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This is an extension of the work done by Currie and Love (2010) where we studied the effect of
applying two Crum-type transformations to a weighted second-order difference equation with
non-eigenparameter-dependent boundary conditions at the end points. In particular, we now
consider boundary conditions which depend affinely on the eigenparameter together with various
combinations of Dirichlet and non-Dirichlet boundary conditions. The spectra of the resulting
transformed boundary value problems are then compared to the spectra of the original boundary
value problems.

1. Introduction

This paper continues the work done in [1], where we considered a weighted second-order
difference equation of the following form:

c(my(n+1) =b(my(n) +c(n-1)y(n-1) = —c(n)1y(n), (1.1)

with ¢(n) > 0 representing a weight function and b(n) a potential function.

This paper is structured as follows.

The relevant results from [1], which will be used throughout the remainder of this
paper, are briefly recapped in Section 2.

In Section 3, we show how non-Dirichlet boundary conditions transform to affine A-
dependent boundary conditions. In addition, we provide conditions which ensure that the
linear function (in ) in the affine A-dependent boundary conditions is a Nevanlinna or
Herglotz function.

Section 4 gives a comparison of the spectra of all possible combinations of Dirichlet
and non-Dirichlet boundary value problems with their transformed counterparts. It is shown
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that transforming the boundary value problem given by (2.2) with any one of the four
combinations of Dirichlet and non-Dirichlet boundary conditions at the end points using (3.1)
results in a boundary value problem with one extra eigenvalue in each case. This is done by
considering the degree of the characteristic polynomial for each boundary value problem.

It is shown, in Section 5, that we can transform affine \-dependent boundary
conditions back to non-Dirichlet type boundary conditions. In particular, we can transform
back to the original boundary value problem.

To conclude, we outline briefly how the process given in the sections above can be
reversed.

2. Preliminaries

Consider the second-order difference equation (1.1) for n = 0,...,m — 1 with boundary
conditions

hy(-1)+y(0)=0,  Hy(m-1)+y(m) =0, (2.1)

where h and H are constants, see [2]. Without loss of generality, by a shift of the spectrum,
we may assume that the least eigenvalue, Ao, of (1.1), (2.1) is 1o = 0.

We recall the following important results from [1]. The mapping y + i defined for
n=-1,...,m-1by y(n) = y(n+1) —y(n)(uo(n+1)/up(n)), where uy(n) is the eigenfunction
of (1.1), (2.1) corresponding to the eigenvalue 1y = 0, produces the following transformed
equation:

Em)i(n+1) - b(n)ii(n) + E(n-1)i(n-1) = -E(m)Ajn), n=0,...,m-2, (2.2)

where
- um)c(n) _
C(Tl)—m>0, n=-1,.... m-1,
S wmetn)  cn-Dup(n-1) bm) | Jwmem) i
b(m) = ug(n+1cn+1) B c(n)ug(n) - c(n) ~to m' n=0,...,m=-2

(2.3)

Moreover, y obeying the boundary conditions (2.1) transforms to i obeying the Dirichlet
boundary conditions as follows:

7(-1)=0, H(m-1)=0. (2.4)

Applying the mapping iy — y given by y(n) = y(n)-y(n-1)(z(n)/z(n-1)) forn =0,...,m-1,
where z(n) is a solution of (2.2) with A = Ay, where 1 is less than the least eigenvalue of (2.2),
(2.4), such that z(n) > Oforalln = -1, ...,m—1, results in the following transformed equation:

em)G(n+1) -bm)G(n) +e(n—-1)Gn-1) = -e(m)Ag(n), n=1,..m-2, (2.5)
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where, forn=0,...,m-1,

&(n) = z(n —izi()n -1)
(2.6)
z(n-1)c(n-1) z(n) 1z(n-1)cn-1)

b0 = | = ZmEm T zm-1) =(n)

Here, we take ¢(-1) = ¢(-1), thus ¢(n) is defined forn =-1,...,m— 1.
In addition, i obeying the Dirichlet boundary conditions (2.4) transforms to i obeying
the non-Dirichlet boundary conditions as follows:

—

hy(-1) +7(0) =0,  Hy(m-1)+y(m) =0, (2.7)

where

-_[e0 (b0 =0 b0\]"
“ e\ E0)  z(0) 2(0) '
ﬁ_E(m—z) b(m-1) z(m-2)é(m-2)
T em-2) em-1) z(m-1)é(m-1)

(2.8)

3. Non-Dirichlet to Affine

In this section, we show how o obeying the non-Dirichlet boundary conditions (3.2), (3.13)
transforms under the following mapping:

z(n)

o(n) = 5 ~ 5n 1) - s,

n=0,....m-1, (3.1)

to give © obeying boundary conditions which depend affinely on the eigenparamter ..
We provide constraints which ensure that the form of these affine A-dependent boundary
conditions is a Nevanlinna/Herglotz function.

Theorem 3.1. Under the transformation (3.1), © obeying the boundary conditions
5(-1) - y5(0) = 0, (32)
for y #0, transforms to © obeying the boundary conditions

3(=1) = 5(0) (ak +b), (3.3)

where a = yk/[c(-1)/¢(0) - ky(c(-1)/¢(0))], b = [b(0)/c(0) - yk(b(0)/c(0)) — b(0)/c(0) +
y(c(=1)/¢(0)) +z(1)/z(0)]/[c(-1)/¢(0) - yk(c(-1)/¢(0))], and k = z(0) / z(~1). Here, ¢(-1) :=
¢(-1) and z(n) is a solution of (2.2) for A = Ao, where Ay is less than the least eigenvalue of (2.2),
(3.2), and (3.13) such that z(n) > 0 forn € [-1,m —1].
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Proof. The values of n for which o exists are n = 0,...,m — 1. So to impose a boundary
condition at n = -1, we need to extend the domain of o to include n = —1. We do this by
forcing the boundary condition (3.3) and must now show that the equation is satisfied on the

extended domain.
Evaluating (2.5) at n = 0 for y = ¥ and using (3.3) gives the following:

(0)5(1) - b(0)B(0) + &(=1)3(0) (ak + b) = —¢(0)A5(0).

