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We present a recent approach via variational methods and critical point theory to obtain the
existence of solutions for a class of damped vibration problems on time scale �, uΔ

2
(t) +

w(t)uΔ(σ(t)) = ∇F(σ(t), u(σ(t))), Δ-a.e. t ∈ [0, T]κ
�
, u(0) − u(T) = 0, uΔ(0) − uΔ(T) = 0, where

uΔ(t) denotes the delta (or Hilger) derivative of u at t, uΔ
2
(t) = (uΔ)Δ(t), σ is the forward jump

operator, T is a positive constant, w ∈ R+([0, T]
�
,�), ew(T, 0) = 1, and F : [0, T]

�
× �N → �.

By establishing a proper variational setting, three existence results are obtained. Finally, three
examples are presented to illustrate the feasibility and effectiveness of our results.

1. Introduction

Consider the damped vibration problem on time-scale �

uΔ
2
(t) +w(t)uΔ(σ(t)) = ∇F(σ(t), u(σ(t))), Δ-a.e. t ∈ [0, T]κ

�
,

u(0) − u(T) = 0, uΔ(0) − uΔ(T) = 0,
(1.1)

where uΔ(t) denotes the delta (or Hilger) derivative of u at t, uΔ
2
(t) = (uΔ)Δ(t), σ is the

forward jump operator, T is a positive constant, w ∈ R+([0, T]
�
,�), ew(T, 0) = 1, and F :

[0, T]
�
× �N → � satisfies the following assumption.

(A) F(t, x) is Δ-measurable in t for every x ∈ �N and continuously differentiable in x
for t ∈ [0, T]

�
and there exist a ∈ C(�+ ,�+), b ∈ L1

Δ([0, T]�,�
+) such that

|F(t, x)| ≤ a(|x|)b(t), |∇F(t, x)| ≤ a(|x|)b(t) (1.2)

for all x ∈ �N and t ∈ [0, T]�, where ∇F(t, x) denotes the gradient of F(t, x) in x.
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Problem (1.1) covers the second-order damped vibration problem (for when � = �)

ü(t) +w(t)u̇(t) = ∇F(t, u(t)), a.e. t ∈ [0, T],

u(0) − u(T) = 0, u̇(0) − u̇(T) = 0,
(1.3)

as well as the second-order discrete damped vibration problem (for when � = �, T ≥ 2)

Δ2(t) +w(t)Δu(t + 1) = ∇F(t + 1, u(t + 1)), t ∈ [0, T − 1] ∩ �,
u(0) − u(T) = 0, Δu(0) −Δu(T) = 0.

(1.4)

The calculus of time-scales was initiated by Stefan Hilger in his Ph.D. thesis in 1988
in order to create a theory that can unify discrete and continuous analysis. A time-scale � is
an arbitrary nonempty closed subset of the real numbers, which has the topology inherited
from the real numbers with the standard topology. The two most popular examples are
� = � and � = �. The time-scales calculus has a tremendous potential for applications in
some mathematical models of real processes and phenomena studied in physics, chemical
technology, population dynamics, biotechnology and economics, neural networks, and social
sciences (see [1]). For example, it can model insect populations that are continuous while
in season (and may follow a difference scheme with variable step-size), die out in winter,
while their eggs are incubating or dormant, and then hatch in a new season, giving rise to a
nonoverlapping population.

In recent years, dynamic equations on time-scales have received much attention. We
refer the reader to the books [2–7] and the papers [8–15]. In this century, some authors
have begun to discuss the existence of solutions of boundary value problems on time-scales
(see [16–22]). There have been many approaches to study the existence and the multiplicity
of solutions for differential equations on time-scales, such as methods of lower and upper
solutions, fixed-point theory, and coincidence degree theory. In [14], the authors have used
the fixed-point theorem of strict-set-contraction to study the existence of positive periodic
solutions for functional differential equations with impulse effects on time-scales. However,
the study of the existence and the multiplicity of solutions for differential equations on time-
scales using variational method has received considerably less attention (see, e.g., [19, 23]).
Variational method is, to the best of our knowledge, novel and it may open a new approach
to deal with nonlinear problems on time-scales.

Whenw(t) ≡ 0, (1.1) is the second-order Hamiltonian system on time-scale �

uΔ
2
(t) = ∇F(σ(t), u(σ(t))), Δ-a.e. t ∈ [0, T]κ

�
,

u(0) − u(T) = 0, uΔ(0) − uΔ(T) = 0.
(1.5)

Zhou and Li in [23] studied the existence of solutions for (1.5) by critical point theory on the
Sobolevs spaces on time-scales that they established.

When w(t)/≡ 0, to the best of our knowledge, the existence of solutions for problems
(1.1) have not been studied yet. Our purpose of this paper is to study the variational structure
of problem (1.1) in an appropriate space of functions and the existence of solutions for
problem (1.1) by some critical point theorems.
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This paper is organized as follows. In Section 2, we present some fundamental
definitions and results from the calculus on time-scales and Sobolev’s spaces on time-scales.
In Section 3, we make a variational structure of (1.1). From this variational structure, we can
reduce the problem of finding solutions of problem (1.1) to one of seeking the critical points of
a corresponding functional. Section 4 is the existence of solutions. Section 5 is the conclusion
of this paper.

2. Preliminaries and Statements

In this section, we present some basic definitions and results from the calculus on time-scales
and Sobolev’s spaces on time-scales that will be required below. We first briefly recall some
basic definitions and results concerning time-scales. Further general details can be found in
[3–5, 7, 10, 13].

Through this paper, we assume that 0, T ∈ �. We start by the definitions of the forward
and backward jump operators.

Definition 2.1 (see [3, Definition 1.1]). Let � be a time-scale, for t ∈ �, the forward jump
operator σ : � → � is defined by

σ(t) = inf{s ∈ �, s > t}, ∀t ∈ �, (2.1)

while the backward jump operator ρ : � → � is defined by

ρ(t) = sup{s ∈ �, s < t}, ∀t ∈ � (2.2)

(supplemented by inf ∅ = sup� and sup ∅ = inf�, where ∅ denotes the empty set). A point
t ∈ � is called right scattered, left scattered, if σ(t) > t, ρ(t) < t hold, respectively. Points that
are right scattered and left scattered at the same time are called isolated. Also, if t < sup�
and σ(t) = t, then t is called right-dense, and if t > inf� and ρ(t) = t, then t is called left
dense. Points that are right-dense and left dense at the same time are called dense. The set �κ

which is derived from the time-scale � as follows: if � has a left scattered maximum m, the
�
κ = �− {m}, otherwise, �κ = �. Finally, the graininess function μ : � → [0,∞) is defined by

μ(t) = σ(t) − t. (2.3)

When a, b ∈ �, a < b, we denote the intervals [a, b]
�
, [a, b)

�
, and (a, b]

�
in � by

[a, b]� = [a, b] ∩ �, [a, b)� = [a, b) ∩ �, (a, b]� = (a, b] ∩ �, (2.4)

respectively. Note that [a, b]κ
�
= [a, b]

�
if b is left dense and [a, b]κ

�
= [a, b)

�
= [a, ρ(b)]

�
if b is

left scattered. We denote [a, b]κ
2

�
= ([a, b]κ

�
)κ, therefore [a, b]κ

2

�
= [a, b]

�
if b is left dense and

[a, b]κ
2

�
= [a, ρ(b)]κ

�
if b is left scattered.
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Definition 2.2 (see [3, Definition 1.10]). Assume that f : � → � is a function and let t ∈ �κ.
Then we define fΔ(t) to be the number (provided it exists) with the property that given any
ε > 0, there is a neighborhood U of t (i.e., U = (t − δ, t + δ) ∩ � for some δ > 0) such that

∣
∣
∣

[

f(σ(t)) − f(s)] − fΔ(t)[σ(t) − s]
∣
∣
∣ ≤ ε|σ(t) − s| ∀s ∈ U. (2.5)

We call fΔ(t) the delta (or Hilger) derivative of f at t. The function f is delta (or Hilger)
differentiable on �κ provided fΔ(t) exists for all t ∈ �

κ. The function fΔ : �κ → � is then
called the delta derivative of f on �κ.

