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We consider a difference equation involving three parameters and a piecewise constant control
function with an additional positive threshold λ. Treating the threshold as a bifurcation parameter
that varies between 0 and∞, we work out a complete asymptotic and bifurcation analysis. Among
other things, we show that all solutions either tend to a limit 1-cycle or to a limit 2-cycle and,
we find the exact regions of attraction for these cycles depending on the size of the threshold. In
particular, we show that when the threshold is either small or large, there is only one corresponding
limit 1-cycle which is globally attractive. It is hoped that the results obtained here will be useful in
understanding interacting network models involving piecewise constant control functions.

1. Introduction

LetN = {0, 1, 2, . . .}. In [1], Ge et al. obtained a complete asymptotic and bifurcation analysis
of the following difference equation:

xn = axn−2 + bfλ(xn−1), n ∈ N, (1.1)

where a ∈ (0, 1), b ∈ (0,∞), and fλ : R → R is a nonlinear signal filtering control function of
the form

fλ(x) =

⎧
⎨

⎩

1, x ∈ (0, λ],

0, x ∈ (−∞, 0] ∪ (λ,∞),
(1.2)

in which the positive number λ can be regarded as a threshold bifurcation parameter.
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By adding a positive constant c to the right hand side of (1.1), we obtain the following
equation:

xn = axn−2 + bfλ(xn−1) + c, n ∈ N. (1.3)

Since c can be an arbitrary small positive number, (1.1) may be regarded as a limiting case
of (1.3). Therefore, it would appear that the qualitative behavior of (1.3) will “degenerate
into” that of (1.1) when c tends to 0. However, it is our intention to derive a complete
asymptotic and bifurcation analysis for our new equation and show that, among other things,
our expectation is not quite true and perhaps such discrepancy is due to the nonlinear nature
of our model at hand.

Indeed, we are dealing with a dynamical system with piecewise constant nonlinear-
lities (see e.g., [2–6]), and the usual linear and continuity arguments cannot be applied to
our (1.3). Fortunately, we are able to achieve our goal by means of completely elementary
considerations.

To this end, we first recall a few concepts. Note that given x−2, x−1 ∈ R, we may
compute from (1.3) the numbers x0, x1, x2, . . . in a unique manner. The corresponding
sequence {xn}∞n=−2 is called the solution of (1.1) determined by or originated from the initial
vector (x−2, x−1).

Recall also that a positive integer η is a period of the sequence {wn}∞n=α if wη+n = wn

for all n ≥ α and that τ is the least or prime period of {wn}∞n=α if τ is the least among all
periods of {wn}∞n=α. The sequence {wn}∞n=α is said to be τ-periodic if τ is its least period.
The sequence w = {wn}∞n=α is said to be asymptotically periodic if there exist real numbers
w(0), w(1), . . . , w(ω−1), where ω is a positive integer, such that

lim
n→∞

wωn+i = w(i), i = 0, 1, . . . , ω − 1. (1.4)

In case {w(0), w(1), . . . , w(ω−1), w(0), w(1), . . . , w(ω−1), . . .} is an ω-periodic sequence, we say
that w is an asymptotically ω-periodic sequence tending to the limit ω-cycle (This term is
introduced since the underlying concept is similar to that of the limit cycle in the theory
of ordinary differential equations.) 〈w(0), w(1), . . . , w(ω−1)〉. In particular, an asymptotically
1-periodic sequence is a convergent sequence and conversely.

Suppose that S is the set of all solutions of (1.1) that tend to the limit cycle Q. Then,
the set

{
(x−2, x−1) ∈ R2 | {xn}∞n=−2 ∈ S

}
(1.5)

is called the the region of attraction of the limit cycleQ. In other words,Q attracts all solutions
originated from its region of attraction.
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Equation (1.3) is related to several linear recurrence and functional inequality relations
of the form

x2k = ax2k−2 + d, k ∈ N, (1.6)

x2k+1 = ax2k−1 + d, k ∈ N, (1.7)

x2k ≥ ax2k−2 + d, k ∈ N, (1.8)

x2k+1 ≥ ax2k−1 + d, k ∈ N, (1.9)

where a ∈ (0, 1) and d > 0. Therefore, the following facts will be needed, which can easily be
established by induction.

