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By virtue of the Avery-Henderson fixed point theorem and the five functionals fixed point theorem,
we analytically establish several sufficient criteria for the existence of at least two or three positive
solutions in the p-Laplacian dynamic equations on time scales with a particular kind of p-Laplacian
and m-point boundary value condition. It is this kind of boundary value condition that leads the
established criteria to be dependent on the time scales. Also we provide a representative and
nontrivial example to illustrate a possible application of the analytical results established. We
believe that the established analytical results and the example together guarantee the reliability
of numerical computation of those p-Laplacian and m-point boundary value problems on time
scales.

1. Introduction

The investigation of dynamic equations on time scales, originally attributed to Stefan Hilger’s
seminal work [1, 2] two decades ago, is now undergoing a rapid development. It not only
unifies the existing results and principles for both differential equations and difference
equations with constant time stepsize but also invites novel and nontrivial discussions and
theories for hybrid equations on various types of time scales [3–11]. On the other hand, along
with the significant development of the theories, practical applications of dynamic equations
on time scales in mathematical modeling of those real processes and phenomena, such as the
population dynamics, the economic evolutions, the chemical kinetics, and the neural signal
processing, have been becoming richer and richer [12, 13].
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As one of the focal topics in the research of dynamic equations on time scales, the study
of boundary value problems for some specific dynamic equations on time scales recently has
elicited a great deal of attention frommathematical community [14–33]. In particular, a series
of works have been presented to discuss the existence of positive solutions in the boundary
value problems for the second-order equations on time scales [14–21]. More recently, some
analytical criteria have been established for the existence of positive solutions in some specific
boundary value problems for the p-Laplacian dynamic equations on time scales [22, 33].

Concretely, He [25] investigated the following dynamic equation:

(
φp

(
uΔ(t)

))∇
+ h(t)f(u) = 0, t ∈ [0, T]

T
, (1.1)

with the boundary value conditions

uΔ(0) = 0, u(T) + B0

(
uΔ

(
η
))

= 0. (1.2)

Here and throughout, T is supposed to be a time scale; that is, T is any nonempty closed
subset of real numbers in R with order and topological structure defined in a canonical way.
The closed interval in T is defined as [a, b]

T
= [a, b] ∩ T. Accordingly, the open interval and

the half-open interval could be defined, respectively. In addition, it is assumed that 0, T ∈ T,
η ∈ (0, ρ(T))

T
, f ∈ Cld([0,∞), [0,∞)), h ∈ Cld((0, T)T

, (0,∞)), and bx � B0(x) � bx for some
positive constants b and b. Moreover, φp(u) is supposed to be the p-Laplacian operator, that
is, φp(u) = |u|p−2u and (φp)

−1 = φq, in which p > 1 and 1/p+1/q = 1.With these configurations
and with the aid of the Avery-Henderson fixed point theorem [34], He established the criteria
for the existence of at least two positive solutions in (1.1) fulfilling the boundary value
conditions (1.2).

Later on, Su and Li [24] discussed the dynamic equation (1.1) which satisfies the
boundary value conditions

uΔ(0) = 0, u(T) + B0

(
m−2∑
i=1

biu
Δ(ξi)

)
= 0, (1.3)

where ξ ∈ (0, T), 0 < ξ1 < ξ2 < · · · < ξm−2 < T , and bi ∈ [0,∞) for i = 1, 2, . . . , (m − 2). By
virtue of the five functionals fixed point theorem [35], they proved that the dynamic equation
(1.1)with conditions (1.3) has three positive solutions at least. Meanwhile, He and Li in [26],
studied the dynamic equation (1.1) satisfying either the boundary value conditions

u(0) − B0

(
uΔ(0)

)
= 0, uΔ(T) = 0, (1.4)

or the conditions

uΔ(0) = 0, u(T) + B0

(
uΔ(T)

)
= 0. (1.5)
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In the light of the five functionals fixed point theorem, they established the criteria for the
existence of at least three solutions for the dynamic equation (1.1) either with conditions
(1.4) or with conditions (1.5).

More recently, Yaslan [27, 28] investigated the dynamic equation:

uΔ∇(t) + h(t)f(t, u(t)) = 0, t ∈ [t1, t3]T
⊂ T, (1.6)

which satisfies either the boundary value conditions

αu(t1) − β0uΔ(t1) = uΔ(t2), uΔ(t3) = 0, (1.7)

or the conditions

uΔ(t1) = 0, αu(t3) + βuΔ(t3) = uΔ(t2). (1.8)

Here, 0 � t1 < t2 < t3, α > 0, β0 � 0, and β > 1. Indeed, Yaslan analytically established the
conditions for the existence of at least two or three positive solutions in these boundary value
problems by virtue of the Avery-Henderson fixed point theorem and the Leggett-Williams
fixed point theorem [36]. It is worthwhile to mention that these theoretical results are novel
even for some special cases on time scales, such as the conventional difference equations with
fixed time stepsize and the ordinary differential equations.

Motivated by the aforementioned results and techniques in coping with those
boundary value problems on time scales, we thus turn to investigate the possible existence of
multiple positive solutions for the following one-dimensional p-Laplacian dynamic equation:

(
φp

(
uΔ(t)

))∇
+ h(t)f(t, u(t)) = 0, t ∈ (0, T]

T
, (1.9)

with the p-Laplacian andm-point boundary value conditions:

φp
(
uΔ(0)

)
=

m−2∑
i=1

aiφp
(
uΔ(ξi)

)
, u(T) + βB0

(
uΔ(T)

)
=

m−2∑
i=1

B
(
uΔ(ξi)

)
. (1.10)

In the following discussion, we implement three hypotheses as follows.