Definition 2.3 (see [23, Definition 2.3]). Assume that f : � → �
N is a function, f(t) =

(f1(t), f2(t), . . . , fN(t)) and let t ∈ �
κ. Then we define fΔ(t) = (f1Δ(t), f2Δ(t), . . . , fN

Δ
(t))

(provided it exists). We call fΔ(t) the delta (or Hilger) derivative of f at t. The function
f is delta (or Hilger) differentiable provided fΔ(t) exists for all t ∈ �

κ. The function
fΔ : �κ → �

N is then called the delta derivative of f on �κ.

Definition 2.4 (see [3, Definition 2.7]). For a function f : � → � we will talk about the second
derivative fΔ2

provided fΔ is differentiable on �κ
2
= (�κ)κ with derivative fΔ2

= (fΔ)Δ :
�
κ2 → �.

Definition 2.5 (see [23, Definition 2.5]). For a function f : � → �
N we will talk about the

second derivative fΔ2
provided fΔ is differentiable on �

κ2 = (�κ)κ with derivative fΔ2
=

(fΔ)Δ : �κ
2 → �

N .

Definition 2.6 (see [23, Definition 2.6]). A function f : � → �
N is called rd-continuous

provided it is continuous at right-dense points in � and its left sided limits exist (finite) at
left dense points in �.

Definition 2.7 (see [3, Definition 2.25]). We we say that a function w : � → � is regressive
provided

1 + μ(t)w(t)/= 0 ∀t ∈ �κ (2.6)

holds. The set of all regressive and rd-continuous functions w : � → � is denoted by

R = R(�) = R(�,�),
R+(�,�) =

{

w ∈ R : 1 + μ(t)w(t) > 0 ∀t ∈ �}.
(2.7)

Definition 2.8 (see [7, Definition 8.2.18]). If w ∈ R and t0 ∈ �, then the unique solution of the
initial value problem

yΔ = w(t)y, y(t0) = 1 (2.8)

is called the exponential function and denoted by ew(·, t0).

The exponential function has some important properties.
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Lemma 2.9 (see [3, Theorem 2.36]). If w ∈ R, then

e0(t, s) ≡ 1, ew(t, t) ≡ 1. (2.9)

Throughout this paper, we will use the following notations:

Crd(�) = Crd

(

�,�N
)

=
{

f : � −→ �
N : f is rd-continuous

}

,

C1
rd(�) = C

1
rd

(

�,�N
)

=
{

f : � −→ �
N : f is differentiable on �κ and fΔ ∈ Crd(�κ)

}

,

C1
T,rd

(

[0, T]�,�
N
)

=
{

f ∈ C1
rd

(

[0, T]�,�
N
)

: f(0) = f(T)
}

.

(2.10)

The Δ-measuremΔ and Δ-integration are defined as those in [10].

Definition 2.10 (see [23, Definition 2.7]). Assume that f : � → �
N is a function, f(t) =

(f1(t), f2(t), . . . , fN(t)) and let A be a Δ-measurable subset of �. f is integrable on A if and
only if fi(i = 1, 2, . . . ,N) are integrable on A, and

∫

A

f(t)Δt =
(∫

A

f1(t)Δt,
∫

A

f2(t)Δt, . . . ,
∫

A

fN(t)Δt
)

. (2.11)

Definition 2.11 (see [13, Definition 2.3]). Let B ⊂ �. B is called Δ-null set if mΔ(B) = 0. Say
that a property P holds Δ-almost everywhere (Δ-a.e.) on B, or for Δ-almost all (Δ-a.a.) t ∈ B
if there is a Δ-null set E0 ⊂ B such that P holds for all t ∈ B \ E0.

For p ∈ �, p ≥ 1, we set the space

L
p

Δ

(

[0, T)
�
,�N
)

=

{

u : [0, T)
�
−→ �

N :
∫

[0,T)
�

∣
∣f(t)

∣
∣
pΔt < +∞

}

(2.12)

with the norm

∥
∥f
∥
∥
L
p

Δ
=

(∫

[0,T)
�

∣
∣f(t)

∣
∣pΔt

)1/p

. (2.13)

We have the following lemma.

Lemma 2.12 (see [23, Theorem 2.1]). Let p ∈ � be such that p ≥ 1. Then the space LpΔ([0, T)�,�
N )

is a Banach space together with the norm ‖ ·‖LpΔ . Moreover, L2
Δ([a, b)�,�

N ) is a Hilbert space together

with the inner product given for every (f, g) ∈ LpΔ([a, b)�,�N ) × LpΔ([a, b)�,�N ) by

〈

f, g
〉

L2
Δ
=
∫

[a,b)
�

(

f(t), g(t)
)

Δt, (2.14)

where (·, ·) denotes the inner product in �N .
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As we know from general theory of Sobolev spaces, another important class of
functions is just the absolutely continuous functions on time-scales.

Definition 2.13 (see [13, Definition 2.9]). A function f : [a, b]
�

→ � is said to be absolutely
continuous on [a, b]

�
(i.e., f ∈ AC([a, b]

�
,�)), if for every ε > 0, there exists δ > 0 such

that if {[ak, bk)�}nk=1 is a finite pairwise disjoint family of subintervals of [a, b]
�
satisfying

∑n
k=1(bk − ak) < δ, then

∑n
k=1 |f(bk) − f(ak)| < ε.

Definition 2.14 (see [23, Definition 2.11]). A function f : [a, b]
�

→ �
N , f(t) = (f1(t), f2(t),

. . ., fN(t)). We say that f is absolutely continuous on [a, b]
�
(i.e., f ∈ AC([a, b]

�
,�N )), if for

every ε > 0, there exists δ > 0 such that if {[ak, bk)�}nk=1 is a finite pairwise disjoint family of
subintervals of [a, b]

�
satisfying

∑n
k=1(bk − ak) < δ, then

∑n
k=1 |f(bk) − f(ak)| < ε.

Absolutely continuous functions have the following properties.

Lemma 2.15 (see [23, Theorem 2.2]). A function f : [a, b]
�

→ �
N is absolutely continuous on

[a, b]
�
if and only if f is delta differentiable Δ-a.e. on [a, b)

�
and

f(t) = f(a) +
∫

[a,t)
�

fΔ(s)Δs, ∀t ∈ [a, b]�. (2.15)

Lemma 2.16 (see [23, Theorem 2.3]). Assume that functions f, g : [a, b]� → �
N are absolutely

continuous on [a, b]
�
. Then fg is absolutely continuous on [a, b]

�
and the following equality is valid:

∫

[a,b)
�

((

fΔ(t), g(t)
)

+
(

fσ(t), gΔ(t)
))

Δt =
(

f(b), g(b)
) − (f(a), g(a))

=
∫

[a,b)
�

((

f(t), gΔ(t)
)

+
(

fΔ(t), gσ(t)
))

Δt.

(2.16)

Now, we recall the definition and properties of the Sobolev space on [0, T]
�
in [23].

For the sake of convenience, in the sequel, we will let uσ(t) = u(σ(t)).

Definition 2.17 (see [23, Definition 2.12]). Let p ∈ � be such that p ≥ 1 and u : [0, T]� →
�
N . We say that u ∈ W

1,p
Δ,T ([0, T]�,�

N ) if and only if u ∈ L
p

Δ([0, T)�,�
N ) and there exists

g : [0, T]κ
�
→ �

N such that g ∈ LpΔ([0, T)�,�N ) and

∫

[0,T)
�

(

u(t), φΔ(t)
)

Δt = −
∫

[0,T)
�

(

g(t), φσ(t)
)

Δt, ∀φ ∈ C1
T,rd

(

[0, T]�,�
N
)

. (2.17)

For p ∈ �, p ≥ 1, we denote

V
1,p
Δ,T

(

[0, T]�,�
N
)

=
{

x ∈ AC
(

[0, T]�,�
N
)

: xΔ ∈ LpΔ
(

[0, T)�,�
N
)

, x(0) = x(T)
}

. (2.18)

Remark 2.18 (see [23, Remark 2.2]). V 1,p
Δ,T([0, T]�,�N ) ⊂ W

1,p
Δ,T([0, T]�,�

N ) is true for every
p ∈ � with p ≥ 1.
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Lemma 2.19 (see [23, Theorem 2.5]). Suppose that u ∈ W
1,p
Δ,T ([0, T]�,�

N ) for some p ∈ � with
p ≥ 1, and that (2.17) holds for g ∈ L

p

Δ([0, T)�,�
N ). Then, there exists a unique function x ∈

V
1,p
Δ,T ([0, T]�,�

N ) such that the equalities

x = u, xΔ = g Δ-a.e. on [0, T)
�

(2.19)

are satisfied and

∫

[0,T)
�

g(t)Δt = 0. (2.20)

Lemma 2.20 (see [3, Theorem 1.16]). Assume that f : � → � is a function and let t ∈ �κ. Then,
one has the following.