Also from (3.1) for n = 1 and n = 0, we obtain the following:

z(1)
z(0)’

z(0)
z(-1)’

o(1) =9(1) - 9(0) =5

0(0) =9(0) - 5(-1)

Substituting (3.2) into the above equation yields

z(0)
z(-1) |’

5(0) = B(0) [1 -y

Thus, (3.4) becomes

c(O)[v(l) 5(0) =21 [ Z(O)][b(o l)(aA+b)+c(0)A] 0.

z(0)

This may be slightly rewritten as follows

- z(1) z(0) b(0) &(-1) , 1) ~
o) -e (0){ =(0) <1"Yz<—1>>[‘6<0) ot (T )]}‘O'

Also from (2.2), with n = 0, together with (3.2), we have the following:

5(1) - N()[b(o) ) —A]:O.

0y &0) "

Subtracting (3.9) from (3.8) and using the fact that ©(0) # 0 results in

£0)~ 2(0) 2(0) z(-1) /| 7¢0) " %) z(-1)

e -A-—=+(1- —A +A_ bl+A(1- 1+—
b) & z(1) ( YZ(0)>[ b(0) | & 1)] ( Yz(O))( ((01)>

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

>o.

(3.10)
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Equating coefficients of A on both sides gives the following:

vk
== = = = 3.11
" S0 - by G /20) -
and equating coefficients of A° on both sides gives the following:
, _ PO/ - yk(b0)/E(0) - BO)/E0) + yE1/EO) +2(1)/2(0) (312)
B c(=1)/¢(0) - yk(c(=1)/¢(0)) '
where k = z(0)/z(-1), and recall ¢(-1) = ¢(-1). O
Note that for y = 0, this corresponds to the results in [1] for b = -1/h.
Theorem 3.2. Under the transformation (3.1), © satisfying the boundary conditions
o(m-2)-6v(m-1) =0, (3.13)
for 6 #0, transforms to © obeying the boundary conditions
o(m-2)=o(m-1)(pr+q), (3.14)

where p = 6¢(m - 2)/{(1 - 6K)[-Kc(m -2) + b(m —2) — Ag&(m - 2)]}, g=c(m-2)[1-6K -
5M0]/{(1 = 6K)[-KE(m = 2) + b(m = 2) = \g&(m - 2)]}, and K = z(m — 1)/ z(m - 2). Here, z(n)
is a solution to (2.2) for A = Ao, where Ag is less than the least eigenvalue of (2.2), (3.2), and (3.13)
such that z(n) > 0 in the given interval, [-1,m — 1].

Proof. Evaluating (3.1) at n = m — 1 and n = m — 2 gives the following:

z(m—1)

o(m-1)=v(m-1) —ﬁ(m—Z)Z(m_z), (3.15)
B(m - 2) = 5(m —2) — 5(m - 3) 2= 2)
o(m-2)=o(m-2)—-0v(m s)z(m 3 (3.16)
By considering o (n) satisfying (2.2) at n = m — 2, we obtain that
- [bm-2)  Em-2|. | dm-2)_.
o(m-3) = [E(m =3 Z(m = 3):Iv(m 2) Zm=3) o(m-1). (3.17)

Substituting (3.17) into (3.16) gives the following:

cm-3) " ¢(m-3)|z(m-3) z(m-3)é(m-3)°
(3.18)

am-m=am—m{p{“m‘”_Aam‘”]“m—@}+am_ndm—mam—m



6 Advances in Difference Equations

Now using (3.13) together with (3.15) yields

B(m-1)

o =1 = T 5 Gm -1 /z(m=2))’ (3.19)
which in turn, by substituting into (3.13), gives the following:
- B 6o(m-1)
o(m=2) = 1-6(z(m-1)/z(m-2)) (3:20)
Thus, by putting (3.19) and (3.20) into (3.18), we obtain
. : 60(m—-1) b(m-2) c(m—-2)|z(m-2)
mm_”_1—6QMh4V4m—b)% [dm 3) Adm—&]dm—@} 6o

o(m—-1)z(m-2)c(m—-2)
-6(zim-1)/[z(m-2)z(m-3)c(m-3)])

The equation above may be rewritten as follows:

[ z(m 1)] 5(m

. qam—Sﬂﬁn—ﬂ—<am—D—Aam—2»Am—24+am—2ﬂhn—$
=o(m-1) &(m—3)z(m - 3) '

(3.22)

Now, since z(n) is a solution to (2.2) for A = Ay, we have that
c(m-3)z(m-3)=-c(m-2)z(m-1) + E(m -2)z(m—-2)—\o(m—-2)z(m-2). (3.23)

Substituting (3.23) into (3.22) gives the following:

z(m—-1) _
|1 6 prom 2)] (m-2)
:ﬁ(m—l){ -6c(m—-2)z(m—-1)+6(L - Ng)c(m —2)z(m - 2) + c(m —2)z(m — 2)}
—c(m-2)z(m - 1)+b(m 2)z(m—2) — \oc(m —2)z(m - 2)
(3.24)
Setting z(m — 1) /z(m - 2) = K yields
H—&ﬂwm—n=mm—n{6dm 2)K +8(\ = Ao)&(m —2) + E(m — m} (3.25)
—c(m— 2)K+b(m 2) = Aoc(m—2)
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Hence,

