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This paper is concerned with the nonlinear system x′(t) = f(t, x(t)). We give a converse Lyapunov
theorem and prove robustness of uniform exponential dissipativity with respect to unbounded
external perturbations, without assuming f being globally Lipschitz in x.

1. Introduction

This paper is devoted to the following nonautonomous dynamical system:

x′(t) = f(t, x(t)), x(t) ∈ R
n, (1.1)

where f : R
1 × R

n → R
n is always assumed to be a continuous vector field which is locally

Lipschitz in space variable x. Our main aim is two-fold: one is to give a converse Lyapunov
theorem for uniform exponential dissipativity, and the other is to study robustness of uniform
exponential dissipativity to unbounded perturbations.

In [1] Lyapunov introduced his famous sufficient conditions for asymptotic stability
of (1.1), where we can also find the first contribution to the converse question, known as
converse Lyapunov theorems. The answers have proved instrumental, over the years, in
establishing robustness of various stability notions and have served as the starting point for
many nonlinear control systems design concepts.

Recently Li and Kloeden [2] presented a converse Lyapunov theorem for exponential
dissipativity of (1.1) in autonomous case with f being globally Lipschitz in x. This result can
be seen as a generalization of some classical ones on global exponential asymptotic stability
(see, for instance, [3], etc.), and was used by the authors to study robustness of exponential
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dissipativity with respect to small time delays. Here we give a nonautonomous analog of the
result; moreover, instead of assuming f to be globally Lipschitz in x, we only impose on f
the following weaker condition.

(F1) There exists an L > 0 such that

〈
f(t, x) − f(t, y), x − y〉 ≤ L∣∣x − y∣∣2, ∀x, y ∈ R

n, (1.2)

where 〈·, ·〉 denotes the inner product in R
n.

Note that if f(t, x) is globally Lipschitz in x in a uniformmanner with respect to t ∈ R
1,

then (F1) is automatically satisfied. However, we emphasize that this condition also allows
nonglobally Lipschitz functions. An easy example is the function f(t, x) = −x3 + x, which is
clearly not globally Lipschitz. One observes that

(
f(t, x) − f(t, y))(x − y) = −

(
x3 − y3

)(
x − y) + (x − y)2 ≤ ∣∣x − y∣∣2. (1.3)

Then we study robustness property of uniform exponential dissipativity to perturba-
tions. A basic problem in the dynamical theory concerns the robustness of global attractors
under perturbations [4]. It is readily known that if a nonlinear system with a global attractor
A is perturbed, then the perturbed one also has an attractor A′ which is near A, provided the
perturbation is sufficiently small; see, for instance, [5, 6], and so forth. However, in general
we only know that A′ is a local attractor. Whether (or under what circumstances) the global
feature can be preserved is an interesting but, to the authors’ knowledge, still open problem.
(For concrete systems there is the hope that one may check the existence of global attractors
by using the structure of the systems.) Since the dissipativity of a system usually implies the
existence of the global attractor, in many cases the key point to answer the above problem is
then reduced to examine the robustness of dissipativity under perturbations.

Such a problem has obvious practical sense. Unfortunately the answer might be
negative even if in some simple cases which seem to be very nice at a first glance, as indicated
in Example 1.1 below (from which it is seen that dissipativity can be quite sensitive to
perturbations).

Example 1.1 (see [7]). Consider the scalar differential equation

x′(t) = f(x(t)), where f(x) = −xe−x2 . (1.4)

It is easy to see that the equilibrium 0 is globally asymptotically stable, and consequently the
system is dissipative. However, since for any ε > 0 there exists an r0 > 0 such that

f(x) + ε > 0, ∀x > r0, (1.5)

we deduce that any solution x(t) of the perturbed system

x′(t) = f(x(t)) + ε (1.6)

with x(0) > r0 goes to +∞ as t → +∞.
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Note that f ′(x) is bounded on R
1; hence, f(x) is globally Lipschitz.