(i) If {xn}∞n=−2 is a sequence which satisfies (1.6), then

x2k = ak+1x−2 +
d
(
1 − ak+1)

1 − a
, k ∈ N. (1.10)

(ii) If {xn}∞n=−2 is a sequence which satisfies (1.7), then

x2k+1 = ak+1x−1 +
d
(
1 − ak+1)

1 − a
, k ∈ N. (1.11)

(iii) If {xn}∞n=−2 is a sequence which satisfies (1.8), then

x2k ≥ ak+1x−2 +
d
(
1 − ak+1)

1 − a
, k ∈ N. (1.12)

(iv) If {xn}∞n=−2 is a sequence which satisfies (1.9), then

x2k+1 ≥ ak+1x−1 +
d
(
1 − ak+1)

1 − a
, k ∈ N. (1.13)

We will discuss solutions {xn}∞n=−2 of (1.3) originated from different x−2 and x−1 in R.
For this reason, we let B0 = 0 and

aBj+1 + b + c = Bj, j ∈ N. (1.14)
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Then, for j ∈ N,

Bj+1 − Bj = −b + c

aj+1
< 0. (1.15)

Since

Bj = − b + c

aj(1 − a)
+
b + c

1 − a
, (1.16)

we see that limj→∞Bj = −∞ and

(−∞, 0] =
∞⋃

k=0

(Bk+1, Bk]. (1.17)

Similarly, let C0 = 0 and

aCj+1 + c = Cj, j ∈ N. (1.18)

Then,

Cj+1 − Cj = − c

aj+1
< 0, j ∈ N,

Cj = − c

aj(1 − a)
+

c

1 − a
, j ∈ N,

(1.19)

Since limj→∞Cj = −∞, we see further that

(−∞, 0] =
∞⋃

k=0

(Ck+1, Ck]. (1.20)

Note that (1.3) is equivalent to the following two dimensional dynamical system

(un, vn) =
(
vn−1, aun−1 + bfλ(vn−1)

)
+ (0, c), n ∈ N, (1.21)

by means of the identification (xn−1, xn) = (un, vn) for n = −1, 0, 1, . . .. Therefore, our
subsequent results can be interpreted in terms of the dynamics of plane vector sequences
defined by (1.21).

In particular, the following result states that a solution {(un, vn)}∞n=−1 of (1.21) with
(u−1, v−1) ∈ (−∞, 0]2 will have one of its terms in (−∞, 0] × (0, c].

Lemma 1.1. Let {xn}∞n=−2 be a solution of (1.3). If (x−2, x−1) ∈ (−∞, 0]2, then there is n0 ∈ N such
that x−2, x−1, . . . , xn0−1 ≤ 0 and xn0 ∈ (0, c].
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Proof. Suppose to the contrary that xp ≤ 0 for all p ≥ −2. Then, by (1.3),

xn = axn−2 + c, n ∈ N. (1.22)

This, in view of (1.10) and (1.11), leads us to

0 ≥ lim
p→∞

x2p = lim
p→∞

x2p+1 =
c

1 − a
> 0, (1.23)

which is a contradiction. Thus, there is n0 ∈ N such that x−2, x−1, . . . , xn0−1 ≤ 0 and xn0 > 0.
Furthermore,

xn0 = axn0−2 + bf(xn0−1) + c = axn0−2 + c ≤ c. (1.24)

The proof is complete.

In the following discussions, we will allow the bifurcation parameter λ to vary from
0+ to +∞. Indeed, we will consider five cases: (i) 0 < λ < c/(1 − a), (ii) λ = c/(1 − a) , (iii)
c/(1 − a) < λ < (b + c)/(1 − a), (iv) λ = (b + c)/(1 − a), and (v) λ > (b + c)/(1 − a) and show
that each solution of (1.1) tend to the limit cycles

〈
c

1 − a

〉

,

〈
b + c

1 − a

〉

or
〈

c

1 − a
,
b + c

1 − a

〉

. (1.25)

Furthermore, in each case, we find the exact regions of attraction of the limit cycles. Then we
describe our results in terms of our phase plane model (1.21) and compare them with what
we have obtained for the phase plane model of (1.1).

We remark that since we need to find the exact regions of attraction, we need to
consider initial vectors (x−2, x−1) belonging to (up to 9) different parts of the plane. Therefore
the following derivations will seem to be repetitive. Fortunately, the principles behind
our derivations are quite similar, and therefore some of the repetitive arguments can be
simplified.

For the sake of convenience, if no confusion is caused, the function fλ is also denoted
by f in the sequel.

2. The Case Where λ > (b + c)/(1 − a)

In this section, we assume that λ > (b + c)/(1 − a).

Lemma 2.1. Suppose that λ > (b + c)/(1 − a). Let {xn}∞n=−2 be a solution of (1.3). Then, there is
m ∈ {−2,−1, 0, . . .} such that 0 < xm, xm+1 ≤ λ.