(H1) One has ai � 0 for i = 1, . . . , m−2, 0<ξ1<ξ2 < · · · < ξm−2 < T , and d0 = 1−
∑m−2

i=1 ai >0.

(H2) One has that h : [0, σ(T)]
T
�→ [0,∞) is left dense continuous (ld-continuous), and

there exists a t0 ∈ [0, T]
T
such that h(t0)/= 0. Also f : [0, σ(T)]

T
× [0,∞) �→ [0,∞) is

continuous.

(H3) Both B0 and B are continuously odd functions defined onR. There exist two positive
numbers b and b such that, for any v > 0,

bv � B0(v), B(v) � bv (1.11)
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and that

βb − (m − 2)b − μ(T) � 0. (1.12)

It is clear that, together with conditions (1.10) and the above hypotheses (H1)–(H3), the
dynamic equation (1.9) not only covers the corresponding boundary value problems in
the literature, but even nontrivially generalizes these problems to a much wider class of
boundary value problems on time scales. Also it is valuable to mention that condition (1.12)
in hypothesis (H3) is necessarily relevant to the graininess operator μ : T → [0,+∞)
around the time instant T . Such kind of condition has not been required in the literature,
to the best of authors’ knowledge. Thus, this paper analytically establishes some new and
time-scale-dependent criteria for the existence of at least double or triple positive solutions
in the boundary value problems (1.9) and (1.10) by virtue of the Avery-Henderson fixed
point theorem and the five functionals fixed point theorem. Indeed, these obtained criteria
significantly extend the results existing in [26–28].

The remainder of the paper is organized as follows. Section 2 preliminarily provides
some lemmas which are crucial to the following discussion. Section 3 analytically establishes
the criteria for the existence of at least two positive solutions in the boundary value problems
(1.9) and (1.10) with the aid of the Avery-Henderson fixed point theorem. Section 4 gives
some sufficient conditions for the existence of at least three positive solutions by means of the
five functionals fixed point theorem. More importantly, Section 5 provides a representative
and nontrivial example to illustrate a possible application of the obtained analytical results
on dynamic equations on time scales. Finally, the paper is closed with some concluding
remarks.

2. Preliminaries

In this section, we intend to provide several lemmas which are crucial to the proof of
the main results in this paper. However, for concision, we omit the introduction of those
elementary notations and definitions, which can be found in [11, 12, 33] and references
therein.

The following lemmas are based on the following linear boundary value problems:

(
φp

(
uΔ(t)

))∇
+ g(t) = 0, t ∈ (0, T]

T
,

φp
(
uΔ(0)

)
=

m−2∑
i=1

aiφp
(
uΔ(ξi)

)
, u(T) + βB0

(
uΔ(T)

)
=

m−2∑
i=1

B
(
uΔ(ξi)

)
.

(2.1)
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Lemma 2.1. Assume that d0 = 1 −
∑m−2

i=1 ai /= 0. Then, for g ∈ Cld[0, T]T
, the linear boundary value

problems (2.1) have a unique solution satisfying

u(t) =
∫T

t

φq

(∫ s

0
g(τ)∇τ +

1
d0

m−2∑
i=1

ai

∫ ξi

0
g(τ)∇τ

)
Δs

+ βB0

(
φq

(∫T

0
g(τ)∇τ +

1
d0

m−2∑
i=1

ai

∫ ξi

0
g(τ)∇τ

))

−
m−2∑
i=1

B

(
φq

(∫ ξi

0
g(τ)∇τ +

1
d0

m−2∑
i=1

ai

∫ ξi

0
g(τ)∇τ

))
,

(2.2)

for all t ∈ [0, σ(T)]
T
.

Proof. According to the formula (
∫ t
a f(t, s)Δs)

Δ = f(σ(t), t) +
∫ t
a f(t, s)Δs introduced in [12],

we have

uΔ(t) = φq

(
−
∫ t

0
g(τ)∇τ − 1

d0

m−2∑
i=1

ai

∫ ξi

0
g(τ)∇τ

)
. (2.3)

Thus, we obtain that

φp
(
uΔ(t)

)
= −

∫ t

0
g(τ)∇τ − 1

d0

m−2∑
i=1

ai

∫ ξi

0
g(τ)∇τ, (2.4)

and that

(
φp

(
uΔ(t)

))∇
= −g(t). (2.5)

To this end, it is not hard to check that u(t) satisfies (2.2), which implies that u(t) is a solution
of the problems (2.1).