In this present work we demonstrate that exponential dissipativity has nice robustness
properties. Actually we will show that it is robust under some types of even unbounded
perturbations.

This paper is organized as follows. In Section 2 we give a converse Lyapunov theorem
mentioned above, and in Section 3 we prove robustness of exponential dissipativity.

2. A Converse Lyapunov Theorem

In this section we give a converse Lyapunov theorem which generalizes a recent result in [2].
Let us first recall some basic definitions and facts.

The upper right Dini sup-derivative of a function y ∈ C((α, β),R1) is defined as

d+

dt
y(t) := lim

h→ 0+

y(t + h) − y(t)
h

. (2.1)

Let I be an open interval, and let U be an open subset of R
n. Let V ∈ C(I ×U,R1). For

(t, x) ∈ I ×U and v ∈ R
n, define

ND+
vV (t, x) := lim

h→ 0+

V (t + h, x + hv) − V (t, x)
h

. (2.2)

We call ND+
vV (x) the nonautonomous Dini sup-derivative of V at (t, x) along the vector v. In

case V is differentiable at (t, x), it is easy to see that

ND+
vV (t, x) =

∂

∂t
V (t, x) +∇xV (t, x) · v. (2.3)

Lemma 2.1. Let U be an open subset of R
n. Assume that the continuous function V : (α, β) ×U →

R
+ is Lipschitz in x uniformly in t ∈ (α, β), that is, there exists an LV > 0 such that

∣∣V (t, x) − V (t, y)∣∣ ≤ LV
∣∣x − y∣∣, ∀t ∈ (α, β), x, y ∈ U, (2.4)

and let x(·) ∈ C1((α, β);U). Then

d+

dt
V (t, x(t)) = ND+

g(t)V (t, x(t)), where g(t) = x′(t). (2.5)

Proof. This basic fact is actually contained in [3], and so forth. Here we give a simple proof
for the reader’s convenience.
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We observe that

V (t + h, x(t + h)) − V (t, x(t)) = V
(
t + h, x(t) + g(t)h + o(h)

) − V (t, x(t))

=
(
V
(
t + h, x(t) + g(t)h + o(h)

) − V (t + h, x(t) + g(t)h))

+
(
V
(
t + h, x(t) + g(t)h

) − V (t, x(t))
)
.

(2.6)

Since V (t, x) is Lipschitz in x, one easily sees that

V
(
t + h, x(t) + g(t)h + o(h)

) − V (t + h, x(t) + g(t)h) = o(h). (2.7)

Therefore by definition we immediately deduce that

d+

dt
V (t, x(t)) = lim

h→ 0+

V (t + h, x(t + h)) − V (t, x(t))
h

= lim
h→ 0+

V
(
t + h, x(t) + g(t)h

) − V (t, x(t))
h

= ND+
g(t)V (t, x(t)).

(2.8)

The proof is complete.

We will denote by φ(t, τ) the solution operator of (1.1), that is, for each x ∈ R
n, x(t) :=

φ(t, τ)x is the unique solution of the system with initial value x(τ) = x.

Definition 2.2. System (1.1) is said to be uniformly exponentially dissipative, if there exist
positive numbers B, λ, and ρ such that

∣∣φ(t, τ)x
∣∣ ≤ Be−λ(t−τ)|x| + ρ, ∀t ≥ τ, (τ, x) ∈ R

1 × R
n. (2.9)

The main result in this section is the following theorem.

Theorem 2.3 (Converse Lyapunov Theorem). Suppose that f satisfies the structure condition
(F1). Assume that system (1.1) is uniformly exponentially dissipative.