Proof. If xk /∈ (0, λ] for all k ≥ −2, then by (1.3), xk = axk−2 + c for k ∈ N. One sees from (1.10)
and (1.11) that limk→∞xk = c/(1 − a) ∈ (0, λ) which is a contradiction. Hence, there must
exist am0 such that xm0 ∈ (0, λ]. If xm0+1 ∈ (0, λ], we are done. Otherwise, one sees that

xm0+2 = axm0 + bf(xm0+1) + c = axm0 + c ∈ (0, λ]. (2.1)
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Repeating the argument we either find m > m0 such that xm, xm+1 ∈ (0, λ], or one has
that the subsequence xm0+2k lies in (0, λ] whereas xm0+2k+1 /∈ (0, λ]. This would mean that the
subsequence {xm0+2k+1} satisfies (1.6) or (1.7) for d = b + c, and hence limk→∞xm0+2k+1 =
(b + c)/(1 − a) < λ, a contradiction. The proof is complete.

Theorem A

Suppose λ > (b+ c)/(1−a). Then every solution {xn}∞n=−2 of (1.3) converges to (b+ c)/(1−a).

Proof. In view of Lemma 2.1, we may suppose without loss of generality that 0 < x−2, x−1 ≤ λ.
Since aλ + b + c < λ, we have

0 < x0 = ax−2 + bf(x−1) + c = ax−2 + b + c < λ,

0 < x1 = ax−1 + bf(x0) + c = ax−1 + b + c < λ,
(2.2)

and by induction 0 < x2k, x2k+1 < λ for all k ∈ N. Thus, by (1.3), xn = axn + b + c for
n ∈ N. In view of (1.10) and (1.11), limk→∞x2k = limk→∞x2k+1 = (b + c)/(1 − a). The proof is
complete.

3. The Case Where λ = (b + c)/(1 − a)

In this section, we suppose that λ = (b + c)/(1 − a). Then, λ = aλ + b + c. Let D0 = λ and

aDj+1 + c = Dj, j ∈ N. (3.1)

Then,

Dj =
λ(1 − a) − c

aj(1 − a)
+

c

1 − a
, j ∈ N,

Dj+1 −Dj = − 1
aj+1

(c − λ + aλ) =
b

aj+1
> 0, j ∈ N,

lim
j→∞

Dj = lim
j→∞

{
λ(1 − a) − c

aj(1 − a)
+

c

1 − a

}

= +∞.

(3.2)

For the sake of convenience, let us set

Φ = (−∞, λ]2 ∪
( ∞⋃

k=0

{(−∞, Ck+1] × (Dk,Dk+1]}
)

∪
( ∞⋃

k=0

{(Dk,Dk+1] × (−∞, Ck+1]}
)

. (3.3)

Lemma 3.1. Suppose that λ = (b + c)/(1− a). Let {xn}∞n=−2 be a solution of (1.3). If (x−2, x−1) ∈ Φ,
then there ism ∈ N such that 0 < xm, xm+1 ≤ λ.

Proof. We break up (−∞, λ]2 into four different parts Ω1 = (0, λ]2, Ω2 = (−∞, 0] × (0, λ], Ω3 =
(0, λ] × (−∞, 0], and Ω4 = (−∞, 0]2. We also let Ω5 =

⋃∞
k=0{(−∞, Ck+1] × (Dk,Dk+1]} and Ω6 =⋃∞

k=0{(Dk,Dk+1] × (−∞, Ck+1]}.
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Clearly, there is nothing to prove if (x−2, x−1) ∈ Ω1.
Next, suppose that (x−2, x−1) ∈ Ω2. Then (x−2, x−1) ∈ (Bk+1, Bk] × (0, λ] for some k ∈ N.

If x−2 ∈ (B1, B0] = (−(b + c)/a, 0], then by (1.3),

0 < x0 = ax−2 + bf(x−1) + c = ax−2 + b + c ≤ b + c < λ. (3.4)

That is, (x−1, x0) ∈ Ω1. If x−2 ∈ (Bk+1, Bk] for some k > 0, then

Bk = aBk+1 + b + c < x0 = ax−2 + bf(x−1) + c = ax−2 + b + c ≤ aBk + b + c = Bk−1,

0 < x1 = ax−1 + bf(x0) + c = ax−1 + c < λ.
(3.5)

Hence, (x0, x1) ∈ (Bk, Bk−1] × (0, λ]. By induction, we see that (x2k−2, x2k−1) ∈ (B1, B0] × (0, λ]
and hence, (x2k−1, x2k) ∈ Ω1.

Suppose (x−2, x−1) ∈ Ω3. Then by (1.3), 0 < x0 = ax−2+bf(x−1)+c = ax−2+c ≤ aλ+c < λ.
Hence, (x−1, x0) ∈ Ω2

Suppose that (x−2, x−1) ∈ Ω4. Then by Lemma 1.1, there is n0 ∈ N such that
(xn0−1, xn0) ∈ (−∞, 0] × (0, c] ⊂ Ω2.

