existence and Uniqueness

In this section, to make this paper self-contained, we study the existence and uniqueness
for the solution to system (2.2) with conditions (2.3) and (2.4) by using the Picard iterative
method under conditions (H1)–(H4). In order to prove our main results, we firstly need the
following auxiliary result.

Lemma 3.1. Let f1 : [0,+∞)×Rn → Rn and f2 : (−∞, 0]×Rn → Rn be two continuous functions.
Then, x is the unique solution of the random impulsive integrodifferential equations of neutral type:

x′(t) = Ax(t) +Dx′(t − r) + f1(t, x(t − h(t))) +
∫0

−∞
f2(θ, x(t + θ))dθ, t /= ξk, t ≥ 0,

x(ξk) = bk(τk)x
(
ξ−k

)
, k = 1, 2, . . . ,

xt0 = ϕ ∈ PC1,

(3.1)

if and only if x is a solution of impulsive integrodifferential equations:

(i) xt0(θ) = ϕ(θ), θ ∈ (−∞, 0],

(ii)

x(t) =
+∞∑

k=0

⎡

⎣
k∏

i=1

bi(τi)Φ(t − t0)x0+
k∑

i=1

k∏

j=i

bj
(
τj
)
∫ ξi

ξi−1
Φ(t − s)Ddx(s − r)

+
∫ t

ξk

Φ(t − s)Ddx(s − r) +
k∑

i=1

k∏

j=i

bj
(
τj
)

×
∫ ξi

ξi−1
Φ(t − s)f1(s, x(s − h(s)))ds

+
∫ t

ξk

Φ(t − s)f1(s, x(s − h(s)))ds +
k∑

i=1

k∏

j=i

bj
(
τj
)
∫ ξi

ξi−1
Φ(t − s)

×
∫0

−∞
f2(θ, x(s + θ))dθds

+
∫ t

ξk

Φ(t − s)
∫0

−∞
f2(θ, x(s + θ))dθds

]

I[ξk,ξk+1)(t),

(3.2)

for all t ∈ [t0, T], where
∏n

j=m(·) = 1 as m > n,
∏k

j=ibj(τj) = bk(τk)bk−1(τk−1) · · · bi(τi),
and IΩ′(·) denotes the index function, that is,

IΩ′(t) =

⎧
⎨

⎩

1, if t ∈ Ω′,

0, if t /∈Ω′.
(3.3)
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Proof. The approach of the proof is very similar to those in [17, 19, 20]. Here, we omit it.

Theorem 3.2. Provided that conditions (H1)–(H4) hold, then the system (2.2) with the conditions
(2.3) and (2.4) has a unique solution on B.

Proof. Define the iterative sequence {xn(t)} (t ∈ (−∞, T], n = 0, 1, 2, . . .) as follows:

x0(t) =
+∞∑

k=0

[
k∏

i=1

bi(τi)Φ(t − t0)x0
]

I[ξk,ξk+1)(t), t ∈ [t0, T],

xn(t) =
+∞∑

k=0

⎡

⎣
k∏

i=1

bi(τi)Φ(t − t0)x0 +
k∑

i=1

k∏

j=i

bj
(
τj
)
∫ ξi

ξi−1
Φ(t − s)Ddxn(s − r)

+
k∑

i=1

k∏

j=i

bj
(
τj
)
∫ ξi

ξi−1
Φ(t − s)f1

(
s, xn−1(s − h(s))

)
ds

+
∫ t

ξk

Φ(t − s)f1
(
s, xn−1(s − h(s))

)
ds

+
k∑

i=1

k∏

j=i

bj
(
τj
)
∫ ξi

ξi−1
Φ(t − s)

∫0

−∞
f2

(
θ, xn−1(s + θ)

)
dθds

+
∫ t

ξk

Φ(t − s)Ddxn(s − r) +
∫ t

ξk

Φ(t − s)
∫0

−∞
f2

(
θ, xn−1(s + θ)

)
dθds

]

× I[ξk,ξk+1)(t), t ∈ [t0, T], n = 1, 2, . . . ,

xnt0(θ) = ϕ(θ), θ ∈ (−∞, 0], n = 0, 1, 2, . . . .