(i) If f is differentiable at t, then f is continuous at t.

(ii) If f is differentiable at t, then

f(σ(t)) = f(t) + μ(t)fΔ(t). (2.21)

By identifying u ∈ W
1,p
Δ,T([0, T]�,�

N ) with its absolutely continuous representative

x ∈ V
1,p
Δ,T ([0, T]�,�

N ) for which (2.19) holds, the set W1,p
Δ,T([0, T]�,�

N ) can be endowed with
the structure of Banach space.

Theorem 2.21. Assume p ∈ � and p ≥ 1. The setW1,p
Δ,T([0, T]�,�

N ) is a Banach space together with
the norm defined as

‖u‖
W

1,p
Δ,T

=

(∫

[0,T)
�

|uσ(t)|pΔt +
∫

[0,T)
�

∣
∣
∣uΔ(t)

∣
∣
∣

p
Δt

)1/p

∀u ∈W1,p
Δ,T

(

[0, T]�,�
N
)

. (2.22)

Moreover, the setH1
Δ,T =W1,2

Δ,T([0, T]�,�
N ) is a Hilbert space together with the inner product

〈u, v〉H1
Δ,T

=
∫

[0,T)
�

(uσ(t), vσ(t))Δt +
∫

[0,T)
�

(

uΔ(t), vΔ(t)
)

Δt ∀u, v ∈H1
Δ,T . (2.23)

Proof. Let {un}n∈� be a Cauchy sequence in W
1,p
Δ,T([0, T]�,�

N ). That is, {un}n∈� ⊂
L
p

Δ([0, T)�,�
N ) and there exist gn : [0, T]κ → �

N such that {gn}n∈� ⊂ LpΔ([0, T)�,�N ) and

∫

[0,T)
�

(

un(t), φΔ(t)
)

Δt = −
∫

[0,T)
�

(

gn(t), φσ(t)
)

Δt, ∀φ ∈ C1
T,rd

(

[0, T]
�
,�N
)

. (2.24)

Thus, by Lemma 2.19, there exists {xn}n∈� ⊂ V 1,p
Δ,T([0, T]�,�

N ) such that

xn = un, xΔn = gn Δ-a.e. on [0, T)
�
. (2.25)



8 Advances in Difference Equations

Combining (2.24) and (2.25), we obtain

∫

[0,T)
�

(

xn(t), φΔ(t)
)

Δt = −
∫

[0,T)
�

(

xΔn (t), φ
σ(t)
)

Δt, ∀φ ∈ C1
T,rd

(

[0, T]
�
,�N
)

. (2.26)

Since {un}n∈� is a Cauchy sequence inW1,p
Δ,T ([0, T]�,�

N ), by (2.22), one has

∫

[0,T)
�

|uσn(t) − uσm(t)|2Δt −→ 0 (m,n −→ ∞), (2.27)

∫

[0,T)
�

∣
∣
∣uΔn (t) − uΔm(t)

∣
∣
∣

2
Δt −→ 0 (m,n −→ ∞). (2.28)

It follows from Lemma 2.20, (2.27), and (2.28) that

∫

[0,T)
�

|un(t) − um(t)|2Δt =
∫

[0,T)
�

∣
∣
∣(uσn(t) − uσm(t)) − μ(t)

(

uΔn (t) − uΔm(t)
)∣
∣
∣

2
Δt

≤ 2
∫

[0,T)
�

|uσn(t) − uσm(t)|2Δt + 2(σ(T))2
∫

[0,T)
�

∣
∣
∣uΔn (t) − uΔm(t)

∣
∣
∣

2
Δt

−→ 0 (m,n∞).
(2.29)

By Lemma 2.12, (2.28) and (2.29), there exist u, g ∈ LpΔ([0, T]�,�N ) such that

‖un − u‖LpΔ −→ 0 (n −→ ∞),
∥
∥
∥uΔn − g

∥
∥
∥
L
p

Δ

−→ 0 (n −→ ∞). (2.30)

From (2.26) and (2.30), one has

∫

[0,T)
�

(

u(t), φΔ(t)
)

Δt = −
∫

[0,T)
�

(

g(t), φσ(t)
)

Δt, ∀φ ∈ C1
T,rd

(

[0, T]�,�
N
)

. (2.31)
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From (2.31), we conclude that u ∈ W
1,p
Δ,T([0, T]�,�

N ). Moreover, by Lemma 2.20 and (2.30),
one has

∫

[0,T)
�

|uσn(t) − uσ(t)|2Δt =
∫

[0,T)
�

∣
∣
∣(un(t) − u(t)) + μ(t)

(

uΔn (t) − uΔ(t)
)∣
∣
∣

2
Δt

=
∫

[0,T)
�

∣
∣
∣(un(t) − u(t)) + μ(t)

(

uΔn (t) − g(t)
)∣
∣
∣

2
Δt

≤ 2
∫

[0,T)
�

|un(t) − u(t)|2Δt + 2(σ(T))2
∫

[0,T)
�

∣
∣
∣uΔn (t) − g(t)

∣
∣
∣

2
Δt

−→ 0 (n −→ ∞).
(2.32)

Thereby, it follows from Remark 2.18, (2.30), (2.32), and Lemma 2.19 that there exists
x ∈ V 1,p

Δ,T([0, T]�,�
N ) ⊂W1,p

Δ,T ([0, T]�,�
N ) such that

‖un − x‖W1,p
Δ,T

−→ 0 (n −→ ∞). (2.33)

Obviously, the setH1
Δ,T is a Hilbert space together with the inner product

〈u, v〉H1
Δ,T

=
∫

[0,T)
�

(uσ(t), vσ(t))Δt +
∫

[0,T)
�

(

uΔ(t), vΔ(t)
)

Δt ∀u, v ∈H1
Δ,T . (2.34)

We will derive some properties of the Banach spaceW1,p
Δ,T([0, T]�,�

N ).

Lemma 2.22 (see [10, Theorem A.2]). Let f : [a, b]� → � be a continuous function on [a, b]�
which is delta differentiable on [a, b)

�
. Then there exist ξ, τ ∈ [a, b)

�
such that

fΔ(τ) ≤ f(b) − f(a)
b − a ≤ fΔ(ξ). (2.35)

Theorem 2.23. There exists K = K(p) > 0 such that the inequality

‖u‖∞ ≤ K‖u‖
W

1,p
Δ,T

(2.36)

holds for all u ∈ W1,p
Δ,T([0, T]�,�

N ), where ‖u‖∞ = maxt∈[0,T]
�
|u(t)|.

Moreover, if
∫

[0,T)
�

u(t)Δt = 0, then

‖u‖∞ ≤ K
∥
∥
∥uΔ
∥
∥
∥
L
p

Δ

. (2.37)
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Proof. Going to the components of u, we can assume that N = 1. If u ∈ W
1,p
Δ,T([0, T]�,�),

by Lemma 2.19, U(t) =
∫

[0,t)
�

u(s)Δs is absolutely continuous on [a, b]
�
. It follows from

Lemma 2.22 that there exists ζ ∈ [a, b)
�
such that

u(ζ) ≤ U(T) −U(0)
T

=
1
T

∫

[0,T)
�

u(s)Δs. (2.38)

Hence, for t ∈ [a, b]
�
, using Lemma 2.15, (2.38), and Hölder’s inequality, one has that

|u(t)| =
∣
∣
∣
∣
∣
u(ζ) +

∫

[ζ,t)
�

uΔ(s)Δs

∣
∣
∣
∣
∣

≤ |u(ζ)| +
∫

[0,T)
�

∣
∣
∣uΔ(s)

∣
∣
∣Δs

≤ 1
T

∣
∣
∣
∣
∣

∫

[0,T)
�

u(s)Δs

∣
∣
∣
∣
∣
+ T1/q

(∫

[0,T)
�

∣
∣
∣uΔ(s)

∣
∣
∣

p
Δs

)1/p

,

(2.39)

where 1/p + 1/q = 1. If
∫

[0,T)
�

u(t)Δt = 0, by (2.39), we obtain (2.37). In the general case, for
t ∈ [a, b]

�
, by Lemma 2.20 and Hölder’s inequality, we get

|u(t)| ≤ 1
T

∣
∣
∣
∣
∣

∫

[0,T)
�

u(s)Δs

∣
∣
∣
∣
∣
+ T1/q

(∫

[0,T)
�

∣
∣
∣uΔ(s)