Then there exists a function V : R
1 × R

n → R
+ satisfying

|x|2 − a ≤ V (t, x) ≤ b|x|2 + c, (2.10)
∣∣V (t, x) − V (t, y)∣∣ ≤ LV

(|x| + ∣∣y∣∣ + ρ)∣∣x − y∣∣, (2.11)

ND+
f(t,x)V (t, x) ≤ −d|x|2 + σ (2.12)

for all x, y ∈ R
n and t ∈ R

1, where a, b, c, d, σ, and LV are appropriate positive constants.
Moreover, if ρ = 0, namely, the system is uniformly exponentially asymptotically stable, then

the constants a, c, and σ vanish.
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Proof. Since the ODE system (1.1) is exponentially dissipative, there exist positive constants
B, λ, and ρ such that (2.9) holds. Let

T =
1
λ

ln (2B). (2.13)

We first define a function V1 as follows: (The techniques used here are adopted from
[2, 8], etc.)

V1(t, x) :=
∫ t+T

t

∣
∣φ(s, t)x

∣
∣2ds, x ∈ R

n. (2.14)

By (2.9) it is clear that

0 ≤ V1(t, x) ≤
∫ t+T

t

(
Be−λ(s−t)|x| + ρ

)2
ds ≤ B2

λ
|x|2 + 2Tρ2. (2.15)

Let x(t) = φ(t, τ)x, y(t) = φ(t, τ)y, and let w(t) = x(t) − y(t). Then

w′(t) = f(t, x(t)) − f(t, y(t)). (2.16)

Taking inner product of this equation with w(t), by (F1) one finds that

1
2
d

dt
|w(t)|2 ≤ L|w(t)|2, (2.17)

from which it can be easily seen that

|w(t)| ≤ |w(τ)|eL(t−τ), t ≥ τ. (2.18)

Thus we deduce that

∣∣φ(t, τ)x − φ(t, τ)y∣∣ ≤ CT

∣∣x − y∣∣, ∀x, y ∈ R
n, t ∈ [τ, τ + T], (2.19)

where CT = eLT . Now for any x, y ∈ R
n and t ∈ R

1, we have

∣∣V1(t, x) − V1
(
t, y
)∣∣ =

∣∣∣∣∣

∫ t+T

t

(∣∣φ(s, t)x
∣∣2 − ∣∣φ(s, t)y∣∣2

)
ds

∣∣∣∣∣

≤
∫ t+T

t

∣∣φ(s, t)x − φ(s, t)y∣∣ (∣∣φ(s, t)x∣∣ + ∣∣φ(s, t)y∣∣)ds

≤ CT

∣∣x − y∣∣
∫ t+T

t

(∣∣φ(s, t)x
∣∣ +
∣∣φ(s, t)y

∣∣)ds,

(2.20)
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and it immediately follows by (2.9) that

∣
∣V1(t, x) − V1

(
t, y
)∣∣ ≤ L1

(|x| + ∣∣y∣∣ + ρ)∣∣x − y∣∣, (2.21)

where L1 is independent of x, y. This shows that V1 satisfies (2.11).
Since

V1
(
t, φ(t, τ)x

)
=
∫ t+T

t

∣
∣φ(s, t)φ(t, τ)x

∣
∣2ds =

∫ t+T

t

∣
∣φ(s, τ)x

∣
∣2ds, (2.22)

by the choice of T we have that

d

dt
V1
(
t, φ(t, τ)x

)
=
∣∣φ(t + T, τ)x

∣∣2 − ∣∣φ(t, τ)x∣∣2

=
∣∣φ(t + T, t)φ(t, τ)x

∣∣2 − ∣∣φ(t, τ)x∣∣2

≤ −∣∣φ(t, τ)x∣∣2 +
(
Be−λT

∣∣φ(t, τ)x
∣∣ + ρ

)2

≤ −∣∣φ(t, τ)x∣∣2 + 2B2e−2λT
∣∣φ(t, τ)x

∣∣2 + 2ρ2

≤ −1
2
∣∣φ(t, τ)x

∣∣2 + 2ρ2.