(3.26)

B(m ~2) = B(m - 1){ GE(m —2)\ +E(m = 2) (6K ~ 4o + 1) }

(1-6K) [—E(m “2)K + b(m —2) — \o&(m — 2)]

which is of the form (3.14), where K = z(m-1)/z(m-2),p = 6c(m-2)/{(1 - 6K)[-Kc(m -
2) + I;(m -2)-Mc(m—-2)]},and g = c(m —2)[1 - 6K - 6X0]/{(1 - 6K)[-KE(m - 2) + E(m -
2) = Xoc(m =2)]}. O

Note that if we require that al + b in (3.3) be a Nevanlinna or Herglotz function, then
we must have that a > 0. This condition provides constraints on the allowable values of k.

Remark 3.3. In Theorems 3.1 and 3.2, we have taken z(n) to be a solution of (2.2) for A = A
with Ag less than the least eigenvalue of (2.2), (3.2), and (3.13) such that z(n) > 0in [-1,m —
1]. We assume that z(n) does not obey the boundary conditions (3.2) and (3.13) which is
sufficient for the results which we wish to obtain in this paper. However, this case will be
dealt with in detail in a subsequent paper.

Theorem 3.4. If k = z(0)/z(-1) where z(n) is a solution to (2.2) for A = Ay with Ao less than the
least eigenvalue of (2.2), (3.2), and (3.13) and z(n) > 0 in the given interval [-1,m — 1], then the
values of k which ensure that a > 0 in (3.3), that is, which ensure that al +b in (3.3) is a Nevanlinna
function are

ke (0, %), for y > 0. (3.27)

Proof. From Theorem 3.1, we have that

_ vk
~ e(=1)/¢(0) = ky(e(=1)/¢(0))

a

(3.28)

Assume that y > 0, then to ensure that a > 0 we require that either k > 0 and ¢(-1)/¢(0) -
ky(e(-1)/¢(0)) > 0 or k < 0 and ¢(-1)/¢(0) — ky(c(-1)/¢(0)) < 0. For the first case, since
(c(-1)/¢(0))y > 0, we get k > 0 and k < 1/y. For the second case, we obtain k < 0 and
k > 1/y, which is not possible. Thus, allowable values of k for y > 0 are

ke <o, %> (3.29)

Since k = z(0)/z(-1)#0. If y < 0, then we must have that either k < 0 and ¢(-1)/c(0) —
ky(¢(-1)/¢(0)) > 0 or k > 0 and ¢(-1)/¢(0) — ky(c(-1)/¢(0)) < 0. The first case of k < 0 is
not possible since ¢(n) = (z(n —1)/z(n))c(n — 1) and ¢(n), c(n — 1) > 0, which implies that
z(n—1)/z(n) > 0 in particular for n = 0. For the second case, we get k > 0 and k < 1/y which
is not possible. Thus for y < 0, there are no allowable values of k. O
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Also, if we require that pA + q from (3.14) be a Nevanlinna/Herglotz function, then we
must have p > 0. This provides conditions on the allowable values of K.

Corollary 3.5. If K = z(m —1)/z(m — 2) where z(n) is a solution to (2.2) for A = Ay with A less
than the least eigenvalue of (2.2), (3.2), and (3.13), and z(n) > 0 in the given interval [-1,m — 1],

then
1 am—mcm c(m-2)
Ke( '6>U<—E(m—2)' >, for6>—g(m_2),
b(m-2) 1 c(m-2)
KE<—oo,m>U<5,oo>, f01’6<m.

Proof. Without loss of generality, we may shift the spectrum of (2.2) with boundary conditions
(3.2), (3.13), such that the least eigenvalue of (2.2) with boundary conditions (3.2), (3.13) is
strictly greater than 0, and thus we may assume that Ao = 0.

Since ¢(m — 2) > 0, we consider the two cases, 6 > 0 and 6 < 0.

Assume that 6 > 0, then the numerator of p is strictly positive. Thus, to ensure that
p > 0 the denominator must be strictly positive, that is, (1 — 6K)[-K¢c(m - 2) + E(m -2) -
Xoc(m—2)] > 0. So either 1 - 6K > 0 and —Kc(m - 2) +l;(m -2)-Xc(m—-2)>00r1-6K <0
and —K¢(m - 2) + b(m - 2) — Apc(m - 2) < 0. Since Ag = 0, we have that either K < 1/6 and
K <b(m-2)/c(m-2)or K >1/6and K > b(m-2)/c(m-2). Thus,if 1/6 < b(m-2)/c(m-2),
thatis, 6 > ¢(m - 2)/b(m - 2), we get

(3.30)

1 b(m -2)
K e (—OO,8> U <m, OO>, (331)
and if 1/6 > b(m - 2) /&(m - 2), that s, 6 < &(m - 2) /b(m - 2), we get
b(m -2) 1
K e <—Oo,m> U (5,00) (332)

Now if 6 < 0, then the numerator of p is strictly negative. Thus, in order that p > 0, we require
that the denominator is strictly negative, that is, (1-6K)[-Kc(m—-2) +E(m—2) —Ac(m=-2)] <
0. So either 1 - 6K > 0 and —KE(m—2)+E(m—2)—)LOE(m—2) <0orl-06K < 0and
-K¢(m - 2) + b(m - 2) — Aoc(m - 2) > 0. As A9 = 0, we obtain that either K > 1/6 and
K>bm-2)/c(m-2)orK <1/6and K < b(m-2)/c(m—2). These are the same conditions
as we had on K for 6 > 0. Thus, the sign of 6 does not play a role in finding the allowable
values of K which ensure that p > 0, and hence we have the required result. O

4. Comparison of the Spectra

In this section, we see how the transformation, (3.1), affects the spectrum of the difference
equation with various boundary conditions imposed at the initial and terminal points.
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By combining the results of [1, conclusion] with Theorems 3.1 and 3.2, we have proved
the following result.