Suppose that (x−2, x−1) ∈ Ω5. Then (x−2, x−1) ∈ (−∞, Ck+1]×(Dk,Dk+1] for some k ∈ N.
If (x−2, x−1) ∈ (−∞, C1] × (D0, D1] = (−∞,−c/a] × (λ, (λ − c)/a], then in view of (1.3),

x0 = ax−2 + bf(x−1) + c = ax−2 + c ≤ 0,

0 < x1 = ax−1 + bf(x0) + c = ax−1 + c ≤ λ.
(3.6)

Hence, (x0, x1) ∈ Ω2. If (x−2, x−1) ∈ (−∞, Ck+1] × (Dk,Dk+1] for some k > 0, then by (1.3),

x0 = ax−2 + bf(x−1) + c = ax−2 + c ≤ aCk+1 + c = Ck,

Dk−1 = aDk + c < x1 = ax−1 + bf(x0) + c = ax−1 + c ≤ aDk+1 + c = Dk.
(3.7)

Hence, (x0, x1) ∈ (−∞, Ck]× (Dk−1, Dk], and by induction, (x2k−2, x2k−1) ∈ (−∞, C1]× (D0, D1].
Thus (x2k, x2k+1) ∈ (−∞, 0] × (0, λ] ⊂ Ω2.

Suppose (x−2, x−1) ∈ Ω6. Then (x−2, x−1) ∈ (Dk,Dk+1] × (−∞, Ck+1] for some k ∈ N. As
in the previous case, we may show by similar arguments that (x2k, x2k+1) ∈ Ω3.

Therefore, in the last four cases, we may apply the first two cases to conclude our
proof. The proof is complete.

Theorem B

Suppose that λ = (b + c)/(1 − a). Then, every solution of (1.3) with (x−2, x−1) ∈ Φ tends to
(b + c)/(1 − a).

Proof. Indeed, in view of Lemma 3.1, we may assume without loss of generality that 0 <
x−2, x−1 ≤ λ. Then, the same arguments in the proof of Theorem A holds so that limn→∞xn =
(b + c)/(1 − a).
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Lemma 3.2. Suppose that λ = (b + c)/(1 − a). Let {xn}∞n=−2 be a solution of (1.3). If (x−2, x−1) ∈
R2 \Φ, then there ism ∈ N such that 0 < xm ≤ λ and xm+1 > λ.

Proof. We break up R2 \Φ into five different parts Γ1 = (0, λ] × (λ,+∞), Γ2 = (λ,+∞) × (0, λ],
Γ3 = (λ,+∞)×(λ,+∞), Γ4 =

⋃∞
k=0{(Ck+1, Ck]×(Dk,+∞)}, and Γ5 =

⋃∞
k=0{(Dk,+∞)×(Ck+1, Ck]}.

Clearly, there is nothing to prove if (x−2, x−1) ∈ Γ1.
Next, suppose that (x−2, x−1) ∈ Γ2. Then, by (1.3), x0 = ax−2+bf(x−1)+c = ax−2+b+c >

aλ + b + c = λ. Hence, (x−1, x0) ∈ Γ1.
Next, suppose that (x−2, x−1) ∈ Γ3. If xk > λ for all k ≥ −2, then, by (1.3), xn = axn + c

for n ∈ N. In view of (1.10) and (1.11),

λ ≤ lim
k→∞

x2k = lim
k→∞

x2k+1 =
c

1 − a
<

b + c

1 − a
= λ, (3.8)

which is a contradiction. Thus there is μ ∈ N such that x−2, . . . , xμ−1 ∈ (λ,+∞) and xμ ∈ (0, λ].
Hence, (xμ, xμ+1) ∈ Γ1.

Next suppose that (x−2, x−1) ∈ Γ4. Then, (x−2, x−1) ∈ (Ck+1, Ck] × (Dk,+∞) for some
k ∈ N. If (x−2, x−1) ∈ (C1, C0] × (D0,+∞) = (−c/a, 0] × (λ,+∞), then by (1.3),

0 < x0 = ax−2 + bf(x−1) + c = ax−2 + c ≤ c < λ,

x1 = ax−1 + bf(x0) + c = ax−1 + b + c > aλ + b + c = λ.
(3.9)

Hence, (x0, x1) ∈ Γ1. If (x−2, x−1) ∈ (Ck+1, Ck] × (Dk,+∞) for some k > 0, then

Ck = aCk+1 + c < x0 = ax−2 + bf(x−1) + c = ax−2 + c ≤ aCk + c = Ck−1,

x1 = ax−1 + bf(x0) + c = ax−1 + c ≥ aDk + c = Dk−1,
(3.10)

we see that (x0, x1) ∈ (Ck,Ck−1] × (Dk−1,+∞). By induction, we may further see that
(x2k−2, x2k−1) ∈ (C1, C0] × (D0,+∞). Hence, (x2k, x2k+1) ∈ Γ1.