∣
∣
∣

p
Δs

)1/p

≤ 1
T

∫

[0,T)
�

|u(s)|Δs + T1/q

(∫

[0,T)
�

∣
∣
∣uΔ(s)

∣
∣
∣

p
Δs

)1/p

=
1
T

∫

[0,T)
�

∣
∣
∣uσ(s) − μ(s)uΔ(s)

∣
∣
∣Δs + T1/q

(∫

[0,T)
�

∣
∣
∣uΔ(s)

∣
∣
∣

p
Δs

)1/p

=
1
T

∫

[0,T)
�

|uσ(s)|Δs + 1
T
σ(T)

∫

[0,T)
�

∣
∣
∣uΔ(s)

∣
∣
∣Δs + T1/q

(∫

[0,T)
�

∣
∣
∣uΔ(s)

∣
∣
∣

p
Δs

)1/p

≤ T (−1/p)
(∫

[0,T)
�

|uσ(s)|pΔs
)1/p

+ T (−1/p)σ(T)

(∫

[0,T)
�

∣
∣
∣uΔ(s)

∣
∣
∣

p
Δs

)1/p

+ T1/q

(∫

[0,T)
�

∣
∣
∣uΔ(s)

∣
∣
∣

p
Δs

)1/p

≤
(

T (−1/p) + T (−1/p)σ(T) + T1/q
)

‖u‖
W

1,p
Δ,T
.

(2.40)

From (2.40), (2.36) holds.

Remark 2.24. It follows from Theorem 2.23 that W1,p
Δ,T ([0, T]�,�

N ) is continuously immersed
into C([0, T]�,�

N ) with the norm ‖ · ‖∞.
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Theorem 2.25. If the sequence {uk}k∈� ⊂ W
1,p
Δ,T([0, T]�,�

N ) converges weakly to u in

W
1,p
Δ,T ([0, T]�, �

N ), then {uk}k∈� converges strongly in C([0, T]
�
,�N ) to u.

Proof. Since uk ⇀ u in W
1,p
Δ,T([0, T]�,�

N ), {uk}k∈� is bounded in W
1,p
Δ,T([0, T]�,�

N ) and,
hence, in C([0, T]

�
,�N ). It follows from Remark 2.24 that uk ⇀ u in C([0, T]

�
,�N ). For

t1, t2 ∈ [0, T]
�
, t1 ≤ t2, there exists C1 > 0 such that

|uk(t2) − uk(t1)| ≤
∫

[t1,t2]�

∣
∣
∣uΔk (s)

∣
∣
∣Δs

≤ (t2 − t1)1/q
(∫

[t1,t2]�

∣
∣
∣uΔk (s)

∣
∣
∣

p
Δs

)1/p

≤ (t2 − t1)1/q‖uk‖W1,p
Δ,T

≤ C1(t2 − t1)1/q.

(2.41)

Hence, the sequence {uk}k∈� is equicontinuous. By Ascoli-Arzela theorem, {uk}k∈� is
relatively compact in C([0, T]

�
,�N ). By the uniqueness of the weak limit in C([0, T]

�
,�N ),

every uniformly convergent subsequence of {uk}k∈� converges to u. Thus, {uk}k∈� converges
strongly in C([0, T]

�
,�N ) to u.

Remark 2.26. By Theorem 2.25, the immersion W
1,p
Δ,T([0, T]�,�

N ) ↪→ C([0, T]
�
,�N ) is

compact.

Theorem 2.27. Let L : [0, T]
�
× �

N × �N → �, (t, x, y) → L(t, x, y) be Lebesgue Δ-measurable
in t for each (x, y) ∈ �N × �N and continuously differentiable in (x, y) for every t ∈ [0, T]

�
. If there

exist a ∈ C(�+ ,�+), b, c ∈ [0, T]
�
→ �

+ , bσ ∈ L1
Δ([0, T)�,�

+) and cσ ∈ LqΔ([0, T)�,�+)(1 < q <
+∞) such that for Δ-almost t ∈ [0, T]

�
and every (x, y) ∈ �N × �N , one has

∣
∣L
(

t, x, y
)∣
∣ ≤ a(|x|)(b(t) + ∣∣y∣∣p),

∣
∣Lx
(

t, x, y
)∣
∣ ≤ a(|x|)(b(t) + ∣∣y∣∣p),

∣
∣Ly
(

t, x, y
)∣
∣ ≤ a(|x|)

(

c(t) +
∣
∣y
∣
∣
p−1)

,

(2.42)

where 1/p + 1/q = 1, then the functional Φ :W1,p
Δ,T([0, T]�,�

N ) → � defined as

Φ(u) =
∫

[0,T)
�

L
(

σ(t), uσ(t), uΔ(t)
)

Δt (2.43)
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is continuously differentiable onW1,p
Δ,T([0, T]�,�

N ) and

〈

Φ′(u), v
〉

=
∫

[0,T)
�

[(

Lx
(

σ(t), uσ(t), uΔ(t)
)

, vσ(t)
)

+
(

Ly
(

σ(t), uσ(t), uΔ(t)
)

, vΔ(t)
)]

Δt.

(2.44)

Proof. It suffices to prove that Φ has at every point u a directional derivative Φ′(u) ∈
(W1,p

Δ,T ([0, T)�,�
N ))∗ given by (2.44) and that the mapping

Φ′ :W1,p
Δ,T

(

[0, T]
�
,�N
)

−→
(

W
1,p
Δ,T

(

[0, T]
�
,�N
))∗

(2.45)

is continuous.
Firstly, it follows from (2.42) that Φ is everywhere finite on W

1,p
Δ,T([0, T]�,�

N ). We

define, for u and v fixed inW1,p
Δ,T([0, T]�,�

N ), t ∈ [0, T)
�
, λ ∈ [−1, 1],

G(λ, t) = L
(

σ(t), uσ(t) + λvσ(t), uΔ(t) + λvΔ(t)
)

,

Ψ(λ) =
∫

[0,T)
�

G(λ, t)Δt = Φ(u + λv).
(2.46)

From (2.42), one has

|DλG(λ, t)| ≤
∣
∣
∣

(

DxL
(

σ(t), uσ(t) + λvσ(t), uΔ(t) + λvΔ(t)
)

, vσ(t)
)∣
∣
∣

+
∣
∣
∣

(

DyL
(

σ(t), uσ(t) + λvσ(t), uΔ(t) + λvΔ(t)
)

, vΔ(t)
)∣
∣
∣

≤ a(|uσ(t) + λvσ(t)|)
(

bσ(t) +
∣
∣
∣uΔ(t) + λvΔ(t)

∣
∣
∣

p)

|vσ(t)|

+ a(|uσ(t) + λvσ(t)|)
(

cσ(t) +
∣
∣
∣uΔ(t) + λvΔ(t)

∣
∣
∣

p−1)∣
∣
∣vΔ(t)

∣
∣
∣

≤ a
(

bσ(t) +
(∣
∣
∣uΔ(t)

∣
∣
∣ +
∣
∣
∣vΔ(t)

∣
∣
∣

)p)

|vσ(t)|

+ a
(

cσ(t) +
(∣
∣
∣uΔ(t)

∣
∣
∣ +
∣
∣
∣vΔ(t)

∣
∣
∣

)p−1)∣
∣
∣vΔ(t)

∣
∣
∣

� d(t),

(2.47)

where

a = max
(λ,t)∈[−1,1]×[0,T]

�

a(|u(t) + λv(t)|), (2.48)
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thus, d ∈ L1
Δ([0, T)�,�

+). Since bσ ∈ L1
Δ([0, T)�,�

+), (|uΔ| + |vΔ|)p ∈ L1
Δ([0, T)�,�), c

σ ∈
L
q

Δ([0, T)�,�
+), one has

|DλG(λ, t)| ≤ d(t), (2.49)

Ψ′(0) =
∫

[0,T)
�

DλG(0, t)Δt

=
∫

[0,T)
�

[(

DxL
(

σ(t), uσ(t), uΔ(t)
)

, vσ(t)
)

+
(

DyL
(

σ(t), uσ(t), uΔ(t)
)

, vΔ(t)
)]

Δt.