(3.4)

Thus, due to Lemma 2.4, it follows that

∣∣∣xn+1(t) − xn(t)
∣∣∣
2

=

∣∣∣∣∣∣

+∞∑

k=0

⎡

⎣
k∏

i=1

k∑

j=i

bj
(
τj
)
∫ ξi

ξi−1
Φ(t − s)Dd

[
xn(s − r) − xn−1(s − r)

]

+
k∑

i=1

k∏

j=i

bj
(
τj
)
∫ ξi

ξi−1
Φ(t − s)

[
f1(s, xn(s − h(s))) − f1

(
s, xn−1(s − h(s))

)]
ds

+
k∑

i=1

k∏

j=i

bj
(
τj
)
∫ ξi

ξi−1
Φ(t − s)

∫0

−∞

[
f2(θ, xn(s + θ)) − f2

(
θ, xn−1(s + θ)

)]
dθds

+
∫ t

ξk

Φ(t − s)Dd
[
xn(s − r) − xn−1(s − r)

]
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+
∫ t

ξk

Φ(t − s)
[
f1(s, xn(s − h(s))) − f1

(
s, xn−1(s − h(s))

)]
ds

+
∫ t

ξk

Φ(t − s)
∫0

−∞
[f2(θ, xn(s + θ)) − f2(θ, xn−1(s + θ))]dθds

]

I[ξk,ξk+1)(t)

∣
∣
∣
∣
∣

2

≤ 1
κ
max

⎧
⎨

⎩
max
i,k

⎧
⎨

⎩

k∏

j=i

|bj(τj)|2
⎫
⎬

⎭
, 1

⎫
⎬

⎭
|D|2|xn+1(t − r) − xn(t − r)|2

+
3

1 − κ max

⎧
⎨

⎩
max

k∏

j=i

∣
∣bj

(
τj
)∣∣2, 1

⎫
⎬

⎭

× |D|2|A|2
[∫ t

t0

Φ(t − s)
∣
∣∣xn+1(s − r) − xn(s − r)

∣
∣∣
2
ds

]2

+
3

1 − κ max

⎧
⎨

⎩
max

⎧
⎨

⎩

k∏

j=i

∣∣bj
(
τj
)∣∣2

⎫
⎬

⎭
, 1

⎫
⎬

⎭

× L2
1

[∫ t

t0

Φ(t − s)
∣∣∣xn(s − h(s)) − xn−1(s − h(s))

∣∣∣
2
ds

]2

+
3

1 − κ max

⎧
⎨

⎩
max

⎧
⎨

⎩

k∏

j=i

∣∣bj
(
τj
)∣∣2

⎫
⎬

⎭
, 1

⎫
⎬

⎭

× L2
2

[∫ t

t0

Φ(t − s)
∫0

−∞

[
xn(s + θ) − xn−1(s + θ)

]
dθds|2ds

]2

≤ 1
κ
max

⎧
⎨

⎩
max
i,k

⎧
⎨

⎩

k∏

j=i

|bj(τj)|2
⎫
⎬

⎭
, 1

⎫
⎬

⎭
|D|2 sup

−∞<s≤t
|xn+1(s) − xn(s)|2

+
3

a(1 − κ) max

⎧
⎨

⎩
max

⎧
⎨

⎩

k∏

j=i

∣∣bj
(
τj
)∣∣2

⎫
⎬

⎭
, 1

⎫
⎬

⎭

× |D|2|A|2M2
∫ t

t0

sup
−∞<u≤s

|xn+1(u) − xn(u)|2ds

+
3

a(1 − κ) max

⎧
⎨

⎩
max

⎧
⎨

⎩

k∏

j=i

∣∣bj
(
τj
)∣∣2

⎫
⎬

⎭
, 1

⎫
⎬

⎭

×M2
(
L2
1 + L

2
2

)∫ t

t0

sup
−∞<θ≤s

∣∣∣xn+1(θ) − xn(θ)
∣∣∣
2
ds.