Furthermore, in order to verify the uniqueness, we suppose that both u1(t) and u2(t)
are the solutions of the problems (2.1). Then, we have

(
φp

(
uΔ1 (t)

))∇
−
(
φp

(
uΔ2 (t)

))∇
= 0, t ∈ (0, T]

T
, (2.6)

φp
(
uΔ1 (0)

)
− φp

(
uΔ2 (0)

)
=

m−2∑
i=1

ai
[
φp

(
uΔ1 (ξi)

)
− φp

(
uΔ2 (ξi)

)]
, (2.7)

u1(T) − u2(T) + βB0

(
uΔ1 (T)

)
− βB0

(
uΔ2 (T)

)
=

m−2∑
i=1

[
B
(
uΔ1 (ξi)

)
− B

(
uΔ2 (ξi)

)]
. (2.8)
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According to Theorem A.5 in [37], (2.6) further yields

φp
(
uΔ1 (t)

)
− φp

(
uΔ2 (t)

)
= c, t ∈ [0, T]

T
. (2.9)

Hence, from (2.7) and (2.9), the assumption d0 = 1 −
∑m−2

i=1 ai /= 0, and the definition of the
p-Laplacian operator, it follows that

uΔ1 (t) − u
Δ
2 (t) ≡ 0, t ∈ [0, T]

T
. (2.10)

This equation, together with (2.8), further implies

u1(t) ≡ u2(t), t ∈ [0, σ(T)]
T
, (2.11)

which consequently leads to the completion of the proof, that is, u(t) specified in (2.2) is the
unique solution of the problems (2.1).

Lemma 2.2. Assume that d0 = 1 −
∑m−2

i=1 ai > 0 and that βb − (m − 2)b − μ(T) � 0. If g ∈
Cld([0, σ(T)]T

, [0,∞)), then the unique solution of the problems (2.1) satisfies

u(t) � 0, t ∈ [0, σ(T)]
T
. (2.12)

Proof. By (2.2) specified in Lemma 2.1, we get

uΔ(t) = −φq

(∫ t

0
g(τ)∇τ +

1
d0

m−2∑
i=1

ai

∫ ξi

0
g(τ)∇τ

)
� 0, t ∈ [0, T]

T
. (2.13)

Thus, u(t) is nonincreasing in the interval [0, σ(T)]
T
. In addition, notice that

u(σ(T)) =
∫T

σ(T)
φq

(∫s

0
g(τ)∇τ +

1
d0

m−2∑
i=1

ai

∫ ξi

0
g(τ)∇τ

)
Δs

+ βB0

(
φq

(∫T

0
g(τ)∇τ +

1
d0

m−2∑
i=1

ai

∫ ξi

0
g(τ)∇τ

))

−
m−2∑
i=1

B

(
φq

(∫ ξi

0
g(τ)∇τ +

1
d0

m−2∑
i=1

ai

∫ ξi

0
g(τ)∇τ

))
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= −μ(T)φq

(∫T

0
g(τ)∇τ +

1
d0

m−2∑
i=1

ai

∫ ξi

0
g(τ)∇τ

)

+ βB0

(
φq

(∫T

0
g(τ)∇τ +

1
d0

m−2∑
i=1

ai

∫ ξi

0
g(τ)∇τ

))

−
m−2∑
i=1

B

(
φq

(∫ ξi

0
g(τ)∇τ +

1
d0

m−2∑
i=1

ai

∫ ξi

0
g(τ)∇τ

))

�
[
βb − (m − 2)b − μ(T)

][
φq

(∫T

0
g(τ)∇τ +

1
d0

m−2∑
i=1

ai

∫ ξi

0
g(τ)∇τ

)]
.

(2.14)

The last term in the above estimation is no less than zero because of the assumptions. Thus,
from the monotonicity of u(t), we get

u(t) � u(σ(T)) � 0, t ∈ [0, σ(T)]
T
, (2.15)

which completes the proof.

Now, denote that E = Cld[0, σ(T)]T
and that ‖u‖ = supt∈[0,σ(T)]

T

|u(t)|, where u ∈ E.
Thus, it is easy to verify that E endowed with ‖ · ‖ becomes a Banach space. Furthermore,
define a cone, denoted by P, through,

P =
{
u ∈ E | u(t) � 0 for t ∈ [0, σ(T)]

T
,

uΔ(t) � 0 for t ∈ [0, T]
T
, uΔ∇(t) � 0 for t ∈ (0, σ(T))

T

}
.

(2.16)

Also, for a given positive real number r, define a function set Pr by

Pr = {u ∈ P | ‖u‖ < r}. (2.17)

Naturally, we denote that Pr = {u ∈ P | ‖u‖ � r} and that ∂Pr = {u ∈ P | ‖u‖ = r}. With
these settings, we have the following properties.

Lemma 2.3. If u ∈ P, then (i) u(t) � ((T − t)/T)‖u‖ for any t ∈ [0, T]
T
, (ii) (T − s)u(t) �

(T − t)u(s) for any pair of s, t ∈ [0, T]
T
with t � s.
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The proof of this lemma, which could be found in [26, 28], is directly from the specific
construction of the set P. Next, let us construct a map A : P → E through

[Au](t) =
∫T

t

φq

(∫s

0
h(τ)f(τ, u(τ))∇τ +

1
d0

m−2∑
i=1

ai

∫ ξi

0
h(τ)f(t, u(τ))∇τ

)
Δs

+ βB0

(
φq

(∫T

0
h(τ)f(τ, u(τ))∇τ +

1
d0

m−2∑
i=1

ai

∫ ξi

0
h(τ)f(τ, u(τ))∇τ

))

−
m−2∑
i=1

B

(
φq

(∫ ξi

0
h(τ)f(τ, u(τ))∇τ +

1
d0

m−2∑
i=1

ai

∫ ξi

0
h(τ)f(τ, u(τ))∇τ

))
,

(2.18)

for any u ∈ P. Then, through a standard argument [33], it is not hard to validate the following
properties on this map.

Lemma 2.4. Assume that the hypotheses (H1)–(H3) are all fulfilled. Then, A(P) ⊂ P, and A : Pr →
P is completely continuous.