(2.50)

On the other hand, it follows from (2.42) that

∣
∣
∣DxL

(

σ(t), uσ(t), uΔ(t)
)∣
∣
∣ ≤ a(|uσ(t)|)

(

bσ(t) +
∣
∣
∣uΔ(t)

∣
∣
∣

p)

� ψ1(t),

∣
∣
∣DyL

(

σ(t), uσ(t), uΔ(t)
)∣
∣
∣ ≤ a(|uσ(t)|)

(

cσ(t) +
∣
∣
∣uΔ(t)

∣
∣
∣

p−1)
� ψ2(t),

(2.51)

thus ψ1 ∈ L1
Δ([0, T)�,�

+), ψ2 ∈ L
q

Δ([0, T)�,�
+). Thereby, by Theorem 2.23, (2.50), and (2.51),

there exist positive constants C2, C3, C4 such that

∫

[0,T)
�

[(

DxL
(

σ(t), uσ(t), uΔ(t)
)

, vσ(t)
)

+
(

DyL
(

σ(t), uσ(t), uΔ(t)
)

, vΔ(t)
)]

Δt

≤ C2‖v‖∞ + C3

∥
∥
∥vΔ
∥
∥
∥
L
p

Δ

≤ C4‖v‖W1,p
Δ,T

(2.52)

and Φ has a directional derivative at u and Φ′(u) ∈ (W1,p
Δ,T ([0, T]�,�

N ))∗ given by (2.44).

Moreover, (2.42) implies that the mapping from W
1,p
Δ,T([0, T]�,�

N ) into L1
Δ([0, T)�,

�
N ) × LqΔ([0, T)�,�N ) defined by

u −→
(

DxL
(

·, uσ, uΔ
)

, DyL
(

·, uσ, uΔ
))

(2.53)

is continuous, so that Φ′ is continuous fromW
1,p
Δ,T([0, T]�,�

N ) into (W1,p
Δ,T ([0, T]�,�

N ))∗.

3. Variational Setting

In this section, in order to apply the critical point theory, we make a variational structure.
From this variational structure, we can reduce the problem of finding solutions of problem
(1.1) to one of seeking the critical points of a corresponding functional.
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By Theorem 2.21, the spaceH1
Δ,T = W1,2

Δ,T([0, T]�,�
N ) with the inner product

〈u, v〉H1
Δ,T

=
∫

[0,T)
�

(uσ(t), vσ(t))Δt +
∫

[0,T)
�

(

uΔ(t), vΔ(t)
)

Δt (3.1)

and the induced norm

‖u‖H1
Δ,T

=

(∫

[0,T)
�

|uσ(t)|2Δt +
∫

[0,T)
�

∣
∣
∣uΔ(t)

∣
∣
∣

2
Δt

)1/2

(3.2)

is Hilbert space.
Sincew ∈ R+([0, T]

�
,�), by Theorem 2.44 in [3], one has that

ew(t, 0) > 0 ∀t ∈ [0, T]
�
, (3.3)

inH1
Δ,T , we also consider the inner product

〈u, v〉 =
∫

[0,T)
�

ew(t, 0)(uσ(t), vσ(t))Δt +
∫

[0,T)
�

ew(t, 0)
(

uΔ(t), vΔ(t)
)

Δt (3.4)

and the induced norm

‖u‖ =

(∫

[0,T)
�

ew(t, 0)|uσ(t)|2Δt +
∫

[0,T)
�

ew(t, 0)
∣
∣
∣uΔ(t)

∣
∣
∣

2
Δt

)1/2

, (3.5)

we prove the following theorem.

Theorem 3.1. The norm ‖ · ‖ and ‖ · ‖H1
Δ,T

are equivalent.

Proof. Since ew(·, 0) is continuous on [0, T]
�
and

ew(t, 0) > 0 ∀t ∈ [0, T]�, (3.6)

there exist two positive constantsM1 andM2 such that

M1 = min
t∈[0,T]

�

ew(t, 0), M2 = max
t∈[0,T]

�

ew(t, 0). (3.7)

Hence, one has

√

M1‖u‖H1
Δ,T

≤ ‖u‖ ≤
√

M2‖u‖H1
Δ,T
, ∀u ∈ H1

Δ,T . (3.8)

Consequently, the norm ‖ · ‖ and ‖ · ‖H1
Δ,T

are equivalent.
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Consider the functional ϕ : H1
Δ,T → � defined by

ϕ(u) =
1
2

∫

[0,T)
�

ew(t, 0)
∣
∣
∣uΔ(t)

∣
∣
∣

2
Δt +

∫

[0,T)
�

ew(t, 0)F(σ(t), uσ(t))Δt. (3.9)

We have the following facts.

Theorem 3.2. The functional ϕ is continuously differentiable onH1
Δ,T and

〈

ϕ′(u), v
〉

=
∫

[0,T)
�

ew(t, 0)
(

uΔ(t), vΔ(t)
)

Δt +
∫

[0,T)
�

ew(t, 0)(∇F(σ(t), uσ(t)), vσ(t))Δt (3.10)

for all v ∈ H1
Δ,T .

Proof. Let L(t, x, y) = ew(ρ(t), 0) [(1/2)|y|2 + F(t, x)] for all x, y ∈ �N and t ∈ [0, T]
�
. Then,

by condition (A), L(t, x, y) satisfies all assumptions of Theorem 2.27. Hence, by Theorem 2.27,
we know that the functional ϕ is continuously differentiable onH1

Δ,T and

〈

ϕ′(u), v
〉

=
∫

[0,T)
�

ew(t, 0)
(

uΔ(t), vΔ(t)
)

Δt +
∫

[0,T)
�

ew(t, 0)(∇F(σ(t), uσ(t)), vσ(t))Δt (3.11)

for all v ∈ H1
Δ,T .

Theorem 3.3. If u ∈ H1
Δ,T is a critical point of ϕ in H1

Δ,T , that is, ϕ
′(u) = 0, then u is a solution of

problem (1.1).

Proof. Since ϕ′(u) = 0, it follows from Theorem 3.2 that

∫

[0,T)
�

ew(t, 0)
(

uΔ(t), vΔ(t)
)

Δt +
∫

[0,T)
�

ew(t, 0)(∇F(σ(t), uσ(t)), vσ(t))Δt = 0 (3.12)

for all v ∈ H1
Δ,T , that is,

∫

[0,T)
�

ew(t, 0)
(

uΔ(t), vΔ(t)
)

Δt = −
∫

[0,T)
�

ew(t, 0)(∇F(σ(t), uσ(t)), vσ(t))Δt (3.13)

for all v ∈ H1
Δ,T . From condition (A) and Definition 2.17, one has that ew(·, 0)uΔ ∈ H1

Δ,T . By

Lemma 2.19 and (2.20), there exists a unique function x ∈ V 1,2
Δ,T ([0, T]�,�

N ) such that

x = u,
(

ew(t, 0)xΔ(t)
)Δ

= ew(t, 0)∇F(σ(t), uσ(t)) Δ-a.e. on [0, T]κ
�
, (3.14)

∫

[0,T)
�

ew(t, 0)∇F(σ(t), uσ(t))Δt = 0. (3.15)
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By (3.14), one has

ew(t, 0)xΔ
2
(t) +w(t)ew(t, 0)xΔ(σ(t)) = ew(t, 0)∇F(σ(t), uσ(t)) Δ-a.e. on [0, T]κ

�
. (3.16)

Combining (3.14), (3.15), (3.16), and Lemma 2.19, we obtain

xΔ
2
(t) +w(t)xΔ(σ(t)) = ∇F(σ(t), uσ(t)) Δ-a.e. on [0, T]κ

�
,

x(0) − x(T) = 0, xΔ(0) − xΔ(T) = 0.
(3.17)

We identify u ∈ H1
Δ,T with its absolutely continuous representative x ∈ V 1,2

Δ,T ([0, T]�,�
N ) for

which (3.14) holds. Thus u is a solution of problem (1.1).

Theorem 3.4. The functional ϕ is weakly lower semicontinuous onH1
Δ,T .

Proof. Let

ϕ1(u) =
1
2

∫

[0,T)
�

ew(t, 0)
∣
∣
∣uΔ(t)

∣
∣
∣

2
Δt,

ϕ2(u) =
∫

[0,T)
�

ew(t, 0)F(σ(t), uσ(t))Δt.