Next, suppose that (x−2, x−1) ∈ Γ5. Then (x−2, x−1) ∈ (Dk,+∞) × (Ck+1,Ck] for some
k ∈ N. By arguments similar to the previous case, we may then, show that (x2k+1, x2k+2) ∈ Γ1.
The proof is complete.

Theorem C

Suppose that λ = (b + c)/(1 − a). Then, any solution {xn}∞n=−2 with (x−2, x−1) ∈ R2 \Φ tends to
the limit 2-cycle 〈c/(1 − a), (b + c)/(1 − a)〉.

Proof. In view of Lemma 3.2, we may assume without loss of generality that 0 < x−2 ≤ λ and
x−1 > λ. Then, by (1.3),

0 < x0 = ax−2 + bf(x−1) + c = ax−2 + c ≤ aλ + c < λ,

x1 = ax−1 + bf(x0) + c = ax−1 + b + c > aλ + b + c = λ,
(3.11)
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and by induction x2k ∈ (0, λ) and x2k+1 ∈ (λ,+∞) for all k ≥ 0. Hence, by (1.3), x2k = ax2k−2+c
and x2k+1 = ax2k−1 + b + c for k ∈ N. In view of (1.10) and (1.11), limk→∞x2k = c/(1 − a) and
limk→∞x2k+1 = (b + c)/(1 − a) . The proof is complete.

4. The Case Where c/(1 − a) < λ < (b + c)/(1 − a)

In this section, we suppose c/(1 − a) < λ < (b + c)/(1 − a). Then, aλ + c < λ < aλ + b + c.

Lemma 4.1. Suppose that c/(1−a) < λ < (b+ c)/(1−a). Let {xn}∞n=−2 be a solution of (1.3). Then,
there is m ∈ {−2,−1, 0, . . .} such that 0 < xm ≤ λ and xm+1 > λ.

Proof. We break up the plane into seven different parts: Γ1 = (0, λ] × (λ,+∞), Γ2 = (λ,+∞) ×
(0, λ], Γ3 = (0, λ]2, Γ4 = (λ,+∞)2, Γ5 = (−∞, 0] × (0,+∞), Γ6 = (0,+∞) × (−∞, 0], and Γ7 =
(−∞, 0]2.

Clearly there is nothing to prove if (x−2, x−1) ∈ Γ1.
Next, suppose that (x−2, x−1) ∈ Γ2. Then, by (1.3), x0 = ax−2+bf(x−1)+c = ax−2+b+c >

aλ + b + c > λ, and hence (x−1, x0) ∈ Γ1.
Next, suppose that (x−2, x−1) ∈ Γ3. If xk ∈ (0, λ] for all k ≥ −2, then by (1.3), xn = axn−2+

b + c for n ∈ N, which leads us to λ ≥ limk→∞x2k = limk→∞x2k+1 = (b + c)/(1 − a) > λ, which
is a contradiction. Hence, there is μ ∈ N such that x−2, x−1, . . . , xμ−1 ∈ (0, λ] and xμ ∈ (λ,+∞).
Therefore, (xμ−1, xμ) ∈ Γ1.

Next, suppose that (x−2, x−1) ∈ Γ4. If xk ∈ (λ,+∞) for all k ≥ −2, then, by (1.3), xn =
axn−2 + c for n ∈ N, which leads us to the contradiction λ ≤ limk→∞x2k = limk→∞x2k+1 =
c/(1 − a) < λ. Thus there is μ ∈ N such that x−2, x−1, . . . , xμ−1 ∈ (λ,+∞) and xμ ∈ (0, λ]. Then
(xμ−1, xμ) ∈ Γ2 and hence, (xμ, xμ+1) ∈ Γ1.

Next, suppose that (x−2, x−1) ∈ Γ5. Then, by (1.3) and induction, it is easily seen that
x2k−1 > 0 for all k ≥ 0. If x2k ≤ 0 for all k ≥ 0, then by (1.3),

x2k = ax2k−2 + bf(x2k−1) + c ≥ ax2k−2 + c, k ∈ N. (4.1)

In view of (1.12), 0 ≥ limk→∞x2k ≥ c/(1 − a) > 0, which is a contradiction. Hence, there is
n0 ∈ N such that (x2n0−1, x2n0) ∈ (0,+∞)2 = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4.