3. At Least Two Positive Solutions in Boundary Value Problems

In this section, we aim to adopt the well-known Avery-Henderson fixed point theorem to
prove the existence of at least two positive solutions in the boundary value problems (1.9)
and (1.10). For the sake of self-containment, we first state the Avery-Henderson fixed point
theorem as follows.

Theorem 3.1 (see [34]). Let P be a cone in a real Banach space E. For each d > 0, set P(ψ, d) =
{x ∈ P | ψ(x) < d}. Let α and γbe increasing, nonnegative continuous functionals on P, and let θ be
a nonnegative continuous functional on P with θ(0) = 0 such that, for some c > 0 andH > 0,

γ(x) � θ(x) � α(x), ‖x‖ � Hγ(x), (3.1)

for all x ∈ P(γ, c). Suppose that there exist a completely continuous operator A : P(γ, c) → P and
three positive numbers 0 < a < b < c such that

θ(λx) � λθ(x), 0 � λ � 1, x ∈ ∂P(θ, b), (3.2)

and (i) γ(Ax) > c for all x ∈ ∂P(γ, c), (ii) θ(Ax) < b for all x ∈ ∂P(θ, b), and (iii) P(α, a)/= ∅ and
α(Ax) > a for all x ∈ ∂P(α, a). Then, the operator A has at least two fixed points, denoted by x1 and
x2, belonging to P(γ, c) and satisfying a < α(x1) with θ(x1) < b and b < θ(x2) with γ(x2) < c.
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Now, set t� = min{t ∈ T | T/2 � t � T} and select t� ∈ T satisfying 0 < t� < t�. Denote,
respectively, that

M =
T − t�
T

∫ t�

0
φq

(∫s

0
h(τ)∇τ

)
Δs,

N =
(
T + βb

)
· φq

(
1
d0

∫T

0
h(τ)∇τ

)
,

L =
T − t�
T

∫T

t�

φq

(∫s

t�

h(τ)∇τ
)
Δs,

L0 =
[
T − t� + βb − (m − 2)b

]
· φq

(
1
d0

∫T

0
h(τ)∇τ

)
.

(3.3)

Hence, we are in a position to obtain the following results.

Theorem 3.2. Assume that the hypotheses (H1)–(H3) all hold and that there exist positive real
numbers a, b, c such that

0 < a < b < c, a <
L

N
b <

L(T − t�)
TL

c. (3.4)

In addition, assume that f satisfies the following conditions:

(C1) f(t, u) > φp(c/M) for t ∈ [0, t�]
T
and u ∈ [c, (T/(T − t�))c];

(C2) f(t, u) < φp(b/N) for t ∈ [0, T]
T
and u ∈ [0, (T/(T − t�))b];

(C3) f(t, u) > φp(a/L) for t ∈ [t�, T]T
and u ∈ [0, a].

Then, the boundary value problems (1.9) and (1.10) have at least two positive solutions u1 and u2
such that

a < max
t∈[t�,T]T

u1(t) with max
t∈[t�,T]

T

u1(t) < b,

b < max
t∈[t�,T]

T

u1(t) with min
t∈[t�,t�]T

u2(t) < c.
(3.5)

Proof. Construct the cone P and the operator A as specified in (2.16) and (2.18), respectively.
In addition, define the increasing, nonnegative, and continuous functionals γ , θ, and α on P,
respectively, by

γ(u) = min
t∈[t�,t�]T

u(t) = u(t�), θ(u) = max
t∈[t�,T]

T

u(t) = u(t�),

α(u) = max
t∈[t�,T]T

u(t) = u(t�).
(3.6)

Evidently, γ(u) = θ(u) � α(u) for each u ∈ P.
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In addition, for each u ∈ P, Lemma 2.3 manifests that γ(u) = u(t�) � ((T − t�)/T)‖u‖.
Thus, we have

‖u‖ � T

T − t� γ(u),
(3.7)

for each u ∈ P. Also, notice that θ(λu) = λθ(u) for λ ∈ [0, 1] and u ∈ ∂P(θ, b). Furthermore,
from Lemma 2.4, it follows that the operator A : P(γ, c) → P is completely continuous.

In what follows, we are to verify that all the conditions of Theorem 3.1 are satisfied
with respect to the operator A.

Let u ∈ ∂P(γ, c). Then, γ(u) = mint∈[t�,t�]T
u(t) = u(t�) = c. This implies that u(t) � c for

t ∈ [0, t�]
T
, which, combined with (3.7), yields

c � u(t) � T

T − t� c,
(3.8)

for t ∈ [0, t�]
T
. Because of assumption (C1), f(t, u(t)) > φp(c/M) for t ∈ [0, t�]

T
. According to

the specific form in (2.18), Lemma 2.3, and the property Au ∈ P, we obtain that

γ(Au)

= [Au](t�) � T − t�
T

‖Au‖ =
T − t�
T

[Au](0)

=
T − t�
T

[∫T

0
φq

(∫s

0
h(τ)f(τ, u(τ))∇τ +

1
d0

m−2∑
i=1

ai

∫ ξi

0
h(τ)f(τ, u(τ))∇τ

)
Δs

+ βB0

(
φq

(∫T

0
h(τ)f(τ, u(τ))∇τ +

1
d0

m−2∑
i=1

ai

∫ ξi

0
h(τ)f(τ, u(τ))∇τ

))