(3.18)

Then, ϕ1 is continuous and convex. Hence, ϕ1 is weakly lower semicontinuous. On the other
hand, let {un}n∈� ⊂ H1

Δ,T , un ⇀ u in H1
Δ,T . By Theorem 2.25, {uk}k∈� converges strongly in

C([0, T]
�
,�N ) to u. By condition (A), one has

∣
∣ϕ2(un) − ϕ2(u)

∣
∣ =

∣
∣
∣
∣
∣

∫

[0,T)
�

ew(t, 0)F(σ(t), uσn(t))Δt −
∫

[0,T)
�

ew(t, 0)F(σ(t), uσ(t))Δt

∣
∣
∣
∣
∣

≤M2

∫

[0,T)
�

|F(σ(t), uσn(t)) − F(σ(t), uσ(t))|Δt

−→ 0.

(3.19)

Thus, ϕ2 is weakly continuous. Consequently, ϕ = ϕ1+ϕ2 is weakly lower semicontinuous.

To prove the existence of solutions for problem (1.1), we need the following
definitions.

Definition 3.5 (see [23, page 81]). Let X be a real Banach space, I ∈ C1(X,�) and c ∈ �.
I is said to satisfy (PS)c-condition on X if the existence of a sequence {xn} ⊆ X such that
I(xn) → c and I ′(xn) → 0 as n → ∞, implies that c is a critical value of I.

Definition 3.6 (see [23, page 81]). Let X be a real Banach space and I ∈ C1(X,�). I is said
to satisfy P.S. condition on X if any sequence {xn} ⊆ X for which I(xn) is bounded and
I ′(xn) → 0 as n → ∞, possesses a convergent subsequence in X.
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Remark 3.7. It is clear that the P.S. condition implies the (PS)c-condition for each c ∈ �.

We also need the following result to prove our main results of this paper.

Lemma 3.8 (see [24, Theorem 1.1]). If ϕ is weakly lower semicontinuous on a reflexive Banach
space X and has a bounded minimizing sequence, then ϕ has a minimum on X.

Lemma 3.9 (see [24, Theorem 4.7]). Let X be a Banach space and let J ∈ C1(X,�), R > 0. Assume
that X splits into a direct sum of closed subspace X = X− ⊕X+ with dimX− < ∞ and supS−

R
J <

infX+J , where S−
R = {u ∈ X− : ‖u‖ = R}. Let B−

R = {u ∈ X− : ‖u‖ ≤ R}, M = {h ∈ C(B−
R, X) :

h(s) = s if s ∈ S−
R} and c = infh∈Mmaxs∈B−

R
J(h(s)). Then, if J satisfies the (PS)c condition, c is a

critical value of J .

Lemma 3.10 (see [24, Proposition 1.4]). Let G ∈ C1(�N ,�) be a convex function. Then, for all
x, y ∈ �N one has

G(x) ≥ G(y) + (∇G(y), x − y). (3.20)

4. Existence of Solutions

For u ∈ H1
Δ,T , let u = (1/T)

∫

[0,T)
�

u(t)Δt and ũ(t) = u(t) − u, then ∫[0,T)
�

ũ(t)Δt = 0. We have
the following existence results.

Theorem 4.1. Assume that (A) and the following conditions are satisfied.

(i) There exist f, g : [0, T]
�
→ �

+ and α ∈ [0, 1) such that fσ, gσ ∈ L1
Δ([0, T)�,�

+) and

|∇F(t, x)| ≤ f(t)|x|α + g(t) (4.1)

for all x ∈ �N and Δ-a.e. t ∈ [0, T]
�
.

(ii) |x|−2α ∫[0,T)
�

ew(t, 0)F(σ(t), x)Δt → +∞ as |x| → ∞.

Then problem (1.1) has at least one solution which minimizes the function ϕ.

Proof. By Theorem 2.23, there exists C5 > 0 such that

‖ũ‖2∞ ≤ C5

∫

[0,T)
�

∣
∣
∣uΔ(t)

∣
∣
∣

2
Δt. (4.2)



18 Advances in Difference Equations

It follows from (i), Theorem 2.23 and (4.2) that

∣
∣
∣
∣
∣

∫

[0,T)
�

ew(t, 0)(F(σ(t), uσ(t)) − F(σ(t), u))Δt
∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

∫

[0,T)
�

ew(t, 0)

(∫1

0
(∇F(σ(t), u + sũσ(t)), ũσ(t))ds

)

Δt

∣
∣
∣
∣
∣

≤ M2

∫

[0,T)
�

(∫1

0
fσ(t)|u + sũσ(t)|α|ũσ(t)|ds

)

Δt +M2

∫

[0,T)
�

(∫1

0
gσ(t)|ũσ(t)|ds

)

Δt

≤ 2M2
(|u|α + ‖ũ‖α∞

)‖ũ‖∞
∫

[0,T)
�

fσ(t)Δt +M2‖ũ‖∞
∫

[0,T)
�

gσ(t)Δt

≤ M1

4C5
‖ũ‖2∞ +

4M2
2C5

M1
|u|2α
(∫

[0,T)
�

fσ(t)Δt

)2

+ 2M2‖ũ‖α+1∞

∫

[0,T)
�

fσ(t)dt +M2‖ũ‖∞
∫

[0,T)
�

gσ(t)Δt

≤ M1

4

∫

[0,T)
�

∣
∣
∣uΔ(t)

∣
∣
∣

2
Δt + C6|u|2α + C7

(∫

[0,T)
�

∣
∣
∣uΔ(t)

∣
∣
∣

2
Δt

)(α+1)/2

+C8

(∫

[0,T)
�

∣
∣
∣uΔ(t)

∣
∣
∣

2
Δt

)1/2

(4.3)

for all u ∈ H1
Δ,T , whereC6 = (4M2

2C5/M1)(
∫

[0,T)
�

fσ(t)dt)2,C7 = 2M2(C5)
(α+1)/2 ∫

[0,T)
�

fσ(t)Δt,

C8 =M2(C5)
1/2 ∫

[0,T)
�

gσ(t)Δt. Therefore, one has

ϕ(u) =
1
2

∫

[0,T)
�

ew(t, 0)
∣
∣
∣uΔ(t)

∣
∣
∣

2
Δt +

∫

[0,T)
�

ew(t, 0)F(σ(t), uσ(t))Δt

=
1
2

∫

[0,T)
�

ew(t, 0)
∣
∣
∣uΔ(t)

∣
∣
∣

2
Δt +

∫

[0,T)
�

ew(t, 0)(F(σ(t), uσ(t)) − F(σ(t), u))Δt

+
∫

[0,T)
�

ew(t, 0)F(σ(t), u)Δt

≥ 1
4
M1

∫

[0,T)
�

∣
∣
∣uΔ(t)

∣
∣
∣

2
Δt + |u|2α

(

|u|−2α
∫

[0,T)
�

ew(t, 0)F(σ(t), u)Δt −C6

)

−C7

(∫

[0,T)
�

∣
∣
∣uΔ(t)

∣
∣
∣

2
Δt

)(α+1)/2

− C8

(∫

[0,T)
�

∣
∣
∣uΔ(t)

∣
∣
∣

2
Δt

)1/2

(4.4)
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for all u ∈ H1
Δ,T . As ‖u‖ → ∞ if and only if (|u|2 + ∫T0 |uΔ(t)|2dt)1/2 → ∞, (4.4) and (ii) imply

that

ϕ(u) −→ +∞ as ‖u‖ −→ ∞. (4.5)

By Lemma 3.8 and Theorem 3.4, ϕ has a minimum point on H1
Δ,T , which is a critical point of

ϕ. From Theorem 3.3, problem (1.1) has at least one solution.

Example 4.2. Let � = �, T = 2π,N = 3. Consider the damped vibration problem on time-scale
�

ü(t) + cos tu̇(t) = ∇F(t, u(t)), a.e. t ∈ [0, 2π],

u(0) − u(2π) = u̇(0) − u̇(2π) = 0,
(4.6)

where F(t, x) = (4/3 + t)|x|3/2.
Since, F(t, x) = (4/3 + t)|x|3/2,w(t) = cos t, ∇F(t, x) = (3/2)(4/3 + t)x|x|−1/2, α = 1/2,

|∇F(t, x)| ≤ 3
2

(
4
3
+ t
)

|x|1/2,

|x|−2×1/2
∫2π

0
esin t
(
4
3
+ t
)

|x|3/2dt ≥ |x|1/2e−1
∫2π

0

(
4
3
+ t
)

dt

=
(
8
3
π + 2π2

)

e−1|x|1/2 −→ +∞ as |x| −→ ∞,

(4.7)

all conditions of Theorem 4.1 hold. According to Theorem 4.1, problem (4.6) has at least one
solution. Moreover, 0 is not the solution of problem (4.6). Thus, problem (4.6) has at least one
nontrivial solution.