(2.23)

On the other hand, by Lemma 2.1 we find that

ND+
f(t,φ(t,τ)x)V1

(
t, φ(t, τ)x

)
=
d

dt
V1
(
t, φ(t, τ)x

) ≤ −1
2
∣∣φ(t, τ)x

∣∣2 + 2ρ2. (2.24)

Setting t = τ , one obtains that

ND+
f(τ,x)V1(τ, x) ≤ −1

2
|x|2 + 2ρ2, (2.25)

which indicates that V1 satisfies (2.12).
Now let us define another Lyapunov function V2. For this purpose we take a

nonnegative function α(s) as

α(s) = max
(
s2 − ρ20, 0

)
, s ≥ 0, (2.26)

where ρ0 = (2B + 1)ρ. Then

|α(s) − α(r)| ≤ (s + r)|s − r|, ∀s, r ≥ 0. (2.27)
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Indeed, if s, r < ρ0, then the estimate clearly holds true. So we may assume without loss of
generality that s ≥ r with s ≥ ρ0. We have

|α(s) − α(r)| = α(s) − α(r) =
(
s2 − ρ20

)
− α(r) ≤

(
s2 − ρ20

)
−
(
r2 − ρ20

)
= (s + r)|s − r|. (2.28)

Let

V2(t, x) = sup
s≥t

α
(∣∣φ(s, t)x

∣
∣), (t, x) ∈ R

1 × R
n. (2.29)

We claim that we actually have

V2(t, x) = sup
t≤s≤t+T

α
(∣∣φ(s, t)x

∣
∣). (2.30)

Indeed, if |x| ≤ 2ρ, then by (2.9)we deduce that |φ(s, t)x| ≤ ρ0 for all s ≥ t. On the other hand,
by the definition of α(r) we have α(r) = 0 for all 0 ≤ r ≤ ρ0. Therefore in case |x| ≤ 2ρ, one
trivially has

V2(t, x) = 0 = sup
t≤s≤t+T

α
(∣∣φ(s, t)x

∣∣). (2.31)

Now assume that |x| > 2ρ. Then by the choice of T we find that

∣∣φ(s, t)x
∣∣ ≤ Be−λT |x| + ρ ≤ 1

2
|x| + ρ ≤ |x|, s ≥ t + T. (2.32)

Since φ(t, t)x = x and α(s) is nondecreasing in s, one immediately deduces that

V2(t, x) = sup
t≤s≤t+T

α
(∣∣φ(s, t)x

∣∣), (2.33)

which completes the proof of (2.30).
By (2.9), (2.19), and (2.27)we have

V2(t, x) = sup
t≤s≤t+T

α
(∣∣φ(s, t)x

∣∣) = sup
t≤s≤t+T

((
α
(∣∣φ(s, t)x

∣∣) − α(∣∣φ(s, t)y∣∣)) + α(∣∣φ(s, t)y∣∣))

≤ sup
t≤s≤t+T

(
α
(∣∣φ(s, t)x

∣∣) − α(∣∣φ(s, t)y∣∣)) + V2
(
t, y
)

≤ CT

(
B|x| + B∣∣y∣∣ + 2ρ

)∣∣x − y∣∣ + V2
(
t, y
)
.

(2.34)

Therefore

V2(t, x) − V2
(
t, y
) ≤ CT

(
B|x| + B∣∣y∣∣ + 2ρ

)∣∣x − y∣∣. (2.35)
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Since x and y are arbitrary, we conclude that

∣
∣V2(t, x) − V2

(
t, y
)∣∣ ≤ CT

(
B|x| + B∣∣y∣∣ + 2ρ

)∣∣x − y∣∣, ∀t ∈ R
1, x, y ∈ R

n. (2.36)

By the definition of α(s) it is clear that

s2 − ρ20 ≤ α(s) ≤ s2, ∀s ≥ 0. (2.37)