−
m−2∑
i=1

B

(
φq

(∫ ξi

0
f(t, u(τ))∇τ +

1
d0

m−2∑
i=1

ai

∫ ξi

0
h(τ)f(τ, u(τ))∇τ

))]

� T − t�
T

[∫T

0
φq

(∫s

0
h(τ)f(τ, u(τ))∇τ +

1
d0

m−2∑
i=1

ai

∫ ξi

0
h(τ)f(τ, u(τ))∇τ

)
Δs

+
(
βb − (m − 2)b

)
φq

(∫T

0
h(τ)f(τ, u(τ))∇τ +

1
d0

m−2∑
i=1

ai

∫ ξi

0
h(τ)f(τ, u(τ))∇τ

)]

� T − t�
T

∫T

0
φq

(∫s

0
h(τ)f(τ, u(τ))∇τ

)
Δs

� T − t�
T

∫ t�

0
φq

(∫ s

0
h(τ)f(τ, u(τ))∇τ

)
Δs
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� T − t�
T

∫ t�

0
φq

(∫ s

0
h(τ)f(τ, u(τ))∇τ

)
Δs

>
T − t�
T

· c

M
·
∫ t�

0
φq

(∫ s

0
h(τ)∇τ

)
Δs = c.

(3.9)

Thus, condition (i) in Theorem 3.1 is satisfied.
Next, consider u ∈ ∂P(θ, b). In such a case, we have γ(u) = θ(u) = maxt∈[t�,T]

T
u(t) =

u(t�) = b, which implies that 0 � u(t) � b for t ∈ [t�, T]
T
. Analogously, it follows from (3.7)

that, for all u ∈ P,

‖u‖ � T

T − t� γ(u) =
T

T − t� b.
(3.10)

Therefore, we obtain 0 � u(t) � (T/(T − t�))b for t ∈ [0, T]
T
. This, combined with assumption

(C2), gives f(t, u(t)) < φp(b/N) for all t ∈ [0, T]
T
. Thus, we have

θ(Au) = max
t∈[t�,T]

T

[Au](t) = [Au](t�) � [Au](0)

=
∫T

0
φq

(∫s

0
h(τ)f(τ, u(τ))∇τ +

1
d0

m−2∑
i=1

ai

∫ ξi

0
h(τ)f(τ, u(τ))∇τ

)
Δs

+ βB0

(
φq

(∫T

0
h(τ)f(τ, u(τ))∇τ +

1
d0

m−2∑
i=1

ai

∫ ξi

0
h(τ)f(τ, u(τ))∇τ

))

−
m−2∑
i=1

B

(
φq

(∫ ξi

0
f(t, u(τ))∇τ +

1
d0

m−2∑
i=1

ai

∫ ξi

0
h(τ)f(τ, u(τ))∇τ

))

�
∫T

0
φq

(
1
d0

∫T

0
h(τ)f(τ, u(τ))∇τ

)
Δs + βbφq

(
1
d0

∫T

0
h(τ)f(τ, u(τ))∇τ

)

<
b

N

[∫T

0
φq

(
1
d0

∫T

0
h(τ)∇τ

)
Δs + βbφq

(
1
d0

∫T

0
h(τ)∇τ

)]

=
b
(
T + βb

)

N
· φq

(
1
d0

∫T

0
h(τ)∇τ

)
= b,

(3.11)

which consequently implies the validity of condition (ii) in Theorem 3.1.
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Finally, notice that the constant functions (1/2)a ∈ P(α, a), so that P(α, a)/= ∅. Let
u ∈ ∂P(α, a). Then, we get α(u) = maxt∈[t�,T]T

u(t) = u(t�) = a. This with assumption (C3)
implies that 0 � u(t) � a and f(t, u) > φp(a/L) for all t ∈ [t�, T]T

. Similarly, we have

α(Au) = [Au](t�) � T − t�
T

[Au](0)

=
T − t�
T

[∫T

0
φq

(∫ s

0
h(τ)f(τ, u(τ))∇τ +

1
d0

m−2∑
i=1

ai

∫ ξi

0
h(τ)f(τ, u(τ))∇τ

)
Δs

+ βφq

(∫T

0
h(τ)f(τ, u(τ))∇τ +

1
d0

m−2∑
i=1

ai

∫ ξi

0
h(τ)f(τ, u(τ))∇τ

)

−
m−2∑
i=1

biφq

(∫ ξi

0
f(t, u(τ))∇τ +

1
d0

m−2∑
i=1

ai

∫ ξi

0
h(τ)f(τ, u(τ))∇τ

)]

� T − t�
T

∫T

t�

φq

(∫ s

0
h(τ)f(τ, u(τ))∇τ

)
Δs

� T − t�
T

∫T

t�

φq

(∫s

t�

h(τ)f(τ, u(τ))∇τ
)
Δs

>
a

L
· T − t�

T
·
∫T

t�

φq

(∫s

t�

h(τ)∇τ
)
Δs = a.

(3.12)

Indeed, the validity of condition (iii) in Theorem 3.1 is verified.
According to Theorem 3.1, we consequently approach the conclusion that the

boundary value problems (1.9) and (1.10) possess at least two positive solutions, denoted by
u1 and u2, satisfying a < α(u1)with θ(u1) < b and b < θ(u2) with γ(u2) < c, respectively.