Theorem 4.1. Assume that v(n) satisfies (2.2). Consider the following four sets of boundary
conditions:

H(-1)=0, H(m-1)=0, (4.1)
5(-1)=0, B(m-2)=065(m-1), (4.2)
H(-1) = yB(0), B(m-1)=0, (4.3)
H(-1) = y5(0), B(m-2) =65(m - 1). (4.4)

The transformation (3.1), where z(n) is a solution to (2.2) for A = Ay, where Ay is less than the least
eigenvalue of (2.2) with one of the four sets of boundary conditions above, such that z(n) > 0 in the
given interval [-1, m — 1], takes ©(n) obeying (2.2) to ©(n) obeying (2.5).

In addition,

(i) © obeying (4.1) transforms to © obeying

ho(-1) +9(0) = 0, (4.5)

where h = [(¢(0)/2(-1)) (b(0)/2(0) - z(1)/2(0) - b(0) /2(0))] " and

Ho(m-1)+9(m) =0, (4.6)

where H = b(m-2)/&(m-2)-b(m-1)/¢(m-1)-z(m-2)é(m-2)/ [z(m-1)é(m-1)]
with ¢(-1) = ¢(-1).
(ii) © obeying (4.2) transforms to © obeying (4.5) and (3.14).
(iii) © obeying(4.3) transforms to v obeying (3.3) and (4.6).
(iv) © obeying (4.4) transforms to © obeying (3.3) and (3.14).
The next theorem, shows that the boundary value problem given by ©(n) obeying
(2.2) together with any one of the four types of boundary conditions in the above theorem
has m — 1 eigenvalues as a result of the eigencondition being the solution of an (m — 1)th
order polynomial in \. It should be noted that if the boundary value problem considered is

self-adjoint, then the eigenvalues are real, otherwise the complex eigenvalues will occur as
conjugate pairs.

Theorem 4.2. The boundary value problem given by ©(n) obeying (2.2) together with any one of the
four types of boundary conditions given by (4.1) to (4.4) has m — 1 eigenvalues.

Proof. Since ©(n) obeys (2.2), we have that, forn=0,...,m -2,

Hn+1) = - Dom-1) <E(”) —)L>5(n). (4.7)

c(n) c(n)
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So setting n = 0, in (4.7), gives the following:

7(1) = —cChaD) | <b(0) -)L>5(0). (4.8)

c(0) c(0)

For the boundary conditions (4.1) and (4.2), we have that ©(-1) = 0 giving

H(1) = <% - )L>5(0) = <P01 + P}A)a(O), (4.9)

where PO1 and P11 are real constants, that is, a first order polynomial in \.
Alson =11in (4.7) gives that

7(2) = ~c02©) <b(1) /\>5(1). (4.10)

a(1) a1

Substituting in for (1), from above, we obtain

- -2(0)  /b(1) b(0) L ~
5(2) = [ = <% - /\> <m - A>]v(0) = [Pg + P2+ P22A2]v(0), (4.11)

where again Piz, i = 0,1,2 are real constants, that is, a quadratic polynomial in A.
Thus, by an easy induction, we have that

Hm—1) = [p(;ﬂfl +Pm p;;gxmfl]a(m,
(4.12)
Bm=2) = [Py + P2+ o+ PEEZA2]5(0),

where P/ 1,i=0,1,...,m-1and P2, i=0,1,...,m-2 are real constants, that is, an (m—1)th
and an (m — 2)th order polynomial in \, respectively.
Now, (4.1) gives o(m — 1) =0, that is,

[Pt + i+ P 5(0) = 0. (4.13)
So our eigencondition is given by
[Pyt Pt P < 0, (4.14)

which is an (m — 1)th order polynomial in A and, therefore, has m — 1 roots. Hence, the
boundary value problem given by ©(n) obeying (2.2) with (4.1) has m — 1 eigenvalues.
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Next, (4.2) gives v(m —2) = 6v(m - 1), so
[Py P20 o4 P2 2|5(0) = [Py 4 PP 4+ PR 5(0),  (415)
from which we obtain the following eigencondition:
[Py P2k o P22 = [Pt 4 PP+ PR (46)

This is again an (m — 1)th order polynomial in A and therefore has m — 1 roots. Hence, the
boundary value problem given by ¥(n) obeying (2.2) with (4.2) has m — 1 eigenvalues.

