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In 2009, Kim et al. gave some identities of symmetry for the twisted Euler polynomials of higher-
order, recently. In this paper, we extend our result to the higher-order twisted q-Euler numbers
and polynomials. The purpose of this paper is to establish various identities concerning higher-
order twisted q-Euler numbers and polynomials by the properties of p-adic invariant integral on
Zp. Especially, if q = 1, we derive the result of Kim et al. (2009).

1. Introduction

Let p be a fixed odd prime number. Throughout this paper, the symbols Z, Zp,Qp,C, and
Cp will denote the ring of rational integers, the ring of p-adic integers, the field of p-adic
rational numbers, the complex number field, and the completion of the algebraic closure
of Qp, respectively. Let N be the set of natural numbers and Z+ = N

⋃{0}. Let vp be the
normalized exponential valuation of Cp with |p|p = p−vp(p) = 1/p.

When one talks of q-extension, q is variously considered as an indeterminate, a
complex q ∈ C, or a p-adic number q ∈ Cp. If q ∈ C, one normally assumes that |q| < 1.
If q ∈ Cp, then we assume that |q − 1|p < p−1/(p−1) so that qx = exp(x log q) for each x ∈ Zp.We
use the following notation:

[x]q =
1 − qx
1 − q , [x]−q =

1 − (−q)x
1 + q

∀x ∈ Zp. (1.1)
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For a fixed positive integer d with (p, d) = 1, set

X = Xd =
lim←−n Z

dpnZ
, X1 = Zp,

X∗ =
⋃

0<a<dp,
(a,p)=1

(
a + dpZp

)
,

a + dpnZp =
{
x ∈ X | x ≡ a

(
mod dpn

)}
,

(1.2)

where a ∈ Z satisfies the condition 0 ≤ a < dpn. For any n ∈ N,

μq

(
a + dpnZp

)
=

qa
[
dpn
]
q

(1.3)

(see [1–13]) is known to be a distribution on X.
We say that f is a uniformly differentiable function at a ∈ Zp and denote this property

by f ∈ UD(Zp) if the difference quotients

Ff

(
x, y
)
=

f(x) − f(y)

x − y (1.4)

have a limit f ′(a) as (x, y) → (a, a).
For f ∈ UD(Zp), the fermionic p-adic invariant q-integral on Zp is defined as

I−q
(
f
)
=
∫

Zp

f(x)dμ−q(x) = lim
n→∞

1
[
pn
]
−q

pn−1∑

x=0

f(x)
(−q)x (1.5)

(see [14]). Let us define the fermionic p-adic invariant integral on Zp as follows:

I−1
(
f
)
= lim

q→ 1
I−q
(
f
)
=
∫

Zp

f(x)dμ−1(x) = lim
n→∞

pn−1∑

x=0

f(x)(−1)x (1.6)

(see [1–12, 14–20]). From the definition of q-integral, we have

I−1
(
f1
)
+ I−1

(
f
)
= 2f(0), where f1(x) = f(x + 1). (1.7)
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For n ∈ N, let Tp be the p-adic locally constant space defined by

Tp =
⋃

n≥1
Cpn = lim

n→∞
Cpn = Cp∞ , (1.8)

where Cpn = {ζ ∈ Cp | ζpn = 1 for some n ≥ 0} is the cyclic group of order pn.
It is well known that the twisted q-Euler polynomials of order k are defined as

ext
(

2
etζq + 1

)k

=
∞∑

n=0

E
(k)
n,ζ,q(x)

tn

n!
, ζ ∈ Tp, (1.9)

and E
(k)
n,ζ,q = E

(k)
n,ζ,q(0) are called the twisted q-Euler numbers of order k. When k = 1,

the polynomials and numbers are called the twisted q-Euler polynomials and numbers,
respectively. When k = 1 and q = 1, the polynomials and numbers are called the twisted
Euler polynomials and numbers, respectively. When k = 1, q = 1, and ζ = 1, the polynomials
and numbers are called the ordinary Euler polynomials and numbers, respectively.

In [15], Kim et al. gave some identities of symmetry for the twisted Euler polynomials
of higher order, recently. In this paper, we extend our result to the higher-order twisted
q-Euler numbers and polynomials.

The purpose of this paper is to establish various identities concerning higher-order
twisted q-Euler numbers and polynomials by the properties of p-adic invariant integral on
Zp. Especially, if q = 1, we derive the result of [15].