It immediately follows that

V2(t, x) = sup
s≥t

α
(∣∣φ(s, t)x

∣
∣) ≥ α(∣∣φ(t, t)x∣∣) = α(|x|) ≥ |x|2 − ρ20. (2.38)

We also infer from (2.9) that

∣∣φ(s, t)x
∣∣ ≤ Be−λ(s−t)|x| + ρ ≤ B|x| + ρ, ∀s ≥ t. (2.39)

Therefore by definition of V2 and the monotonicity property of α(s), we have

V2(t, x) ≤ α
(
B|x| + ρ) ≤ (B|x| + ρ)2 ≤ 2B2|x|2 + 2ρ2. (2.40)

In conclusion we have

|x|2 − ρ20 ≤ V2(t, x) ≤ 2B2|x|2 + 2ρ2, ∀(t, x) ∈ R
1 × R

n. (2.41)

Note that if t > τ , then

V2
(
t, φ(t, τ)x

)
= sup

s≥t
α
(∣∣φ(s, t)φ(t, τ)x

∣∣) = sup
s≥t

α
(∣∣φ(s, τ)x

∣∣)

≤ sup
s≥τ

α
(∣∣φ(s, τ)x

∣∣) = V2(τ, x).
(2.42)

This implies that V2(t, φ(t, τ)x) is nonincreasing in t.
Now set

V (t, x) = V1(t, x) + V2(t, x), ∀(t, x) ∈ R
1 × R

n. (2.43)

Invoking (2.15), (2.21), and (2.25), we find that V is a Lyapunov function satisfying all the
required properties in the theorem.

In case ρ = 0, it can be easily seen from the above argument that a, c, σ = 0.
The proof is complete.

Remark 2.4. If we assume that f(t, x) is also locally Lipschitz in t, then φ(t, τ)x is locally
Lipschitz in τ as well. Now assume that y(t) is locally Lipschitz in t. Then by the construction
of V1 and V2 one easily verifies that V (t, y(t)) is locally Lipschitz in t. Consequently V (t, y(t))
has derivative in t almost everywhere.
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3. Robustness of Exponential Dissipativity to Perturbations

As for the applications of the converse Lyapunov theorem given in Section 2, we consider in
this section the robustness of exponential dissipativity to perturbations.

3.1. Robustness to External Perturbations

Consider the following perturbed system:

x′(t) = f(t, x(t)) + p(t, x(t)), x(t) ∈ R
n, (3.1)

where p(t, x) is a continuous function which corresponds to external perturbations.
Denote by Pε the family of continuous functions p(t, x) that satisfies the following

growth condition:

∣∣p(t, x)
∣∣ ≤ ε|x| +w(t), ∀t, x ∈ R

1, (3.2)

where w is a continuous nonnegative function on R
1 with

∫ t+1

t

w2(s)ds ≤ A2, ∀t ∈ R
1, (3.3)

for some A > 0. Our main result in this part is contained in the following theorem.

Theorem 3.1. Assume that f(t, x) is locally Lipschitz in (t, x) and satisfies (F1). Suppose that the
system (1.1) is uniformly exponentially dissipative.

Then there exists an ε > 0 sufficiently small such that, for any p ∈ Pε, the perturbed system
(3.1) is uniformly exponentially dissipative.

Remark 3.2. Suppose that p(t, x) satisfies a sublinear growth condition

∣∣p(t, x)
∣∣ ≤ c0|x|θ +w(t), (3.4)

where 0 ≤ θ < 1, andw is as in (3.3). Then one easily verifies that, for any ε > 0, there exists a
Cε > 0 such that

∣∣p(t, x)
∣∣ ≤ ε|x| +w(t) + Cε, ∀(t, x) ∈ R

1 × R
n, (3.5)

namely, p ∈ Pε. Hence the conclusion of the theorem naturally holds.