(3.5)



8 Advances in Difference Equations

From condition (H3), we have

E

(

sup
−∞<s≤t

∣
∣
∣xn+1(s)−xn(s)

∣
∣
∣
2
)

≤ 3M2
∣
∣D|2∣∣A|2 max{1, L}
a(1 − κ)2

∫ t

t0

E

(

sup
−∞<θ≤s

∣
∣
∣xn+1(θ)−xn(θ)

∣
∣
∣
2
)

ds

+
3M2(L2

1+L
2
2

)
max{1, L}

a(1 − κ)2
∫ t

t0

E

(

sup
−∞<θ≤s

∣
∣
∣xn(θ)−xn−1(θ)

∣
∣
∣
2
)

ds.

(3.6)

In view of Lemma 2.5, it yields that

E

(

sup
−∞<s≤t

∣
∣
∣xn+1(s) − xn(s)

∣
∣
∣
2
)

≤ Λ1

∫ t

t0

E

(

sup
−∞<θ≤s

∣
∣
∣xn(θ) − xn−1(θ)

∣
∣
∣
2
)

ds, (3.7)

whereΛ1 = 3M2|D|2|A|2 max{1, L}/a(1−κ)2 exp[(3M2(L2
1+L

2
2)max{1, L}/a(1−κ)2)(T − t0)].

Furthermore,

E

(

sup
−∞<s≤t

∣∣∣x1(s) − x0(s)
∣∣∣
2
)

≤ 4κ2M2E‖ϕ‖2∞
(1 − κ)2

+
4max{L, 1}M2(L2

1 + L
2
2

)

(1 − κ)2a

∫ t

t0

E

(

sup
−∞<u≤s

∣∣∣x0(u)
∣∣∣
2
)

ds

+
4max{L, 1}|D|2|A|2M2

(1 − κ)2a

∫ t

t0

E sup
−∞<u≤s

∣∣∣x1(u)
∣∣∣
2
ds.

(3.8)

By (3.4), we can obtain that

E

(

sup
−∞<s≤t

∣∣∣x1(s)
∣∣∣
2
)

≤ 5LM2E‖ϕ‖2∞ + 5max{L, 1}M2|D|2E‖ϕ‖2∞
(1 − κ)2

+
5max{L, 1}M2|D|2|A|2

(1 − κ)2a

∫ t

t0

E sup
−∞<u≤s

|x1(u)|2ds

+
5max{L, 1}M2(L2

1 + L
2
2

)

(1 − κ)2a

∫ t

t0

E sup
−∞<u≤s

|x0(u)|2ds,

(3.9)

E

(

sup
−∞<s≤t

∣∣∣x0(s)
∣∣∣
2
)

≤ E
(

sup
−∞<θ≤0

∣∣ϕ(θ)
∣∣2
)

+ E

(

sup
0≤s≤t

∣∣∣x0(s)
∣∣∣
2
)

≤
(
1 + LM2

)∥∥φ
∥∥
∞

� Λ2.

(3.10)
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From the Gronwall inequality, (3.9) implies that

E

(

sup
−∞<t≤T

∣
∣
∣x1(t)

∣
∣
∣
2
)

≤ Λ3 exp[Λ4(T − t0)], (3.11)

where Λ3 = (5LM2E‖ϕ‖2∞ + 5max{L, 1}M2|D|2E‖ϕ‖2∞/(1 − κ)2) + (5max{L, 1}M2(L2
1 +

L2
2)Λ2(T − t0)/(1 − κ)2a) and Λ4 = 5max{L, 1}M2|D|2|A|2/(1 − κ)2a.

From (3.8) and (3.11), we have

E

(

sup
−∞<s≤t

∣
∣
∣x1(s) − x0(s)

∣
∣
∣
2
)

≤ Λ5, (3.12)

for all t ∈ [0, T], where

Λ5 =
4κ2M2E‖ϕ‖2∞

(1 − κ)2
+
4max{L, 1}M2(L2

1 + L2
)

(1 − κ)2a
Λ2(T − t0)

+
4max{L, 1}|D|2|A|2M2

(1 − κ)2a
Λ3 exp[Λ4(T − t0)](T − t0).