Next, suppose that (x−2, x−1) ∈ Γ6. Then, x0 = ax−2 + bf(x−1) + c = ax−2 + c > 0. Hence,
(x−1, x0) ∈ (−∞, 0] × (0,+∞) = Γ5.

Finally, suppose that (x−2, x−1) ∈ Γ7. Then, by Lemma 1.1, there is n0 ∈ N such that
(xn0−1, xn0) ∈ (−∞, 0] × (0, c] ⊂ Γ5.

Therefore, in the last three cases, we may apply the conclusions in the first four cases
to conclude our proof. The proof is complete.

Theorem D

Suppose that c/(1 − a) < λ < (b + c)/(1 − a). Then any solution {xn}∞n=−2 of (1.3) tends to the
limit 2-cycle 〈c/(1 − a), (b + c)/(1 − a)〉.

Proof. Indeed, in view of Lemma 4.1, we may assume without loss of generality that 0 <
x−2 ≤ λ and x−1 > λ. Then the same arguments in the proof of Theorem C then shows that
limk→∞x2k = c/(1 − a) and limk→∞x2k+1 = (b + c)/(1 − a).
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5. The Case Where λ = c/(1 − a)

In this section, we assume that λ = c/(1 − a). Then λ = aλ + c.

Lemma 5.1. Suppose that λ = c/(1 − a). Let {xn}∞n=−2 be a solution of (1.3). If (x−2, x−1) ∈ R2 \
(λ,+∞)2, Then, there ism ∈ {−2,−1, 0, . . .} such that 0 < xm ≤ λ and xm+1 > λ.

Proof. We break up the set R2 \ (λ,+∞)2 into eight different parts:Ω1 = (0, λ]× (λ,+∞),Ω 2 =
(0, λ]2,Ω3 = (λ,+∞)×(0, λ],Ω4 = (−∞, 0]×(0, λ],Ω5 = (−∞, 0]×(λ,+∞),Ω6 = (0, λ]×(−∞, 0],
Ω7 = (λ,+∞) × (−∞, 0], and Ω8 = (−∞, 0]2.

Clearly, there is nothing to prove if (x−2, x−1) ∈ Ω1.
Next, suppose that (x−2, x−1) ∈ Ω2. If xk ∈ (0, λ] for all k ≥ −2, then by (1.3), xn =

axn−2 + b + c for n ∈ N. In view of (1.10) and (1.11), we obtain the contradiction.

λ ≥ lim
k→∞

x2k = lim
k→∞

x2k+1 =
b + c

1 − a
> λ. (5.1)

Hence, there is n0 such that 0 < x−2, x−1, . . . , xn0−1 ≤ λ and xn0 ∈ (λ,+∞). Thus (xn0−1, xn0) ∈ Ω1.
Next, suppose that (x−2, x−1) ∈ Ω3. Then, by (1.3), x0 = ax−2+bf(x−1)+c = ax−2+b+c >

aλ + b + c > λ. Hence, (x−1, x0) ∈ Ω1.
Next, suppose that (x−2, x−1) ∈ Ω4. Then, (x−2, x−1) ∈ ⋃∞

k=0(Bk+1, Bk] × (0, λ] for some
k ∈ N. If x−2 ∈ (B1, B0] = (−(b + c)/a, 0], then

x0 = ax−2 + bf(x−1) + c = ax−2 + b + c > 0. (5.2)

Hence, (x−1, x0) ∈ (0, λ] × (0,+∞) = Ω1 ∪Ω2. If x−2 ∈ (Bk+1, Bk] for some k > 0, then

Bk = aBk+1 + b + c < x0 = ax−2 + bf(x−1) + c = ax−2 + b + c ≤ aBk + b + c = Bk−1,

0 < x1 = ax−1 + bf(x0) + c = ax−1 + c ≤ aλ + c < λ,
(5.3)

we see that (x0, x1) ∈ (Bk, Bk−1] × (0, λ]. By induction, we see that (x2k−2, x2k−1) ∈ (B1, B0] ×
(0, λ]. Hence, (x2k−1, x2k) ∈ (0, λ] × (0,+∞) = Ω1 ∪Ω2.