Theorem 4.3. Suppose that assumption (A) and the condition (i) of Theorem 4.1 hold. Assume that

(iii) |x|−2α ∫[0,T)
�

ew(t, 0)F(σ(t), x)Δt → −∞ as |x| → ∞.

Then problem (1.1) has at least one solution.

Firstly, we prove the following lemma.

Lemma 4.4. Suppose that the conditions of Theorem 4.3 hold. Then ϕ satisfies P.S. condition.
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Proof. Let {un} ⊆ H1
Δ,T be a P.S. sequence for ϕ, that is, {ϕ(un)} is bounded and ϕ′(un) → 0 as

n → ∞. It follows from (i), Theorem 2.23 and (4.2) that

∣
∣
∣
∣
∣

∫

[0,T)
�

ew(t, 0)(F(σ(t), uσn(t)) − F(σ(t), un))Δt
∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

∫

[0,T)
�

ew(t, 0)

(∫1

0
(∇F(σ(t), un + sũσn(t)), ũσn(t))ds

)

Δt

∣
∣
∣
∣
∣

≤M2

∫

[0,T)
�

(∫1

0
fσ(t)|un + sũσn(t)|α|ũσn(t)|ds

)

Δt +M2

∫

[0,T)
�

(∫1

0
gσ(t)|ũσn(t)|ds

)

Δt

≤ 2M2
(|un|α + ‖ũn‖α∞

)‖ũn‖∞
∫

[0,T)
�

fσ(t)Δt +M2‖ũn‖∞
∫

[0,T)
�

gσ(t)Δt

≤ M1

4C5
‖ũn‖2∞ +

4M2
2C5

M1
|un|2α

(∫

[0,T)
�

fσ(t)Δt

)2

+ 2M2‖ũn‖α+1∞

∫

[0,T)
�

fσ(t)dt +M2‖ũn‖∞
∫

[0,T)
�

gσ(t)Δt

≤ M1

4

∫

[0,T)
�

∣
∣
∣uΔn (t)

∣
∣
∣

2
Δt + C6|un|2α

+ C7

(∫

[0,T)
�

∣
∣
∣uΔn (t)

∣
∣
∣

2
Δt

)(α+1)/2

+ C8

(∫

[0,T)
�

∣
∣
∣uΔn (t)

∣
∣
∣

2
Δt

)1/2

(4.8)

for all n. By (4.8) and (i), one has

‖ũn‖ ≥ 〈ϕ′(un), ũn
〉

=
∫

[0,T)
�

ew(t, 0)
∣
∣
∣uΔn (t)

∣
∣
∣

2
Δt +

∫

[0,T)
�

ew(t, 0)∇F(σ(t), uσn(t), ũn(t))Δt

≥ 3M1

4

∫

[0,T)
�

∣
∣
∣uΔn (t)

∣
∣
∣

2
Δt −C6|un|2α − C7

(∫

[0,T)
�

∣
∣
∣uΔn (t)

∣
∣
∣

2
Δt

)(α+1)/2

−C8

(∫

[0,T)
�

∣
∣
∣uΔn (t)

∣
∣
∣

2
Δt

)1/2

(4.9)

for all large n. It follows from (3.5) and (4.2) that

M1

∫

[0,T)
�

∣
∣
∣uΔn (t)

∣
∣
∣

2
Δt ≤ ‖ũn‖2 ≤M2(1 + TC5)

∫

[0,T)
�

∣
∣
∣uΔn (t)

∣
∣
∣

2
dt. (4.10)
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The inequalities (4.9) and (4.10) imply that

C9|un|α ≥
(∫

[0,T)
�

∣
∣
∣uΔn (t)

∣
∣
∣

2
Δt

)1/2

− C10 (4.11)

for all large n and some positive constants C9 and C10. Similar to the proof of Theorem 4.1,
one has

∣
∣
∣
∣
∣

∫

[0,T)
�

ew(t, 0)(F(σ(t), uσn(t)) − F(σ(t), un))Δt
∣
∣
∣
∣
∣

≤ M1

4

∫

[0,T)
�

∣
∣
∣uΔn (t)

∣
∣
∣

2
dt + C6|un|2α

+ C7

(∫

[0,T)
�

∣
∣
∣uΔn (t)

∣
∣
∣

2
Δt

)(α+1)/2

+ C8

(∫

[0,T)
�

∣
∣
∣uΔn (t)

∣
∣
∣

2
Δt

)1/2

(4.12)

for all n. By the boundedness of {ϕ(un)}, (4.11) and (4.12), there exists constant C11 such that

C11 ≤ ϕ(un)

=
1
2

∫

[0,T)
�

ew(t, 0)
∣
∣
∣uΔn (t)

∣
∣
∣

2
dt +

∫

[0,T)
�

ew(t, 0)(F(σ(t), uσn(t)) − F(σ(t), un))Δt

+
∫

[0,T)
�

ew(t, 0)F(σ(t), un)Δt

≤ 3
4
M2

∫

[0,T)
�

∣
∣
∣uΔn (t)

∣
∣
∣

2
Δt + C6|un|2α +

∫

[0,T)
�

ew(t, 0)F(σ(t), un)Δt

+ C7

(∫

[0,T)
�

∣
∣
∣uΔn (t)

∣
∣
∣

2
Δt

)(α+1)/2

+C8

(∫

[0,T)
�

∣
∣
∣uΔn (t)

∣
∣
∣

2
Δt

)1/2

≤ |un|2α
(

|un|−2α
∫

[0,T)
�

ew(t, 0)F(σ(t), un)Δt +C12

)

(4.13)

for all large n and some constant C12. It follows from (4.13) and (iii) that {|un|} is bounded.
Hence {un} is bounded inH1

Δ,T by (4.10) and (4.11). Therefore, there exists a subsequence of
{un} (for simplicity denoted again by {un}) such that

un ⇀ u in H1
Δ,T . (4.14)

By Theorem 2.25, one has

un −→ u in C
(

[0, T]
�
,�N
)

. (4.15)
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On the other hand, one has

〈

ϕ′(un) − ϕ′(u), un − u
〉

=
∫

[0,T)
�

ew(t, 0)
∣
∣
∣uΔn (t) − uΔ(t)

∣
∣
∣

2
Δt

+
∫

[0,T)
�

ew(t, 0)(∇F(σ(t), uσn(t)) − ∇F(σ(t), uσ(t)), uσn(t) − uσ(t))Δt.

(4.16)

From (4.14), (4.15), (4.16), and (A), it follows that un → u in H1
Δ,T . Thus, ϕ satisfies P.S.

condition.

Now, we prove Theorem 4.3.

Proof. LetW be the subspace ofH1
Δ,T given by

W =

{

u ∈ H1
Δ,T :

∫

[0,T)
�

u(t)Δt = 0

}

, (4.17)

then,H1
Δ,T = �N ⊕W . We show that

ϕ(u) −→ +∞ as u ∈ W, ‖u‖ −→ ∞. (4.18)

Indeed, for u ∈W , then u = 0, similar to the proof of Theorem 4.1, one has

∣
∣
∣
∣
∣

∫

[0,T)
�

ew(t, 0)(F(σ(t), uσ(t)) − F(σ(t), 0))Δt
∣
∣
∣
∣
∣

≤ M1

4

∫

[0,T)
�

∣
∣
∣uΔ(t)

∣
∣
∣

2
Δt + C7

(∫

[0,T)
�

∣
∣
∣uΔ(t)

∣
∣
∣

2
Δt

)(α+1)/2

+C8

(∫

[0,T)
�

∣
∣
∣uΔ(t)

∣
∣
∣

2
Δt

)1/2

.