(3.13)

From (3.4), it follows that

∣∣∣x2(t) − x1(t)
∣∣∣
2

≤ 1
κ
max

⎧
⎨

⎩
max
i,k

⎧
⎨

⎩

k∏

j=i

∣∣bj
(
τj
)∣∣2

⎫
⎬

⎭
, 1

⎫
⎬

⎭
|D|2 sup

−∞<s≤t

∣∣∣x2(s) − x1(s)
∣∣∣
2

+
3

a(1 − κ) max

⎧
⎨

⎩
max

⎧
⎨

⎩

k∏

j=i

∣∣bj
(
τj
)∣∣2

⎫
⎬

⎭
, 1

⎫
⎬

⎭
|D|2|A|2M2

∫ t

t0

sup
−∞<u≤s

∣∣∣x1(u) − x0(u)
∣∣∣
2
ds

+
3

a(1 − κ) max

⎧
⎨

⎩
max

⎧
⎨

⎩

k∏

j=i

∣∣bj
(
τj
)∣∣2

⎫
⎬

⎭
, 1

⎫
⎬

⎭
M2

(
L2
1 + L

2
2

)∫ t

t0

sup
−∞<θ≤s

∣∣∣x1(θ)−x0(θ)
∣∣∣
2
ds.

(3.14)

By virtue of condition (H3) and Lemma 2.5,

E

(

sup
−∞<s≤t

∣∣∣x2(t) − x1(t)
∣∣∣
2
)

≤ Λ1Λ5(t − t0). (3.15)

Now, for all n ≥ 0 and t ∈ [0, T], we claim that

E

(

sup
−∞<s≤t

∣∣∣xn+1(s) − xn(s)
∣∣∣
2
)

≤ Λ5
[Λ1(t − t0)]n

n!
. (3.16)
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We will show (3.16) by mathematical induction. From (3.12), it is easily seen that (3.16) holds
as n = 0. Under the inductive assumption that (3.16) holds for some n ≥ 1. We will prove that
(3.16) still holds when n + 1. Notice that

∣
∣
∣xn+2(t) − xn+1(t)

∣
∣
∣
2 ≤ 1

κ
max

⎧
⎨

⎩
max
i,k

⎧
⎨

⎩

k∏

j=i

∣
∣bj

(
τj
)∣∣2

⎫
⎬

⎭
, 1

⎫
⎬

⎭
|D|2 sup

−∞<s≤t

∣
∣
∣xn+2(s) − xn+1(s)

∣
∣
∣
2

+
3

a(1 − κ) max

⎧
⎨

⎩
max

⎧
⎨

⎩

k∏

j=i

∣
∣bj

(
τj
)∣∣2

⎫
⎬

⎭
, 1

⎫
⎬

⎭
|D|2|A|2M2

×
∫ t

t0

sup
−∞<θ≤s

∣
∣
∣xn+2(θ) − xn+1(θ)

∣
∣
∣
2
ds

+
3

a(1 − κ) max

⎧
⎨

⎩
max

⎧
⎨

⎩

k∏

j=i

∣∣bj
(
τj
)∣∣2

⎫
⎬

⎭
, 1

⎫
⎬

⎭
M2

(
L2
1 + L

2
2

)

×
∫ t

t0

sup
−∞<θ≤s

∣∣∣xn+2(θ) − xn+1(θ)
∣∣∣
2
ds.

(3.17)

From condition (H3), we have

E

(

sup
−∞<s≤t

∣∣∣xn+2(s) − xn+1(s)
∣∣∣
2
)

≤ 3M2|D|2|A|2 max{1, L}
a(1 − κ)2

∫ t

t0

E

(

sup
−∞<θ≤s

∣∣∣xn+2(θ) − xn+1(θ)
∣∣∣
2
)

ds

+
3M2(L2

1 + L
2
2

)
max{1, L}

a(1 − κ)2
∫ t

t0

E

(

sup
−∞<θ≤s

∣∣∣xn+1(θ) − xn(θ)
∣∣∣
2
)

ds.