4. At Least Three Positive Solutions in Boundary Value Problems

In this section, we are to prove the existence of at least three positive solutions in the boundary
value problems (1.9) and (1.10) by using the five functionals fixed point theorem which is
attributed to Avery [35].

Let γ, β, θ be nonnegative continuous convex functionals on P. α and ψ are supposed
to be nonnegative continuous concave functionals on P. Thus, for nonnegative real numbers
h, a, b, c, and d, define five convex sets, respectively, by

P
(
γ, c

)
=
{
x ∈ P | γ(x) < c

}
,

P
(
γ, α, a, c

)
=
{
x ∈ P | a � α(x), γ(x) � c

}
,

Q
(
γ, β, d, c

)
=
{
x ∈ P | β(x) � d, γ(x) � c

}
,

P
(
γ, θ, α, a, b, c

)
=
{
x ∈ P | a � α(x), θ(x) � b, γ(x) � c

}
,

Q
(
γ, β, ψ, h, d, c

)
=
{
x ∈ P | h � ψ(x), β(x) � d, γ(x) � c

}
.

(4.1)
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Theorem 4.1 (see [35]). Let P be a cone in a real Banach space E. Suppose that α and ψ are
nonnegative continuous concave functionals on P, and that γ , β, and θ are nonnegative continuous
convex functionals on P such that, for some positive numbers c andM,

α(x) � β(x), ‖x‖ � Mγ(x), (4.2)

for all x ∈ P(γ, c). In addition, suppose that A : P(γ, c) �→ P(γ, c) is a completely continuous
operator and that there exist nonnegative real numbers h, d, a, b with 0 < d < a such that

(i) {x ∈ P(γ, θ, α, a, b, c) | α(x) > a}/= ∅ and α(Ax) > a for x ∈ P(γ, θ, α, a, b, c);

(ii) {x ∈ Q(γ, β, ψ, h, d, c) | β(x) < d}/= ∅ and β(Ax) < d for x ∈ Q(γ, β, ψ, h, d, c);

(iii) α(Ax) > a for x ∈ P(γ, α, a, c) with θ(Ax) > b;

(iv) β(Ax) < d for x ∈ Q(γ, β, d, c) with ψ(Ax) < h.

Then the operator A admits at least three fixed points x1,x2,x3 ∈ P(γ, c) satisfying β(x1) < d,
a < α(x2), and d < β(x3) with α(x3) < a, respectively.

With this theorem, we are now in a position to establish the following result on the
existence of at least three solutions in the boundary value problems (1.9) and (1.10).

Theorem 4.2. Suppose that the hypotheses (H1)–(H3) are all fulfilled. Assume that there exist
positive real numbers a, b, c such that

0 < a < b < c, a <
T − t�
T

b <
(T − t�)(T − t�)

T2
c, Nb < Mc. (4.3)

Also assume that f satisfies the following conditions:

(C1) f(t, u) < φp(c/N) for t ∈ [0, T]
T
and u ∈ [0, (T/(T − t�))c];

(C2) f(t, u) > φp(b/M) for t ∈ [0, t�]
T
and u ∈ [b, (T2/(T − t�)2)b];

(C3) f(t, u) < φp(a/L0) for t ∈ [0, T]
T
and u ∈ [0, (T/(T − t�))a].

Then, the boundary value problems (1.9) and (1.10) admit at least three solutions u1(t), u2(t), and
u3(t), defined on [0, σ(T)]

T
, satisfying, respectively,

max
t∈[t�,T]T

u1(t) < a, b < min
t∈[0,t�]T

u2(t),

a < max
t∈[t�,T]T

u3(t) with min
t∈[0,t�]T

u3(t) < b.
(4.4)
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Proof. Let the cone P be as constructed in (2.16) and the operator A as defined in (2.18).
Define, respectively, the nonnegative continuous concave functionals on the P as follows:

γ(u) = θ(u) = max
t∈[t�,T]

T

u(t) = u(t�),

α(u) = min
t∈[0,t�]T

u(t) = u(t�),

β(u) = max
t∈[t�,T]T

u(t) = u(t�),

ψ(u) = min
t∈[0,t�]

T

u(t) = u(t�).

(4.5)

Thus, we get α(u) = β(u) for u ∈ P. Moreover, from Lemma 2.3, it follows that

‖u‖ � T

T − t� γ(u),
(4.6)

for u ∈ P. Next, we intend to verify that all the conditions in Theorem 4.1 hold with respect
to the operator A.

To this end, arbitrarily pick up a function u ∈ P(γ, c). Then, γ(u) = maxt∈[t�,T]
T
u(t) =

u(t�) � c, which, combined with (4.6), implies that 0 � u(t) � (T/(T − t�))c for t ∈ [0, T]
T

and u ∈ P. Thus, we have f(t, u(t)) < φp(c/N) for t ∈ [0, T]
T
, owing to assumption (C1).