Proof of Theorem 3.1. Let V be the Lyapunov function of the unperturbed system given in
Theorem 2.3, and take ε = d/(4LV ), where d and LV are the constants in (2.11) and (2.12). We
show that for any p ∈ Pε the perturbed system (3.1) is uniformly exponentially dissipative.

For simplicity in writing we set

g(t, x) = f(t, x) + p(t, x). (3.6)
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Let x = x(t) be any solution of the perturbed system (3.1) with initial value x(τ) = x0. By
Remark 2.4 we know that V (t, x) := V (t, x(t)) is locally Lipschitz in t and hence has derivative
almost everywhere. Note that at any point twhere V (t, x) has derivative we necessarily have

d+

dt
V (t, x) =

d

dt
V (t, x). (3.7)

Now by Lemma 2.1 we find that

d+

dt
V (t, x) = lim

h→ 0+

1
h

(
V
(
t + h, x + hg(t, x)

) − V (t, x)
)

≤ lim
h→ 0+

1
h

(
V
(
t + h, x + hg(t, x)

) − V (t + h, x + hf(t, x)
))

+ lim
h→ 0+

1
h

(
V
(
t + h, x + hf(t, x)

) − V (t, x)
)

= lim
h→ 0+

1
h

(
V
(
t + h, x + hg(t, x)

) − V (t + h, x + hf(t, x)
))

+ND+
f(t,x)V (t, x).

(3.8)

By (2.11) we have

∣∣V
(
t + h, x + hg(t, x)

) − V (t + h, x + hf(t, x)
)∣∣

≤ hLV
(∣∣x + hg(t, x)

∣∣ +
∣∣x + hf(t, x)

∣∣ + ρ
)∣∣p(t, x)

∣∣.
(3.9)

Therefore

d+

dt
V (t, x) ≤ ND+

f(t,x)V (t, x) + LV
(
2|x| + ρ)∣∣p(t, x)∣∣

≤ −d |x|2 + σ + LV
(
2|x| + ρ)(ε|x| +w(t)).

(3.10)

Since ε ≤ d/(4LV ), we find that

− d |x|2 + σ + LV
(
2|x| + ρ)(ε|x| +w(t))

= −d |x|2 + σ + 2LV ε|x|2 +
(
LV ρε + 2LVw(t)

)|x| + LV ρw(t)

≤ −d
2
|x|2 + σ +

(
d

4
ρ + 2LVw(t)

)
|x| + LV ρw(t)

≤ −d
4
|x|2 + c1|w(t)|2 + c2,

(3.11)

where c1, c2 > 0 are appropriate numbers (which are independent of the initial values). Thus

d+

dt
V (t, x(t)) ≤ −d

4
|x(t)|2 + c1|w(t)|2 + c2 ≤

(
by(2.10)

) ≤ −ΛV (t, x(t)) + c1|w(t)|2 + c3,
(3.12)
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where

Λ =
d

4b
, c3 = c2 +

dc

4b
, (3.13)

and b and c are the constants in (2.10). In particular, we have

d+

dt
V (t, x(t)) ≤ c1|w(t)|2 + c3, t ≥ τ, (3.14)

and it follows that

V (t, x) ≤ V (τ, x0) + c1

∫ t

τ

|w(s)|2ds + c3(t − τ) ≤ b|x0|2 + c4 (3.15)

for t ∈ [τ, τ + 1], where c4 = c + c1A2 + c3.
Integrating both sides of (3.12) from t to t + 1, one finds that

∫ t+1

t

d+

ds
V (s, x(s))ds ≤ −Λ

∫ t+1

t

V (s, x(s))ds + c1A2 + c3. (3.16)

Since V (t, x(t)) is locally Lipschitz in t, we find that

V (t + 1, x(t + 1)) − V (t, x(t)) =
∫ t+1

t

d

ds
V (s, x(s))ds =

∫ t+1

t

d+

ds
V (s, x(s))ds. (3.17)