Now for the boundary conditions (4.3) and (4.4), we have that o(-1) = yo(0), thus
(4.8) becomes

- -&(-1)  [/b(0) 1. . .~
B(1) = [ =0+ <m —A) ?]v(—l) = (Qg +Q}A)v(—1), (4.17)

where Q) and Q; are real constants, that is, a first order polynomial in .
Using 9(-1) = yo(0) and ©(1) from above, we can show that ©(2) can be written as the
following:

5(2) = [Q2+ Q% + Qg)@]a(—n, (4.18)

where again Qiz, i =0,1,2 are real constants, that is, a quadratic polynomial in A.
Thus, by induction,

o(m-1) = [Qg"l +QI A+t Qg:}xm‘l]?)(—l),

(4.19)
Bim-2) = [+ Q2+ -+ Q32 5(-),

where Ql.m‘l, i=0,1,...,m-1and Qi’”‘z, i=0,1,...,m -2 are real constants, thereby giving
an (m — 1)th and an (m - 2)th order polynomial in \, respectively.
Now, (4.3) gives o(m —1) =0, that is,

Qi+ Q-+ Quria (-1 = 0. (4.20)
So our eigencondition is given by
@t + Q@+ Q| =, (4.21)

which is an (m — 1)th order polynomial in A and, therefore, has m — 1 roots. Hence, the
boundary value problem given by ©(n) obeying (2.2) with (4.3) has m — 1 eigenvalues.



12 Advances in Difference Equations

Lastly, (4.4) gives o(m —2) = 6v(m — 1), that is,
[ M2 QM) g nggw-z]a(—n - 5[ QM) gt ng}yﬂ*]a(—n, (4.22)
from which we obtain the following eigencondition:
[Qg’-2 QI ek ngg)a"-z] =6 [ng-l QI ng}w-l]. (4.23)
This is again an (m — 1)th order polynomial in A and therefore has m — 1 roots. Hence, the

boundary value problem given by ¥(n) obeying (2.2) with (4.4) has m — 1 eigenvalues. [

In a similar manner, we now prove that the transformed boundary value problems
given in Theorem 4.1 have m eigenvalues, that is, the spectrum increases by one in each case.

Theorem 4.3. The boundary value problem given by ©(n) obeying (2.5), n =1,...,m — 2, together
with any one of the four types of transformed boundary conditions given in (i) to (iv) in Theorem 4.1
has m eigenvalues. The additional eigenvalue is precisely Ay with corresponding eigenfunction z(n),
as given in Theorem 4.1.

Proof. The proof is along the same lines as that of Theorem 4.2. By Theorem 3.1, we have
extended /(n), such that ij(n) exists forn=1,...,m-1.
Since v(n) obeys (2.5), we have that, forn =0,...,m -2,

sn+1)= = Do=1 <b(”) )L>77(n). (4.24)

c(n) cn)

For the transformed boundary conditions in (i) and (ii) of Theorem 4.1, we have that (4.5) is
obeyed, and as in Theorem 4.2, we can inductively show that

o(m—1) = [My= + My~ + -+ Moo o(-1),
(4.25)
B(m—2) = [M6”’2 Y S W Mﬂjk’"’z]ﬁ(—l),

and also by [1], we can extend the domain of 7(n) to include n = m if necessary by forcing
(4.6) and then

o(m) = [MJ' + MT'A +--- + MTA"]D(-1), (4.26)

where M;”‘l, i=01,.... m-1, M{”‘Z, i=0,1,...,m-2and M", i =0,1,...,m are real
constants, that is, an (m — 1)th, (m — 2)th, and mth order polynomial in A, respectively.
Now for (i), the boundary condition (4.6) gives the following:

[My=t e Mk M B(-1) = % [MI'+ M7A+ -+ MZA™]5(-1).  (4.27)
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Therefore, the eigencondition is
-1
[My=t e My Mt = = [MJ+ ML MY, (428)

which is an mth order polynomial in A and thus has m roots. Hence, the boundary value
problem given by v(n) obeying (2.5) with transformed boundary conditions (i), that is, (4.5)
and (4.6), has m eigenvalues.

Also, for (ii), from the boundary condition (3.14), we get

[My=2 + My oo M 22 (1)
(4.29)
= (pA+q) My + My M o (-1).

Therefore, the eigencondition is
[My=2 4 M2 MI202] = (pdr q) M)+ M0+ MTA Y], (4.30)

which is an mth order polynomial in A and thus has m roots. Hence, the boundary value
problem given by ©(n) obeying (2.5) with transformed boundary conditions (ii), that is, (4.5)
and (3.14), has m eigenvalues.

Putting n = 0 in (4.24), we get

_ . —¢(-1)o(-1) [ b(0) _
o(1) = 20 +<E(0)—A>v(0). (4.31)

For the boundary conditions in (iii) and (iv), we have that (3.3) is obeyed, thus,

oy ((=EED | (bO LI PP 1
5(1) = < 20 <m - A) m)v(—l) =S5+ m(R}) + R%A), (4.32)

where S}, R}, and R! are real constants.
Putting n = 1 in (4.24), we get

oy _—E030)  [/b()
0(2) = =0 +<E(1)_)‘>U(1)’ (4.33)

which, by using (3.3) and ©(1), can be rewritten as follows:

oy [ECD (b)) -0 (b)) _,\[bO _ [ PO
”(2)‘[ 0) <a(1) )‘>+<5(1) +<a(1) A><a(0) )t>>a/\+b]v( B wa

= ((55 +S20) + (RE+ R3d + R2?) M1+ b)a(—l),

where S7, 57, R}, R}, and R; are real constants.
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Thus, inductively we obtain
o(m-1)
= (S"H S sm-um-z) + (Rm-l FRTI 4 Rm‘l)d"‘1> BRI P
0 1 m-2 0 1 m-1 al+b ’
o(m-2)

= ((56"*2 + ST*Z)L 4o g Sﬁiéim%) + <Rg1*2 + Rg”ﬂ)l bt Rz:éw:q—z) a/\l+ b)ﬁ(—l).
(4.35)

Also, by [1], we can again extend the domain of ¥(n) to include n = m, if needed, by forcing
(4.6), thus,

25 m m m m— m m M\ m 1 ~
o(m) = <<SO +SPA+- S 1> + (R +Ry'A +---+ R\ )a1+b>v(_1)’ (4.36)
where all the coefficients of A are real constants.
The transformed boundary conditions (iii) mean that (4.6) is obeyed, thus, our
eigencondition is

(@A +b) Syl S SN 2) 4 (R 4+ R+ RECAMT)

(4.37)

-1

= —[(al+b) (S +SA+ -+ S™ A" 1) + (R + RI'A+ -+ + RIEA™) |,
—[@l+n)(sy+5; A7)+ (R R )

which is an mth order polynomial in A and thus has m roots. Hence, the boundary value
problem given by ©(n) obeying (2.5) with transformed boundary conditions (iii), that is,
(3.3) and (4.6), has m eigenvalues.