(3.18)

In view of Lemma 2.5 and (3.16), it yields that

E

(

sup
−∞<s≤t

∣∣∣xn+2(s) − xn+1(s)
∣∣∣
2
)

≤ Λ1

∫ t

t0

E

(

sup
−∞<θ≤s

∣∣∣xn+1(θ) − xn(θ)
∣∣∣
2
)

ds

≤ Λ1Λ5

n!

∫ t

t0

[Λ1(s − t0)]nds

≤ Λ5
[Λ1(t − t0)]n+1

(n + 1)!
, t ∈ [t0, T].

(3.19)

That is, (3.16) holds for n + 1. Hence, by induction, (3.16) holds for all n ≥ 0.
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For anym > n ≥ 1, it follows that

‖xm − xn‖ =

[

E

(

sup
−∞<t≤T

|xm(t) − xn(t)|2
)]1/2

≤
+∞∑

k=n

[

E

(

sup
−∞<t≤T

∣
∣
∣xk+1(t) − xk(t)

∣
∣
∣
2
)]1/2

≤
+∞∑

k=n

[

Λ5
[Λ1(T − t0)]k

(k)!

]1/2

−→ 0,

(3.20)

as n → +∞. Thus, {xn(t)}n≥0(t ∈ (−∞, T]) is a Cauchy sequence in Banach space B. Denote
the limit by x ∈ B. Now, letting n → +∞ in both sides of (3.4), we obtain the existence for
the solution of system (2.2) with conditions (2.3) and (2.4).

Uniqueness. Let x, y ∈ B be two solutions of system (2.2) with conditions (2.3) and
(2.4). By the same ways as above, we can yield that

E

(

sup
−∞<t≤T

∣∣x(s) − y(s)∣∣2
)

= E

(

sup
t0≤t≤T

∣∣x(t) − y(t)∣∣2
)

≤ Λ1

∫T

t0

E

(

sup
−∞<s≤t

∣∣x(s) − y(s)∣∣2
)

dt.

(3.21)

Applying the Gronwall inequality into (3.21), it follows that

E

(

sup
−∞<t≤T

∣∣x(t) − y(t)∣∣2
)

= 0. (3.22)

That is, ‖x−y‖ = 0. So, the uniqueness is also proved. The proof of this theorem is completed.

4. Exponential Stability

In this section, the exponential stability in mean square for system (2.2)with initial conditions
(2.3) and (2.4) is shown by using an integral inequality.

Theorem 4.1. Supposed that the conditions of Theorem 3.2 holds, then the solution of the system
(2.2) with conditions (2.3) and (2.4) is exponential stable in mean square if the inequality

4M2 max{1, L}
(
|D|2|A|2 + L2

1 + L
2
2

)

(1 − κ)2a
< a ≤ l (4.1)

holds.
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Proof. From (3.2) and Lemma 2.4, we derive that

|x(t)|2 ≤
[

max
i,k

{
∏

i,k

∣
∣bj

(
τj
)∣∣

}

M2‖ϕ‖2∞e−at

+max

⎧
⎨

⎩
max
i,k

∏

j=i

∣
∣bj

(
τj
)∣∣2, 1

⎫
⎬

⎭

+∞∑

k=0

[∫ t

t0

Me−a(t−s)|D|dx(s − r)
]

× I[ξk,ξk+1)(t) +max

⎧
⎨

⎩
max
i,k

⎧
⎨

⎩

k∏

j=i

∣
∣bj

(
τj
)∣∣2

⎫
⎬

⎭
, 1

⎫
⎬

⎭

×
+∞∑

k=0

[∫ t

t0

Me−a(t−s)
∣
∣f1(s, x(s − h(s)))

∣
∣ds

]

I[ξk,ξk+1)(t)

+max

⎧
⎨

⎩
max
i,k

⎧
⎨

⎩

k∏

j=i

∣∣bj
(
τj
)∣∣2

⎫
⎬

⎭
, 1

⎫
⎬

⎭

×
+∞∑

k=0

[∫ t

t0

Me−a(t−s)
∫0

−∞

∣∣f2(θ, x(s + θ))
∣∣dθds

]