Moreover, since Au ∈ P, we have

∥∥γ(Au)∥∥ = [Au](t�) � [Au](0)

=
∫T

0
φq

(∫s

0
h(τ)f(τ, u(τ))∇τ +

1
d0

m−2∑
i=1

ai

∫ ξi

0
h(τ)f(τ, u(τ))∇τ

)
Δs

+ βB0

(
φq

(∫T

0
h(τ)f(τ, u(τ))∇τ +

1
d0

m−2∑
i=1

ai

∫ ξi

0
h(τ)f(τ, u(τ))∇τ

))

−
m−2∑
i=1

B

(
φq

(∫ ξi

0
f(t, u(τ))∇τ +

1
d0

m−2∑
i=1

ai

∫ ξi

0
h(τ)f(τ, u(τ))∇τ

))

�
∫T

0
φq

(
1
d0

∫T

0
h(τ)f(τ, u(τ))∇τ

)
Δs + βbφq

(
1
d0

∫T

0
h(τ)f(τ, u(τ))∇τ

)

<
c

N

[∫T

0
φq

(
1
d0

∫T

0
h(τ)∇τ

)
Δs + βbφq

(
1
d0

∫T

0
h(τ)∇τ

)]

=
c
(
T + βb

)

N
· φq

(
1
d0

∫T

0
h(τ)∇τ

)
= c.

(4.7)

This, with Lemma 2.4, clearly manifests that the operator A : P(γ, c) �→ P(γ, c) is completely
continuous.
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Moreover, the set

{
u ∈ P

(
γ, θ, α, b,

T

T − t� b, c
)

| α(u) > b
}

(4.8)

is not empty, because the constant function u(t) ≡ ((2T − t�)/2(T − t�))b belongs to the set
{u ∈ P(γ, θ, α, b, (T/(T − t�))b, c) | α(u) > b}. Analogously, the set

{
u ∈ Q

(
γ, β, ψ,

T − t�
T

a, a, c

)
| β(u) < a

}
(4.9)

is nonempty, since u(t) ≡ ((T + t�)/2T)a ∈ {u ∈ Q(γ, β, ψ, ((T − t�)/T)a, a, c) | β(u) < a}. For
particular u ∈ P(γ, θ, α, b, (T/(T − t�))b, c), a utilization of (4.6) produces

b � min
t∈[0,t�]

T

u(t) = u(t�) � u(t) � T

T − t� γ(u) =
T

(T − t�)θ(u) � T2

(T − t�)2
b, (4.10)

for t ∈ [0, t�]
T
. According to assumption (C2), we thus obtain

f(t, u(t)) > φp
(
b

M

)
, (4.11)

for all t ∈ [0, t�]
T
. Hence, it follows from (4.11) and Lemma 2.3 that

α(Au) = [Au](t�) � T − t�
T

[A]u(0)

=
T − t�
T

[∫T

0
φq

(∫ s

0
h(τ)f(τ, u(τ))∇τ +

1
d0

m−2∑
i=1

ai

∫ ξi

0
h(τ)f(τ, u(τ))∇τ

)
Δs

+ βB0

(
φq

(∫T

0
h(τ)f(τ, u(τ))∇τ +

1
d0

m−2∑
i=1

ai

∫ ξi

0
h(τ)f(τ, u(τ))∇τ

))

−
m−2∑
i=1

B

(
φq

(∫ ξi

0
f(t, u(τ))∇τ +

1
d0

m−2∑
i=1

ai

∫ ξi

0
h(τ)f(τ, u(τ))∇τ

))]

� T − t�
T

∫ t�

0
φq

(∫s

0
h(τ)f(τ, u(τ))∇τ

)
Δs

>
b

M
· T − t�

T
·
∫ t�

0
φq

(∫s

0
h(τ)∇τ

)
Δs = b.

(4.12)

This definitely verifies the validity of condition (i) in Theorem 4.1.
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Next, let us consider u ∈ Q(γ, β, ψ, ((T − t�)/T)a, a, c). In this case, we get

0 � u(t) � T

T − t�
a, (4.13)

for t ∈ [0, T]
T
. Thus, an adoption of the assumption (C3) yields f(t, u(t)) < φp(a/L0).

Furthermore, we have

β(Au) = [Au](t�)

=
∫T

t�

φq

(∫s

0
h(τ)f(τ, u(τ))∇τ +

1
d0

m−2∑
i=1

ai

∫ ξi

0
h(τ)f(t, u(τ))∇τ

)
Δs

+ βB0

(
φq

(∫T

0
h(τ)f(τ, u(τ))∇τ +

1
d0

m−2∑
i=1

ai

∫ ξi

0
h(τ)f(τ, u(τ))∇τ

))

−
m−2∑
i=1

B

(
φq

(∫ ξi

0
h(τ)f(τ, u(τ))∇τ +

1
d0

m−2∑
i=1

ai

∫ ξi

0
h(τ)f(τ, u(τ))∇τ

))

≤
(
T − t� + βb − (m − 2)b

)
φq

(
1
d0

∫T

0
h(τ)f(τ, u(τ))∇τ

)

<
a

L0

(
T − t� + βb − (m − 2)b

)
· φq

(
1
d0

∫T

0
h(τ)∇τ

)
= a.

(4.14)

Accordingly, the validity of condition (ii) in Theorem 4.1 is verified.
Aside from conditions (i) and (ii), we are finally to verify the validity of conditions

(iii) and (iv). For this purpose, on the one hand, consider u ∈ P(γ, α, b, c) with θ(Au) >
(T/(T − t�))b. Thus, we have

α(Au) = [Au](t�) � [Au](t�) = θ(Au) >
T

T − t� b > b.
(4.15)

On the other hand, consider u ∈ Q(γ, β, a, c) with ψ(Au) < ((T − t�)/T)a. In such a case, we
obtain that

β(Au) = [Au](t�) � T − t�
T − t� [Au](t

�) =
T − t�
T − t� ψ(Au) <

T − t�
T

a < a. (4.16)

Therefore, both conditions (iii) and (iv) in Theorem 4.1 are satisfied. Consequently, by virtue
of Theorem 4.1, the boundary value problems (1.9) and (1.10) have at least three positive
solutions circumscribed on [0, σ(T)]

T
satisfying maxt∈[t�,T]T

u1(t) < a, b < mint∈[0,t�]T
u2(t), and

a < maxt∈[t�,T]T
u3(t)with mint∈[0,t�]T

u3(t) < b.
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5. A Specific Example

In this section, we provide a representative and nontrivial example to clearly illustrate the
feasibility of the time-scale-dependent results of dynamic equations with boundary value
conditions that are obtained in the preceding section.