Also, the transformed boundary conditions in (iv) give (3.14) which produces the
following eigencondition:

(@A +b)(Sy2+ Sk o SEZN) 4 (RI2 4+ R 204+ RIZA™2)

= (pA+q) [(ad +b) (Spt + STk o4 S 2) s (R 4 R+ R,
(4.38)

which is an mth order polynomial in A and thus has m roots. Hence, the boundary value
problem given by ©(n) obeying (2.5) with transformed boundary conditions (iv), that is, (3.3)
and (3.14), has m eigenvalues.

Lastly, we have that (3.1) transforms eigenfunctions of any of the boundary value
problems in Theorem 4.2 to eigenfunctions of the corresponding transformed boundary
value problem, see Theorem 4.2. In particular, if A; < -+ < A,,_; are the eigenvalues of the
original boundary value problem with corresponding eigenfunctions 1 (n), ..., li,,-1(n), then
z(n),ui(n), ..., Un-1(n) are eigenfunctions of the corresponding transformed boundary value
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problem with eigenvalues Ao, A1,...,A;-1. Since we know that the transformed boundary
value problem has m eigenvalues, it follows that Ao, A1, ..., Ay-1 constitute all the eigenvalues
of the transformed boundary value problem, see [1]. O

5. Affine to Non-Dirichlet

In this section, we now show that the process in Section 3 may be reversed. In particular, by
applying the following mapping:

up(n+1)

up(n) '

v(n) =o(n+1)-o(n) (5.1)

we can transform o obeying affine \-dependent boundary conditions to v obeying non-
Dirichlet boundary conditions.

Theorem 5.1. Consider the boundary value problem given by ©(n) satisfying (2.5) with the following
boundary conditions:

5(-1) = 5(0) (ad + ), (5.2)
o(m-2)=0(m-1)(¢A+7). (5.3)

The transformation (5.1), for n = =1,...,m — 1, where uy(n) is an eigenfunction of (2.5), (5.2), and
(5.3) corresponding to the eigenvalue Ay = 0, yields the following equation:

c(mp(n+1)-bn)v(n) +c(n-1)vn-1) =-c(n)lv(n), n=0,...,m-3, (5.4)

where, for ¢(-1) = ¢(-1),

_ up(n)c(n) . )
c(n)—m>0, n=-1,...,m-2,
[ wmem em-Duwm-1n b Jwmem _
b(n) = [uo(n +1)e(n+1)  c(n)ug(n) + o) -1 ]m, =0,...,m-2
(5.5)

In addition, © obeying (5.2) and (5.3) transforms to v obeying the non-Dirichlet boundary conditions

v(~1) = Bo(0), (5.6)

v(m-2)=Av(m-1), (5.7)

where B = ag(0)/ {(ako + B)[6(0) + ad(~1)]} and A = [n(@(m —2)/e(m-1) +1/)] ™.

Proof. The fact that ©(n), obeying (2.5), transforms to v(n), obeying (5.4), was covered in [1,
conclusion]. Now, v is defined for n = 0,...,m — 1 and is extended to n = -1,...,m — 1 by
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(5.2). Thus, v is defined for n = -1, ..., m — 2 giving that (5.4) is valid forn = 0,...,m - 3. For
n=0andn = -1, (5.1) gives the following:

0(0) = 8(1) - 5(0) 2 ), 538)
o(=1) = 5(0) - 6(—1);00(—(_01)). (5.9)

Setting 1 = 0 in (2.5) gives the following:
5(1) = -\5(0) + ggg; 5(0) - 56((1)1))5(—1), (5.10)

which by using (5.2) becomes

(5.11)

~Xe(0) +b(0) — &(~1) (aA + B) 5(-1)
&(0)(ar +p) '

o(l) = [
Since uy(n) is an eigenfunction of (2.5), (5.2), and (5.3) corresponding to the eigenvalue A =

Ao = 0, we have that

up(-1)
v = p, (5.12)

and hence

(5.13)

~106(0) + b(0) - &(~1) (ag + B)
2(0) (ako + ) ]”0(_1)'

uo(l) = [

Substituting (5.11) and (5.13) into (5.8) and using (5.2), we obtain

—AE(0) +b(0) - &(=1) (ak + ) 5(-1)
c(0)(ar +p)

_ 3(=1) [42(0) +b(0)  E(=1) (ko + B) | o(=1)
ak + (0) (ko + B) u(0)

v(0) = [
(5.14)

Since ug(-1)/up(0) = alo + B, everything can be written over the common denominator
¢(0)(aX + ). Taking out ©(-1) and simplifying, we get

¢(0) + ac(~1)

v(0) =o(-1) (Lo — 1) 2O (@r+p)

(5.15)
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Thus,

?(~1) = v(0) (Ao = V[EO) + ac(-1)]

Substituting (5.2) into (5.9) gives the following;:

P a(lo—L)
v(-1) =o(-1) @t ) (ot ) (5.17)
Hence, by putting (5.16) into (5.17), we get
3 ac(0)
O [ (o + H[E(0) + aa( )] ] 19

So to impose the boundary condition (5.7), it is necessary to extend the domain of v by
forcing the boundary condition (5.7). We must then check that v satisfies the equation on
the extended domain.