I[ξk,ξk+1)(t)

]2

≤
+∞∑

k=0

⎡

⎢
⎣
8max

{
maxi,k

{∏k
j=i

∣∣bj
(
τj
)∣∣2

}
, 1

}
M2|D|2‖ϕ‖2∞

1 − κ

+
8maxi,k

{∏k
j=1

∣∣bj
(
τj
)∣∣2

}
M2‖ϕ‖2∞

1 − κ

⎤

⎥
⎦

× I[ξk,ξk+1)(t)e−a(t−t0) +
max

{
maxi,k

{∏k
j=i|bj(τj)|2

}
, 1

}

κ
|D|2

+∞∑

k=0

|x(t − r)|2I[ξk,ξk+1)(t)

+
4max

{
maxi,k

{∏k
j=i|bj(τj)|2

}
, 1

}
M2|D|2|A|2

(1 − κ)a
+∞∑

k=0

[∫ t

t0

e−a(t−s)|x(s − r)|2ds
]

I[ξk,ξk+1)(t)

+
4max

{
maxi,k

{∏k
j=i|bj(τj)|2

}
, 1

}
M2L2

1

(1 − κ)a
+∞∑

k=0

[∫ t

t0

e−a(t−s)|x(s − h(s))|2ds
]

I[ξk,ξk+1)(t)

+
4max

{
maxi,k

{∏k
j=i|bj(τj)|2

}
, 1

}
M2L2

2

(1 − κ)a

×
+∞∑

k=0

[∫ t

t0

e−a(t−s)
∫0

−∞
k(θ)|x(s + θ)|2dθds

]

I[ξk,ξk+1)(t).

(4.2)
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Thus, it follows that

E|x(t)|2 ≤

⎡

⎢
⎣
8max{L, 1}M2

(
|D|2 + L

)
E‖ϕ‖2∞

1 − κ

⎤

⎥
⎦e−a(t−t0) + κE|x(t − r)|2

+
4max{L, 1}M2|D|2|A|2

(1 − κ)a
∫ t

t0

e−a(t−s)E|x(s − r)|2ds

+
4max{L, 1}M2L2

1

(1 − κ)a
∫ t

t0

e−a(t−s)E|x(s − h(s))|2ds

+
4max{L, 1}M2L2

2

(1 − κ)a
∫ t

t0

e−a(t−s)
∫0

−∞
k(θ)E|x(s + θ)|2dθds

≤
[
8max{L, 1}M2|D|2E‖ϕ‖2∞

1 − κ +
8LM2E‖ϕ‖2∞

1 − κ

]

e−a(t−t0) + κ sup
θ∈[−τ,0]

E|x(t + θ)|2

+
4max{L, 1}M2

(
|D|2|A|2 + L2

1

)

(1 − κ)a
∫ t

t0

e−a(t−s) sup
θ∈[−τ,0]

E|x(s + θ)|2ds

+
4max{L, 1}M2L2

2

(1 − κ)a
∫ t

t0

e−a(t−s)
∫0

−∞
k(θ)E|x(s + θ)|2dθds,

(4.3)

and it is easily seen that there exists a positive numberM1 > 0 such that E|x(t)|2 ≤M1e
−a(t−t0),

for all t ∈ (−∞, t0].
For the convenience, setting λ1 = 8max{L, 1}M2(|D|2 + L)E‖ϕ‖2∞/1 − κ, λ2 =

4max{L, 1}M2(|D|2|A|2 + L2
1)/(1 − κ)a, and λ3 = 4max{L, 1}M2L2

2/(1 − κ)a, it implies from
(4.3) that

E|x(t)|2 ≤

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

λ1e
−a(t−t0) + κ sup

θ∈[−τ,0]
E|x(t + θ)|2 + λ2

∫ t

t0

e−a(t−s) sup
θ∈[−τ,0]