Hence

d

dt

∫ t+1

t

V (s, x(s))ds = V (t + 1, x(t + 1)) − V (t, x(t)) =
∫ t+1

t

d+

ds
V (s, x(s))ds

≤ −Λ
∫ t+1

t

V (s, x(s))ds + c5,

(3.18)

where c5 = c1A2 + c3. By the classical Gronwall lemma and (3.15) we obtain

∫ t+1

t

V (s, x(s))ds ≤
∫ τ+1

τ

V (s, x(s))ds e−Λ(t−τ) +
c5
Λ

≤ b|x0|2e−Λ(t−τ) +
(
c +

c5
Λ

)
, t ≥ τ.

(3.19)

Now for any fixed s ∈ [t, t + 1] we integrate (3.14) from s to t + 1 and find that

V (t + 1, x(t + 1)) ≤ V (s, x(s)) + c1A2 + c3. (3.20)
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Further integrating the above inequality in s from t to t + 1, it yields

V (t + 1, x(t + 1)) ≤
∫ t+1

t

V (s, x(s))ds + c1A2 + c3 ≤ b|x0|2e−Λ(t−τ) + c6, t ≥ τ, (3.21)

where c6 = (c + c5/Λ) + c1A2 + c3. By (2.10) one concludes that

|x(t)|2 ≤Me−Λ(t−τ)|x0|2 + c7, t ≥ τ + 1, (3.22)

whereM = beΛ, and c7 = c6 + a.
We also deduce by (2.10) and (3.15) that

|x(t)|2 ≤ b|x0|2 + c4 + a ≤Me−Λ(t−τ)|x0|2 + c4 + a, t ∈ [τ, τ + 1]. (3.23)

Therefore, (3.22) and (3.23) complete the proof of what we desired.

As a direct consequence of Theorem 3.1, we have the following interesting result.

Corollary 3.3. Assume that f satisfies (F1) and the following sublinear growth condition

∣∣f(t, x)
∣∣ ≤ c0|x|θ +w(t), (3.24)

where 0 ≤ θ < 1, and w is as in (P1).
Then system (1.1) is necessarily not uniformly exponentially dissipative.

Proof. Suppose that (1.1) is uniformly exponentially dissipative. Then by Theorem 3.1, the
perturbed system (3.1) is uniformly exponentially dissipative for any perturbation p(t, x),
provided (P1) is satisfied with ε > 0 sufficiently small. On the other hand, taking p(t, x) = εx
for any ε > 0, by sublinear growth condition on f one easily examine by using standard
argument that the perturbed system

x′(t) = εx(t) + f(t, x(t)) (3.25)

is not dissipative. This leads to a contradiction and proves the conclusion.

3.2. The Cohen-Grossberg Neural Networks with
Unbounded External Inputs and Disturbances

As another simple example of the application of Theorem 2.3, we consider the following
Cohen-Grossberg neural networks with variable coefficients and multiple delays considered
recently in [9]:

x′
i(t) = −di(xi)

⎛

⎝ci(xi) −
n∑

j=1

aij(t)fj
(
xj
) −

n∑

j=1

aij(t)fj
(
xj
(
t − τj(t)

))
+wi(t, x)

⎞

⎠, (3.26)
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where wi(t, x) denote outside inputs and disturbances, x = (x1, . . . , xn), and

τi ∈ C
(
R

1;
[
0, η
])
, i = 1, 2, . . . , n, (3.27)

denote time delays, where 0 < η < ∞. For the physical meaning of the coefficients we refer
the reader to [9], and so forth. In case wi is bounded and independent of x, the exponential
dissipativity is actually considered in [9]. Here we discuss the more general case. As in [9]
we assume that

(H1) di(s) are bounded and locally Lipschitz,

(H2) each function gi(s) = di(s)ci(s) belongs to C1; moreover,

g ′
i(s) ≥ mi > 0, ∀s ∈ R

1, (3.28)

(H3) aij(t), bij(t), and fj(s) are bounded continuous functions.