Next, suppose that (x−2, x−1) ∈ Ω5. Then (x−2, x−1) ∈
⋃∞

k=0(Ck+1, Ck]× (λ,+∞) for some
k ∈ N. If x−2 ∈ (C1, C0] = (−c/a, 0], then

0 < x0 = ax−2 + bf(x−1) + c = ax−2 + c ≤ c < λ,

x1 = ax−1 + bf(x0) + c = ax−1 + b + c > aλ + b + c > λ.
(5.4)

Hence, (x0, x1) ∈ Ω1. If x−2 ∈ (Ck+1, Ck] for some k > 0, then

Ck = aCk+1 + c < x0 = ax−2 + bf(x−1) + c = ax−2 + c ≤ aCk + c = Ck−1,

x1 = ax−1 + bf(x0) + c = ax−1 + c > aλ + c = λ,
(5.5)

we see that (x0, x1) ∈ (Ck,Ck−1] × (λ,+∞). By induction, (x2k−2, x2k−1) ∈ (C1, C0] × (λ,+∞).
Hence (x2k−1, x2k) ∈ Ω1.
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Next, suppose that (x−2, x−1) ∈ Ω6. Then, by (1.3), 0 < x0 = ax−2+bf(x−1)+c = ax−2+c ≤
λ. Hence, (x−1, x0) ∈ (−∞, 0] × (0, λ] = Ω4.

Next, suppose that (x−2, x−1) ∈ Ω7. Then, x0 = ax−2+bf(x−1)+c = ax−2+c > aλ+c = λ,
and hence, (x−1, x0) ∈ (−∞, 0] × (λ,+∞) = Ω5.

Finally suppose (x−2, x−1) ∈ Ω8. Then, by Lemma 1.1, there is n0 ∈ N such that
(xn0−1, xn0) ∈ (−∞, 0] × (0, c] ⊂ Ω4.

Therefore, in the fourth, sixth, seventh, and the eigth cases, wemay use the conclusions
in the other cases to conclude our proof. The proof is complete.

Theorem E

Suppose that λ = c/(1 − a). Then, any solution {xn}∞n=−2 with (x−2, x−1) ∈ R2 \ (λ,+∞)2 tends
to the limit 2-cycle 〈c/(1 − a), (b + c)/(1 − a)〉.

Proof. Indeed, in view of Lemma 5.1, we may assume without loss of generality that
(x−2, x−1) ∈ (0, λ] × (λ,+∞). Then the same arguments in the proof of Theorem C shows
that limk→∞x2k = c/(1 − a) and limk→∞x2k+1 = (b + c)/(1 − a).

Theorem F

Suppose that λ = c/(1 − a). Then, any solution {xn}∞n=−2 of (1.3) with (x−2, x−1) ∈ (λ,+∞)2

tends to c/(1 − a).

Proof. By (1.3),

x0 = ax−2 + bf(x−1) + c = ax−2 + c > λ,

x1 = ax−1 + bf(x0) + c = ax−1 + c > λ,
(5.6)

and by induction, xk > λ for all k ≥ −2. Hence, xn = axn−2 + c for n ∈ N, which leads us to
limn→∞xn = c/(1 − a). The proof is complete.

6. The Case Where 0 < λ < c/(1 − a)

In this section, we suppose that 0 < λ < c/(1 − a). Then 0 < λ < aλ + c.

Lemma 6.1. Suppose that 0 < λ < c/(1 − a). Let {xn}∞n=−2 be a solution of (1.3). Then there is
m ∈ {−2,−1, 0, . . .} such that xm, xm+1 > λ.

Proof. If xk ≤ λ for all k ≥ −2, then by (1.3), xk ≥ axk−2 + c for all k ∈ N. In view of (1.12)
and (1.13), this is impossible, and hence, there must exist a m0 such that xm0 ∈ (λ,+∞). Then
xm0+2 ≥ axm0 + c > aλ + c > λ. By induction, we see that the subsequence {xm0+2k} lies in
(λ,+∞), and hence xm0+2k+1 = axm0+2k−1 + c for all k ∈ N. In view of (1.11), limk→+∞xm0+2k+1 =
c/(1 − a) > λ. The proof is complete.

Theorem G

Suppose that 0 < λ < c/(1 − a). Then, every solution {xn}∞n=−2 of (1.3) converges to c/(1 − a).
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Proof. Indeed, in view of Lemma 6.1, we may assume without loss of generality that
x−2, x−1 > λ. Then the same arguments in the proof of Theorem F shows that limk→∞x2k =
limk→∞x2k+1 = c/(1 − a).