E|x(s + θ)|2ds

+λ3

∫ t

t0

e−a(t−s)
∫0

−∞
k(θ)E|x(s + θ)|2dθds, t ≥ t0

+λ1e−a(t−t0), t ∈ (−∞, t0].
(4.4)

From (4.4), letting F(λ) = κeλr + (λ2/(a − λ))eλτ + (λ3/(a − λ))
∫0
−∞ k(θ)e−λθdθ − 1,

F(0)F(a−) < 0 holds. That is, there exists a positive constant μ ∈ (0, a) such that F(μ) = 0.
For any ε > 0 and letting

Mε = max

⎧
⎨

⎩
(λ1 + ε)

a − μ
λ2eμτ + λ3

∫0
−∞ k(θ)e−μθdθ

, λ1 + ε

⎫
⎬

⎭
> 0. (4.5)
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Now, in order to show our main result, we only claim that (4.4) implies

E|x(t)|2 ≤Mεe
−μ(t−t0), t ∈ (−∞,+∞). (4.6)

It is easily seen that (4.6) holds for any t ∈ (−∞, t0]. Assume, for the sake of contradiction,
that there exists a t1 > t0 and

E|x(t)|2 < Mεe
−μ(t−t0), t ∈ (−∞, t1), E|x(t1)|2 =Mεe

−μ(t1−t0). (4.7)

Then, it, from (4.4), implies that

E|x(t1)|2 ≤ λ1e−a(t1−t0) + κMεe
μτe−μ(t1−t0) + λ2Mε

∫ t1

t0

e−a(t1−t0−s) sup
θ∈[−τ,0]

e−μ(s+θ)ds

+ λ3Mε

∫ t1

t0

e−a(t1−t0−s)
∫0

−∞
k(θ)e−μ(s+θ)dθds

≤
[

λ1 −Mε

[

λ2
eμτ

a − μ +
λ3

a − μ
∫0

−∞
k(θ)e−μθdθ

]]

e−a(t1−t0)

+Mε

(

κeμr +
λ2e

μτ

a − μ +
λ3

a − μ
∫0

−∞
k(θ)e−μθdθ

)

e−μ(t1−t0).

(4.8)

From the definitions of μ andMε, we have

κeμr +
λ2e

μτ

a − μ +
λ3

a − μ
∫0

−∞
k(θ)e−μθdθ = 1,

λ1 −Mε

[

λ2
eμτ

a − μ +
λ3

a − μ
∫0

−∞
k(θ)e−μθdθ

]

≤ λ1 −
[

λ2
eμτ

a − μ +
λ3

a − μ
∫0

−∞
k(θ)e−μθdθ

]

(ε + λ1)
a − μ

λ2eμτ + λ3
∫0
−∞ k(θ)e−μθdθ

< 0.

(4.9)

Thus, (4.8) yields that

E|x(t1)|2 < Mεe
−μ(t1−t0), (4.10)

which contradicts (4.7), that is, (4.4) holds.
As ε > 0 is arbitrarily small, in view of (4.6), it follows that

E|x(t)|2 ≤Me−μ(t−t0), t ≥ t0, (4.11)
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whereM = max{λ1(a − μ)/(λ2eμτ + λ3
∫0
−∞ k(θ)e−μθdθ), λ1} > 0.

That is,

E|x(t)|2 ≤M′e−α(t−t0), t ≥ t0, (4.12)

where α ∈ (0, a) and

M′ = max

⎧
⎨

⎩

8max{L, 1}M2
(
|D|2 + L

)
E‖ϕ‖2∞

(
a − μ)

1 − κ

×

⎛

⎜
⎝

4max{L, 1}M2
(
|D|2|A|2 + L2

1

)
eμτ

(1 − κ)a +
4max{L, 1}M2L2

2

(1 − κ)a
∫0

−∞
k(θ)e−μθdθ

⎞

⎟
⎠

−1

,

8max{L, 1}M2
(
|D|2 + L

)
E‖ϕ‖2∞

(
a − μ)

1 − κ

⎫
⎬

⎭
> 0.

(4.13)

The proof is completed.