Construct a nontrivial time-scale set as

T =

{
1 −

(
1
2

)N
0}

∪ [1, 2] ∪ {T�}. (5.1)

Take all the parameters in problems (1.9) and (1.10) as follows: T = 2, 2 < T� � 3, p = 3/2,
q = 3, m = 4, a1 = a2 = 1/4, b = 1/2, b = 1, β = 6, ξ1 = 1/2, ξ2 = 1, t� = 1, and t� = 1/2, so that
d0 = 1/2. For simplicity but without loss of generality, set h(t) ≡ 1. Also notice that there exist
countable right-scattered points ti = 1 − (1/2)i, (i = 0, 1, 2, . . .). Then, it is easy to validate the
condition

βb − (m − 2)b − μ(T) � 0, (5.2)

which is dependent on the time scale property around the time instant T . Furthermore,
implementing the integral formula [38]:

∫b

a

f(s)Δs =
∫b

a

f(s)ds +
∑

ti∈[a,b)T

∫σ(ti)

ti

[
f(ti) − f(s)

]
ds, (5.3)

we concretely obtain that

M =
T − t�
T

∫ t�

0
φq

(∫ s

0
h(τ)∇τ

)
Δs

=
∫1

0
s2Δs =

∫1

0
s2ds +

∞∑
i=1

∫σ(ti)

ti

(
t2i − s

2
)
ds =

5
21
,

N =
(
T + βb

)
· φq

(
1
d0

∫T

0
h(τ)∇τ

)
= 128,

L0 =
[
T − t� + βb − (m − 2)b

]
· φq

(
1
d0

∫T

0
h(τ)∇τ

)
= 104.

(5.4)

Particularly, take the function in dynamic equation as

f(t, u) =
23u2

16 + t + u + u2
, t ∈ [0, 2]

T
, u � 0. (5.5)
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This kind of function is omnipresent in the mathematical modeling of biological or chemical
processes. Then it allows us to properly set the other parameters as a = 1/416, b = 105, and
c = 1078N. It is evident that these parameters satisfy

0 < a <
T − t�
T

b <
(T − t�)(T − t�)

T2
c, Nb < Mc. (5.6)

Now, we can verify the validity of conditions (C1)–(C3) in Theorem 4.2. Indeed, direct
computations yield:

f(t, u) < 23 =
( c

N

)1/2
= φp

( c

N

)
, (5.7)

as t ∈ [0, T]
T
and u ∈ [0, 2c],

f(t, u) � 23b2

16 + t� + b + b2
> 21 = φp

(
b

M

)
, (5.8)

as t ∈ [0, t�]T
and u ∈ [b, 4b], and

f(t, u) � 23u2

16
� 23a2 < 2a =

1
112

= φp
(
a

L0

)
, (5.9)

as t ∈ [0, T]
T
and u ∈ [0, 4a]. Hence, conditions (C1)–(C3) in Theorem 4.2 are satisfied for the

above specified functions and parameters. Therefore, in the light of Theorem 4.2, we conclude
that the dynamic equation on the specified time scales

[(
uΔ

)1/2
]∇

+
23u2

16 + t + u + u2
= 0, t ∈ (0, 2)

T
, (5.10)

with the boundary value conditions

[
uΔ(0)

]1/2
=

1
4

[
uΔ

(
1
2

)]1/2
+
1
4

[
uΔ(1)

]1/2
,

u(2) + 6uΔ(2) =
1
2
uΔ

(
1
2

)
+
1
2
uΔ(1),

(5.11)

has at least three positive solutions defined on [0, T�]
T
satisfying maxt∈[t�,T]T

u1(t) < a, b <
mint∈[0,t�]T

u2(t), and a < maxt∈[t�,T]T
u3(t)with mint∈[0,t�]T

u3(t) < b.

6. Concluding Remarks

In this paper, some novel and time-scale-dependent sufficient conditions are established for
the existence of multiple positive solutions in a specific kind of boundary value problems
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on time scales. This kind of boundary value problems not only includes the problems
discussed in the literature but also is adapted to more general cases. The well-known Avery-
Henderson fixed point theorem and the five functionals fixed point theorem are adopted in
the arguments.

It is valuable to mention that the writing form of the ending point of the interval
on time scales should be accurately specified in dealing with different kind of boundary
value conditions. Any inaccurate expression may lead to a problematic or incomplete
discussion. Also it is noted that some other fixed point theorems and degree theories may
be adapted to dealing with various boundary value problems on time scales. In addition,
future directions for further generalization of the boundary value problem on time scales
may include the generalization of the p-Laplacian operator to increasing homeomorphism
and homeomorphism, which has been investigated in [39] for the nonlinear boundary value
of ordinary differential equations; the allowance of the function f to change sign, which has
been discussed in [31] and needs more detailed and rigorous investigations.
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