7. Phase Plane Interpretation and Comparison Remarks

We first recall that (1.1) and (1.3) are equivalent to

(un, vn) =
(
vn−1, aun−1 + bfλ(vn−1)

)
, n ∈ N, (7.1)

(un, vn) =
(
vn−1, aun−1 + bfλ(vn−1)

)
+ (0, c), n ∈ N, (7.2)

respectively, by means of the identification (xn−1, xn) = (un, vn) for n = −1, 0, 1, . . .
Then, Theorem G states that when 0 < λ < c/(1−a), all solutions {(un, vn)}∞n=−1 of (7.2)

tends to the point (c/(1−a), c/(1−a)), or equivalently, all solutions of (7.2) are “attracted” to
the limit 1-cycle 〈(c/(1−a), c/(1−a))〉, or equivalently, the limit 1-cycle 〈(c/(1−a), c/(1−a))〉
is a global attractor. For the sake of convenience, let us set

p =
c

1 − a
, q =

b + c

1 − a
. (7.3)

Then the above statements can be restated as follows.

(i) If 0 < λ < p, then the limit 1-cycle 〈(p, p)〉 attracts all solutions of (7.2).
Similarly, we may restate the other Theorems A–G obtained previously as follows.

(ii) If λ = p, then the limit 1-cycle 〈(p, p)〉 attracts all solutions of (7.2) originated from
(p,+∞)2, and the limit 2-cycle 〈(p, q), (q, p)〉 attracts all other solutions of (7.2).

(iii) If p < λ < q, then the limit 2-cycle 〈(p, q), (q, p)〉 attracts all solutions of (7.2).

(iv) If λ = q, then the limit 1-cycle 〈(q, q)〉 attracts all solutions of (7.2) originated from
Φ (see (3.3)), and the limit 2-cycle 〈(p, q), (q, p)〉 attracts all other solutions.

(v) If λ > q, then the limit 1-cycle 〈(q, q)〉 attracts all solutions of (7.2).

For comparison purposes, let us now recall the asymptotic results in [1]. Let us set

r =
b

1 − a
. (7.4)

(vi) If 0 < λ < r, then the limit 1-cycle 〈(0, 0)〉 attracts all solutions of (7.1) originated
from (−∞, 0)2, and the limit 2-cycle 〈(r, 0), (0, r)〉 attracts all other solutions.

(vii) If λ = r, then the limit 1-cycle 〈(0, 0)〉 attracts all solutions of (7.1) originated from
(−∞, 0)2; the limit 2-cycle 〈(r, 0), (0, r)〉 attracts all solutions of (7.1) originated from
((r,+∞)×(0,+∞))∪((0,+∞)×(r,+∞)), and the limit 1-cycle 〈(r, r)〉 attracts all other
solutions.
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(viii) If λ > r, then the limit 1-cycle 〈(0, 0)〉 attracts all solutions of (7.1) originated from
(−∞, 0)2; and the limit 1-cycle attracts all other solutions.

In view of these statements, we see that for a small positive λ, all solutions of (7.2) tend
to a unique “lower” state vector, and for large λ, to another unique “higher” state vector. On
the other hand, for a small positive λ, there are always solutions of (7.1) which tend to a
limit 2-cycle, and solutions which tend to the limit 1-cycle 〈(0, 0)〉, and for a large λ, there
are solutions of (7.1) which tend to the limit 1-cycle 〈(0, 0)〉 and solutions to the limit 1-cycle
〈(r, r)〉. These observations show that it is probably not appropriate to call (1.1) the limiting
case of (1.3)!

Finally, we mention that network models such as the following

xn = axn−α + bfλ
(
yn−1

)
+ c,

yn = ryn−β + sfτ(xn−1) + t
(7.5)

can be used to describe competing dynamics and it is hoped that our techniques, and results
here will be useful in these studies.

References

[1] Q. Ge, C. M. Hou, and S. S. Cheng, “Complete asymptotic analysis of a nonlinear recurrence relation
with threshold control,” Advances in Difference Equations, vol. 2010, Article ID 143849, 19 pages, 2010.

[2] H. Zhu and L. Huang, “Asymptotic behavior of solutions for a class of delay difference equation,”
Annals of Differential Equations, vol. 21, no. 1, pp. 99–105, 2005.

[3] Z. Yuan, L. Huang, and Y. Chen, “Convergence and periodicity of solutions for a discrete-time network
model of two neurons,”Mathematical and Computer Modelling, vol. 35, no. 9-10, pp. 941–950, 2002.

[4] H. Sedaghat, Nonlinear Difference Equations, vol. 15 of Mathematical Modelling: Theory and Applications,
Kluwer Academic Publishers, Dordrecht, The Netherlands, 2003.

[5] M. di Bernardo, C. J. Budd, A. R. Champneys, and P. Kowalczyk, Piecewise Smooth Dynamical Systems,
Springer, New York, NY, USA, 2008.

[6] C. Hou and S. S. Cheng, “Eventually periodic solutions for difference equations with periodic
coefficients and nonlinear control functions,” Discrete Dynamics in Nature and Society, vol. 2008, Article
ID 179589, 21 pages, 2008.