In particular, when D ≡ 0, τ ≡ 0, and f2 ≡ 0, system (2.2) is turned into the following
form:

x′(t) = Ax(t) + f1(t, x(t)), t /= ξk, t ≥ 0,

x(ξk) = bk(τk)x
(
ξ−k

)
, k = 1, 2, . . . ,

xt0 = x0.

(4.14)

Remark 4.2. Obviously, we can also give the existence, uniqueness, and exponential stability
in mean square for the solution of system (4.14) by employing the Picard iterative method
and a similar impulsive-integral inequality proposed in [24]. So, the following corollary can
be given as follows.

Corollary 4.3. Under conditions (H1) and (H3), the existence, uniqueness, and exponential stability
in mean square for the solution of system (4.14) can be obtained only if the inequality

max{1, L}M2L2
1 < a

2 (4.15)

holds.

Proof. The proofs of this corollary are very similar to those of Theorems 3.2 and 4.1. So, we
omit them.

Remark 4.4. Recently, in [19], Anguraj and Vinodkumar have derived Corollary 4.3 by using
the fixed point theorem. Obviously, our results are more general than those obtained in [19].
Thus, we can generalize and improve the results in [19].
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5. An Illustrative Example

Let τk be a random variable defined in Dk ≡ (0, dk) for all k = 1, 2, . . ., where 0 < dk ≤ +∞.
Furthermore, assume that τi and τj are independent of each other as i /= j for i, j = 1, 2, . . ..

Consider the random impulsive integrodifferential equations of neutral type:

dx1(t)
dt

= −0.2x1(t) + 1

2
√
100

dx1(t − r)
dt

− 1

2
√
100

dx2(t − r)
dt

+ δ1 cos(t)x1(t − h(t))

+ δ3

∫0

−∞
(−θ)−(1/2)eπ2θx1(s + θ)ds,

dx2(t)
dt

= −0.1x1(t) − 0.1x2(t) +
1

3
√
100

dx1(t − r)
dt

+
1

4
√
100

dx2(t − r)
dt

+ δ2 sin(t)x2(t − h(t))

+ δ4

∫0

−∞
(−θ)−(1/2)eπ2θx2(s + θ)ds,

(5.1)

as ξk−1 ≤ t < ξk, k = 1, 2, . . . , and for all k = 1, 2, 3, . . .,

x1(ξk) = c(k)τk · x1
(
ξ−k

)
,

x2(ξk) = c(k)τk · x2
(
ξ−k

)
,

(5.2)

where ξ0 = t0 and ξk = ξk−1 + τk for all k = 1, 2, . . ., c(k) is a function of k. Denote that
c = maxk{c(k)} and there is ρ : 0 ≤ ρ < 1 such that E(cτ2

k
) ≤ ρ for all k = 1, 2, . . .. and

|δi| ≤ L1 (i = 1, 2) and |δi| ≤ L2 (i = 3, 4). And |D| = 0.0846, |A| = 0.2449, κ = 0.0846.
The corresponding linear homogeneous equations:

⎛

⎜⎜
⎝

dx1(t)
dt

dx2(t)
dt

⎞

⎟⎟
⎠ =

(−0.2 0
−0.1 −0.1

)(
x1(t)
x2(t)

)
. (5.3)

And, the fundamental solution matrix of system (5.3) can be given by

Φ(t) =
(

e−0.2t 0
e−0.2t − e−0.1t e−0.1t

)
. (5.4)

Then, it is easily obtain that

|Φ(t)| ≤Me−0.1t, t ≥ 0, (5.5)

whereM =
√
2 > 1 and a = 0.1 > 0, and it is easily seen that we can derive that the functions f1

and f2 satisfy conditions (H1) and (H2)with the Lipschitz coefficients L1 and L2, respectively.
On the other hand, hypothesis (H3) and (H4) are easily verified. In view of Theorems 3.2 and
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4.1, the existence, uniqueness, and exponential stability in mean square of system (5.1) with
(5.2) are obtained if the constants L1 and L2 satisfy the following inequality:

L2
1 + L

2
2 < 0.02771. (5.6)
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