(4.19)

It follows from (4.19) that

ϕ(u) =
1
2

∫

[0,T)
�

ew(t, 0)
∣
∣
∣uΔ(t)

∣
∣
∣

2
Δt +

∫

[0,T)
�

ew(t, 0)(F(σ(t), uσ(t)) − F(σ(t), 0))Δt

+
∫

[0,T)
�

ew(t, 0)F(σ(t), 0)Δt

≥ M1

4

∫

[0,T)
�

∣
∣
∣uΔ(t)

∣
∣
∣

2
Δt −C7

(∫

[0,T)
�

∣
∣
∣uΔ(t)

∣
∣
∣

2
Δt

)(α+1)/2

− C8

(∫

[0,T)
�

∣
∣
∣uΔ(t)

∣
∣
∣

2
Δt

)1/2

+
∫

[0,T)
�

ew(t, 0)F(σ(t), 0)Δt

(4.20)
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for all u ∈W . By Theorem 2.23 and Theorem 3.1, one has

‖u‖ −→ ∞ ⇐⇒
∥
∥
∥uΔ
∥
∥
∥
L2

−→ ∞ (4.21)

onW . Hence (4.18) follows from (4.20).
On the other hand, by (iii), one has

ϕ(u) =
∫

[0,T)
�

ew(t, 0)F(σ(t), u)Δt

≤ |u|2α
(

|u|−2α
∫

[0,T)
�

ew(t, 0)F(σ(t), u)Δt

)

−→ −∞
(4.22)

as u ∈ �N and |u| → ∞. By Theorem 3.3, Lemmas 3.9 and 4.4, problem (1.1) has at least one
solution.

Example 4.5. Let � = �, T = 20,N = 5. Consider the damped vibration problem on time-scale
�

Δ2(t) +w(t)Δu(t + 1) = ∇F(t + 1, u(t + 1)), t ∈ [0, 19] ∩ �,
u(0) − u(20) = Δu(0) −Δu(20) = 0,

(4.23)

where F(t, x) = −|x|5/3 + ((1, 1, 2, 1, 0), x) and

w(t) =

⎧

⎪⎪
⎨

⎪⎪⎩

−1
2
, t ∈ [0, 18] ∩�,

218 − 1, t = 19.

(4.24)

Since, F(t, x) = −|x|5/3 + ((1, 1, 2, 1, 0), x), ∇F(t, x) = −(5/3)x|x|−1/3 + (1, 1, 2, 1, 0), α = 2/3,
ew(t, 0) =

∏t−1
s=0(1 +w(s)), ew(20, 0) = 1,

|∇F(t, x)| ≤ 5
3
|x|2/3 +

√
7,

|x|−2×(2/3)
∫

[0,T)
�

ew(t, 0)F(σ(t), x)Δt

= |x|−4/3
(

−|x|5/3 + ((1, 1, 2, 1, 0), x)
)
∫

[0,T)
�

ew(t, 0)Δt

≤ −|x|1/3
∫

[0,T)
�

ew(t, 0)Δt +
√
7|x|−1/3

∫

[0,T)
�

ew(t, 0)Δt −→ −∞ as |x| −→ ∞,

(4.25)

all conditions of Theorem 4.3 hold. According to Theorem 4.3, problem (4.23) has at least one
solution. Moreover, 0 is not the solution of problem (4.23). Thus, problem (4.23) has at least
one nontrivial solution.
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Theorem 4.6. Suppose that assumption (A) and the following condition are satisfied.

(iv) F(t, ·) is convex for Δ-a.e. t ∈ [0, T]
�
and that

∫

[0,T)
�

ew(t, 0)F(σ(t), x)Δt −→ +∞ as |x| −→ ∞. (4.26)

Then problem (1.1) has at least one solution which minimizes the function ϕ.

Proof. By assumption, the function G : �N → � defined by

G(x) =
∫

[0,T)
�

ew(t, 0)F(σ(t), x)Δt (4.27)

has a minimum at some point x for which

∫

[0,T)
�

ew(t, 0)∇F(σ(t), x)Δt = 0. (4.28)

Let {uk} be a minimizing sequence for ϕ. From Lemma 3.10 and (4.28), one has

ϕ(uk) =
1
2

∫

[0,T)
�

ew(t, 0)
∣
∣
∣uΔk (t)

∣
∣
∣

2
Δt +

∫

[0,T)
�

ew(t, 0)
(

F
(

σ(t), uσk(t)
) − F(σ(t), x))Δt

+
∫

[0,T)
�

ew(t, 0)F(σ(t), x)Δt

≥ 1
2

∫

[0,T)
�

ew(t, 0)
∣
∣
∣uΔk (t)

∣
∣
∣

2
Δt +

∫

[0,T)
�

ew(t, 0)F(σ(t), x)Δt

+
∫

[0,T)
�

ew(t, 0)
(∇F(σ(t), x), uσk(t) − x

)

Δt

=
1
2

∫

[0,T)
�

ew(t, 0)
∣
∣
∣uΔk (t)

∣
∣
∣

2
Δt +

∫

[0,T)
�

ew(t, 0)F(σ(t), x)Δt

+
∫

[0,T)
�

ew(t, 0)
(∇F(σ(t), x), ũσk(t)

)

Δt,

(4.29)



Advances in Difference Equations 25

where ũk(t) = uk(t)−uk, uk = (1/T)
∫

[0,T)
�

uk(t)Δt. By (4.29), (A) and Theorem 2.23, we obtain

ϕ(uk) ≥ 1
2

∫

[0,T)
�

ew(t, 0)
∣
∣
∣uΔk (t)

∣
∣
∣

2
Δt +

∫

[0,T)
�

ew(t, 0)F(σ(t), x)Δt

−M2

(∫

[0,T)
�

|∇F(σ(t), x)|Δt
)

‖ũk‖∞

≥ 1
2
M1

∫

[0,T)
�

ew(t, 0)
∣
∣
∣uΔk (t)

∣
∣
∣

2
Δt − C13 −C14

(∫

[0,T)
�

∣
∣
∣uΔk (t)

∣
∣
∣

2
Δt

)1/2

(4.30)

for some positive constants C13 and C14. Thus, by (4.30), there exists C15 > 0 such that

∫

[0,T)
�

∣
∣
∣uΔk (t)

∣
∣
∣

2
Δt ≤ C15. (4.31)

Theorem 2.23 and (4.31) imply that there exists C16 > 0 such that

‖ũk‖∞ ≤ C16. (4.32)

By (iv), one has

F

(

σ(t),
uk
2

)

= F

(

σ(t),
uσ
k(t) − ũσk(t)

2

)

≤ 1
2
F
(

σ(t), uσk(t)
)

+
1
2
F
(

σ(t),−ũσk(t)
)

(4.33)

for Δ-a.e. t ∈ [0, T)� and all k ∈ �. It follows from (3.9) and (4.33) that

ϕ(uk) ≥ 1
2

∫

[0,T)
�

ew(t, 0)
∣
∣
∣uΔk (t)

∣
∣
∣

2
Δt + 2

∫

[0,T)
�

ew(t, 0)F
(

σ(t),
uk
2

)

Δt

−
∫

[0,T)
�

ew(t, 0)F
(

σ(t),−ũσk(t)
)

Δt.

(4.34)

Combining (4.32) and (4.34), there exists C17 > 0 such that

ϕ(uk) ≥ 2
∫

[0,T)
�

ew(t, 0)F
(

σ(t),
uk
2

)

Δt −C17. (4.35)

Therefore, by (4.35) and (iv), {uk} is bounded. Hence {uk} is bounded in H1
Δ,T by

Theorem 2.23 and (4.31). By Lemma 3.8 and Theorem 3.4, ϕ has a minimum point on H1
Δ,T ,

which is a critical point of ϕ. Hence, problem (1.1) has at least one solution which minimizes
the function ϕ.
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Example 4.7. Let �0 = �∪{0},� = {2k : k ∈ �0}, T = 64,N = 1. Consider the damped vibration
problem on time-scale �

uΔ
2
(t) +w(t)uΔ(2t) = ∇F(2t, u(2t)), t ∈ {1, 2, 4, 8, 16, 32},

u(0) − u(64) = uΔ(0) − uΔ(64) = 0,
(4.36)

where F(t, x) = x2 + 2x and

w(t) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

− 1
2t
, t ∈ {1, 2, 4, 8, 16},

31
32
, t = 32.

(4.37)

Since, F(t, x) = x2 + 2x, ew(t, 0) =
∏

s∈�∩(0,t)(1 + sw(s)), ew(64, 0) = 1, all conditions
of Theorem 4.6 hold. According to Theorem 4.6, problem (4.36) has at least one solution.
Moreover, 0 is not the solution of problem (4.36). Thus, problem (4.36) has at least one
nontrivial solution.

5. Conclusion

In this paper, we present a new approach via variational methods and critical point theory
to obtain the existence of solutions for a class of damped vibration problems on time-scales.
Three existence results are obtained. Three examples are presented to illustrate the feasibility
and effectiveness of our results.
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