Evaluating (5.4) at n = m — 2 and using (5.7) give the following:

c(m-3)
c(m-2)

A c¢(m-2)

(1 b(m - 2) v(m-3) =0. (5.19)

+ )L)v(m—Z) +

Using (5.1) with n = m — 2 and n = m — 3 together with (5.3), we obtain

o(m-2) =o(m-1) -am-m% - 5(m—1)<1 - (gM@%),
o(m—3) = o(m —2) —5(m—3)% = d(m—1)(¢A+17) —6(m—3)%.
(5.20)
Substituting the above two equations into (5.19) yields
_ 1 bm-2) up(m—1) c(m-3)
om0 (5 oz 1) (- @) Gy et a1
_6(m_3)c(m—3)uo(m—2)_0. .

c(m-2)ug(m-3)
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Since uy(n) is an eigenfunction of (2.5), (5.2), and (5.3) corresponding to the eigenvalue A =
Ao = 0 we have that uo(m — 2)/ug(m — 1) = (Ao + 1 = 7. Thus, the above equation can be
simplified to

—o(m-3)+o(m-1)

><[Q\uo(m 1)c(m —2)ug(m - 3)< 1+b(m—2) > L+ )uo(m 3) ~0.

ug(m —2)c(m - 3)ug(m —2) c(m-2) o(m—2)
(5.22)
Also (2.5) evaluated at n = m — 2 for i =  together with (5.3) gives
c(m-2 b(m -2 ~ _
<%(1 S - %(gh 71)>v(m ~1)+3(m-3) =0. (5.23)
Adding (5.22) to (5.23) and using the fact that o(m — 1) #0 yields
ug(m —1)c(m — 2)ug(m - 3) 1 bm-2) ug(m —3)
giuo(m—Z)c(m—?))ug(m—Z) <_Z+ c(m-2) _)L> +(Gh+m) up(m —2) (524)
5.24
c(m 2) b(m 2)
* Zom _3)<1+g)£+ A) 3 @) =

By substituting in for c¢(m — 2) and c(m — 3), it is easy to see that all the \? terms cancel out.
Next, we examine the coefficients of A%, and using uo(m — 2) /ug(m — 1) = 7, we obtain that
the coefficient of A is

up(m-3) &(m-2) b(m - 2)ug(m - 2)

— — (5.25)
ugim-1) c(m-3) c(m-3)uy(m-1)

which equals 0 by (2.5) evaluated at n = m — 2. Thus, only the terms in \ remain. First, we
note that by substituting in for c(m — 2), c(im - 3) and b(m — 2) we get

ug(m—1)c(m-2)up(m-3) c(m-2)
ug(m—2)c(m—-3)ug(m—-2)  ¢(m—3)

R (5.26)
b(m-2) ug(m-2)c(m-2) c(m-3)ug(m-3) bm-2)
c(m-2) ugm-1)c(m-1) ¢(m—2)up(m—2) " c(m-2)

Thus, equating coefficients of A gives the following:

c(m=2)/ & .c(m=2)uo(m-2) B
e(m - 3>< " E(m—l)uo<m—1)+’1>—0- (5.27)



Advances in Difference Equations 19

Since ¢(m —2)/c(m - 3) #0, we can divide and solve for A to obtain

hl”

Note that the case of { = 0, that is, a non-Dirichlet boundary condition, gives A = 0,
that is, v(m — 2) = 0 which corresponds to the results obtained in [1].

If we set up(n) = 1/[z(n — 1)c(n — 1)], with z(n) a solution of (2.2) for A = Ay = 0
where A less than the least eigenvalue of (2.2), (3.2), and (3.13) and z(n) > 0 in the given
interval [-1, m — 1], then 1y (n) is an eigenfunction of (2.5), (5.2), and (5.3) corresponding to
the eigenvalue Ay = 0. To see that uy(n) satisfies (2.5), see [1, Lemma 4.1] with, as previously,
lAuo(l) =0, and now ug(-1) = aAp + p = B. Then, by construction, uy(n) obeys (5.2). We now
show that uy obeys (5.3). Let K = z(m - 1)/z(m - 2),

¢ = 6c(m—2)
(1-6K) [—KE(m —2) + b(m —2) - \g&(m — 2)] '

(5.29)
~ E(m - 2)[1 - 6K — 6A]

 (1-6K) |-K&(m - 2) + b(m - 2) - Moz m - 2)]

Now z(n) is a solution of (2.2) for A = 1, thus,

up(m-2)  z(m-2)&(m-2) [_z(m—l) b(m-2)

- | zm-2) Tém-2

-1
uyim-1) z(m-3)¢(m-23) - 10] =gA+7=1. (5.30)

Remark 5.2. For ug(n), a, B, {, and 5 as above, the transformation (5.1), in Theorem 5.1,
results in the original given boundary value problem. In particular, we obtain that in
Theorem 5.1 ¢(n) = ¢(n) and b(n) = b(n), see [1, Theorem 4.2]. In addition,

5 a2(0)
(ako + p)[2(0) + ad(-1)]

=R

That is, the boundary value problem given by v (n) satisfying (2.5) with boundary conditions
(5.2), (5.3) transforms under (5.1) to ©(n) obeying (2.2) with boundary conditions (3.2), (3.13)
which is the original boundary value problem.