Theorem 3.4. Assume (H1)–(H3). Then there exists an ε > 0 sufficiently small such that for any
continuous functions wi(t, x) satisfying

|wi(t, x)| ≤ ε|x| +w(t), (t, x) ∈ R
1 × R

n, 1 ≤ i ≤ n, (3.29)

where w(t) is a function as in (3.3), system (3.26) is uniformly exponentially dissipative.

Proof. Consider the system

x′(t) = f(x), where f(x) = −(g1(x1), . . . , gn(xn)
)

(3.30)

with gi(s) = di(s)ci(s). By (H2) one easily verifies that f(x) satisfies (F1); moreover, system
(3.30) is exponentially dissipative. Let V be the Lyapunov function of the system given by
Theorem 2.3. We show that if ε > 0 is sufficiently small, then (3.26) is uniformly exponentially
dissipative, provided (3.29) is fulfilled.

For simplicity we write

p
(
t, x, y

)
=
(
p1
(
t, x, y

)
, . . . , pn

(
t, x, y

))
, t ∈ R

1, x, y ∈ R
n, (3.31)

where

pi
(
t, x, y

)
= di(xi)

⎛

⎝
n∑

j=1

aij(t)fj
(
xj
)
+

n∑

j=1

aij(t)fj
(
yj
) −wi(t, x)

⎞

⎠ (3.32)

Then system (3.26) can be reformulated as

x′(t) = f(x(t)) + p(t, x(t), xt), (3.33)
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where

xt = (x1(t − τ1(t)), . . . , xn(t − τn(t))). (3.34)

We observe by (H1), (H3), and (3.29) that

∣
∣pi
(
t, x, y

)∣∣ ≤ Di(Mi + |wi(t, x)|) ≤ Diε|x| +Di(w(t) +Mi), (3.35)

where Di = sups∈R1 |di(s)|, and

Mi = sup
t∈R1,x,y∈Rn

⎛

⎝
n∑

j=1

∣
∣aij(t)fj

(
xj
)∣∣ +

n∑

j=1

∣
∣aij(t)fj

(
yj
)∣∣

⎞

⎠. (3.36)

Therefore

∣∣p
(
t, x, y

)∣∣ =
(∣∣p1(t, x, y)

∣∣2 + · · · + ∣∣pn(t, x, y)
∣∣2
)1/2 ≤ K(∣∣p1

(
t, x, y

)∣∣ + · · · + ∣∣pn
(
t, x, y

)∣∣)

≤ (KD)ε|x| +
(

Dw(t) +
n∑

i=1

DiMi

)

:= (KD)ε|x| + w̃(t),

(3.37)

whereK > 0 is a constant which only depends on the dimension n of the phase space R
n, and

D = D1 + · · · +Dn. Note that the function

w̃(t) = Dw(t) +
n∑

i=1

DiMi (3.38)

satisfies (3.3) with A therein replaced by another appropriate constant Ã > 0.
Now assume that (KD)ε ≤ d/(4LV ), where d and LV are the constants in (2.11)

and (2.12). By repeating the same argument as in the proof of Theorem 3.1 with almost no
modification, one can show that there exist constants M, Λ and c > 0 such that for any
solution x(t) of system (3.26)with initial value

x(τ + s) = ψ(s), s ∈ [−η, 0], (3.39)

where ψ ∈ C([−η, 0];Rn), we have

|x(t)|2 ≤Me−Λ(t−τ)|x(τ)|2 + c ≤Me−Λ(t−τ)∥∥ψ
∥∥2 + c, t ≥ τ. (3.40)

Here ‖ψ‖ denotes the usual norm of ψ in C([−η, 0];Rn). We omit the details.
The proof of the theorem is complete.

Remark 3.5. The above result contains Theorem 3.1 in [9] as a particular case.
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