=Y,
(5.31)
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We now verify that B = y. Let

b(0)/6(0) — y(z(0)/2(~1)) (b(0) /&(0)) = B(0)/(0) + Y(E(~1) /&(0)) + 2(1)/=(0)
p= 1)/2(0) ~ y@(-1) /2(0)) (z(0)/z(-1)) /

a = y(z(0)/z(-1)) (5.32)
c(-1)/¢(0) —c(-1)z(0)/[c(0)z(-1)]
_ Y
~ (@(-1)/¢(0))(z(-1)/2(0)) - e(-1)/¢(0)”

Since ¢(-1) = ¢(-1), we obtain ¢(-1)/¢(0) = z(0) /z(-1), and thus

_ Y
1-y(2(0)/z(-1))

24

(5.33)

Also, B = ac(0)/((aro+p)c(0) +ac(-1)). Dividing through by ac(0) and using 1y = 0 together
with ¢(-1)/¢(0) = z(0) /z(-1) gives the following:

11 z(0)
B ﬁ[& " z(—l)]' (539
Now,
b(0) _ z(-DE(-1) | z(0) (5.35)
c0)  z(0)c(0)  =z(-1)
and since z satisfies (2.2) at n =0 for A = 1y = 0, we get
b(0) _ z(-DE(-1) | =z() (5.36)
c(0) z(0)c(0) z(0)
Thus, using (5.35) and (5.36), the numerator of f3 is simplified to
z(0) z(0)
(5w 7
The denominator of f can be simplified using ¢(-1)/¢(0) = z(0)/z(-1) to
z(0) z(0)
“o0-rim) >

hence = 1.
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Finally, substituting in for a, we obtain

1 z(0)] 1
[E T2 Ty 539
Thus, 1/B =1/y, thatis, B=1y.
Next, we show that A = 6. Recall that Ay = 0 and
1 /ém-2) 1
a7 1) 40
Let
= 6¢(m -2)
(1-6(z(m—1)/z(m -2))) [-(z(m ~1)/2(m - 2))E(m —2) + b(m - 2)] ' a1
i Em—-2) '
L —~(z(m—1)/z(m~-2))e(m -2) +b(m -2)
Note that
c(m-2) z(m-3)c(m-3)z(m-1)
cm—-1)  z(m-2)z(m-2)c(m-2)’ (542)
and since z satisfies (2.2) atn =m -2 for A = Ay = 0, we get
b(m-2) z(m-3)&(m-3) , 2m=1) (5.43)

c(m-2) z(m-2)c(m-2) z(m-2)

We now substitute in for ¢ and 7 into the equation for 1/A and use (5.42) and (5.43) to obtain
that

1 1
— == 5.44

thatis, A = 6.
To summarise, we have the following.
Consider 7(n) obeying (2.5) with one of the following 4 types of boundary conditions:
(a) non-Dirichlet and non-Dirichlet, that is, (4.5) and (4.6);
(b) non-Dirichlet and affine, that is, (4.5) and (3.14);
(c) affine and non-Dirichlet, that is, (3.3) and (4.6);
(d) affine and affine, that is, (3.3) and (3.14).

By Theorem 4.3, each of the above boundary value problems have m eigenvalues.
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Now, the transformation (5.1), with ug(n) = 1/z(n—-1)c(n—-1) an eigenfunction of (2.5)
with boundary conditions (a) ((b), (c), (d), resp.) corresponding to the eigenvalue A = Ay =0,
transforms o(n) obeying (2.5) to ©(n) obeying (2.2) and transforms the boundary conditions
as follows:

(1) boundary conditions (a) transform to o(-1) = 0 and o(m - 1) = 0;
(2) boundary conditions (b) transform to o(-1) = 0 and (3.13);
(3) boundary conditions (c) transform to (3.2) and o(m —1) = 0;
(4) boundary conditions (d) transform to (3.2) and (3.13).

By Theorem 4.2, we know that the above transformed boundary value problems in ©(n) each
have m — 1 eigenvalues. In particular, if 0 = 1g < Ay < --+ < Ay are the eigenvalues of
(2.5), (a) ((b), (c), (d), resp.) with eigenfunctions uy(n),v1(n),..., Om-1(n), then ug(n) = 0
and vi1(n),...,0y-1(n) are eigenfunctions of (2.2), (1) ((2), (3), (4), resp.) with eigenvalues
M, ..., Ay-1. Since we know that these boundary value problems have m — 1 eigenvalues, it
follows that A4, ..., A,,—1 constitute all the eigenvalues.

6. Conclusion

To conclude, we outline (the details are left to the reader to verify) how the entire process
could also be carried out the other way around. That is, we start with a second order
difference equation of the usual form, given in the previous sections, together with boundary
conditions of one of the following forms:

(i) non-Dirichlet at the initial point and affine at the terminal point;
(ii) affine at the initial point and non-Dirichlet at the terminal point;

(iii) affine at the initial point and at the terminal point.

We can then transform the above boundary value problem (by extending the domain where
necessary, as done previously) to an equation of the same type with, respectively, transformed
boundary conditions as follows:

(A) Dirichlet at the initial point and non-Dirichlet at the terminal point;

(B) non-Dirichlet at the initial point and Dirichlet at the terminal point;

(C) non-Dirichlet at the initial point and at the terminal point.

It is then possible to return to the original boundary value problem by applying a suitable
transformation to the transformed boundary value problem above.
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