2. Some Identities of the Higher-Order Twisted q-Euler
Numbers and Polynomials

Let w1, w2 ∈ N with w1 ≡ 1(mod 2) and w2 ≡ 1(mod 2).
For ζ ∈ Tp and m ∈ N, we set

R
(m)
q (w1, w2 : ζ) =

∫

Z
m
p
e(
∑m

i=1 xi+w2x)w1tζ(
∑m

i=1 xi)w1q(
∑m

i=1 xi)w1dμ−1(x1) · · ·dμ−1(xm)
∫

Zp
ew1w2xtζw1w2xqw1w2xdμ−1(x)

×
∫

Z
m
p

e(
∑m

i=1 xi+w1y)w2tζ(
∑m

i=1 xi)w2q(
∑m

i=1 xi)w2dμ−1(x1) · · ·dμ−1(xm),

(2.1)

where

∫

Z
m
p

f(x1, . . . , xm)dμ−1(x1) · · ·dμ−1(xm) =
∫

Zp

· · ·
∫

Zp
︸ ︷︷ ︸

m-times

f(x1, . . . , xm)dμ−1(x1) · · ·dμ−1(xm).

(2.2)

In (2.1), we note that R(m)
q (w1, w2 : ζ) is symmetric in w1 and w2.
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From (2.1), we derive that

R
(m)
q (w1, w2 : ζ) = ew1w2xt

∫

Z
m
p

e(
∑m

i=1 xi)w1tζ(
∑m

i=1 xi)w1q(
∑m

i=1 xi)w1dμ−1(x1) · · ·dμ−1(xm)

×
∫

Zp
ew2xmtζw2xmqw2xmdμ−1(xm)

∫

Zp
ew1w2xtζw1w2xqw1w2xdμ−1(x)

× ew1w2yt

∫

Zpm−1
e(
∑m−1

i=1 xi)w2tζ(
∑m−1

i=1 xi)w2q(
∑m−1

i=1 xi)w2dμ−1(x1) · · ·dμ−1(xm−1).

(2.3)

From the definition of q-integral, we also see that

∫

Zpm

e(
∑m

i=1 xi)w1tζ(
∑m

i=1 xi)w1q(
∑m

i=1 xi)w1dμ−1(x1) · · ·dμ−1(xm)ew1w2xt

=
(

2
ew1tζw1qw1 + 1

)m

ew1w2xt =
∞∑

n=0

E
(m)
n,ζw1 ,qw1 (w2x)

w1
ntn

n!
.

(2.4)

It is easy to see that

∫

Zp
extζxqxdμ(x)

∫

Zp
ew1xtζw1xqw1xdμ(x)

=
w1−1∑

l=0

(−1)lζlqlelt =
∞∑

k=0

Tk,q(w1 − 1 : ζ)
tk

k!
, (2.5)

where Tk,q(w1 − 1 : ζ) =
∑w1−1

l=0 (−1)lζlqllk.
From (2.3), (2.4), and (2.5), we can derive

R
(m)
q (w1, w2 : ζ)

=

( ∞∑

l=0

E
(m)
l,ζw1 ,qw1 (w2x)

wl
1t

l

l!

)( ∞∑

k=0

Tk,qw2 (w1 − 1 : ζw2)
wk

2 t
k

k!

)( ∞∑

i=0

E
(m−1)
i,ζw2 ,qw2

(
w1y

)w2
iti

i!

)

=
∞∑

n=0

⎧
⎨

⎩

n∑

j=0

(
n

j

)

w
j

2w
n−j
1 E

(m)
n−j,ζw1 ,qw1 (w2x)

j∑

k=0

Tk,qw2 (w1 − 1 : ζw2)

(
j

k

)

E
(m−1)
j−k,ζw2 ,qw2

(
w1y

)

⎫
⎬

⎭

tn

n!
.

(2.6)

From the symmetry of R(m)
q (w1, w2 : ζ) in w1 and w2, we also see that

R
(m)
q (w1, w2 : ζ)

=
∞∑

n=0

⎧
⎨

⎩

n∑

j=0

(
n

j

)

w
j

1w
n−j
2 E

(m)
n−j,ζw2 ,qw2 (w1x)

j∑

k=0

Tk,qw1 (w2 − 1 : ζw1)

(
j

k

)

E
(m−1)
j−k,ζw1 ,qw1

(
w2y

)

⎫
⎬

⎭

tn

n!
.

(2.7)
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Comparing the coefficients on the both sides of (2.6) and (2.7), we obtain an identity
for the twisted q-Euler polynomials of higher order as follows.

Theorem 2.1. Let w1, w2 ∈ N with w1 ≡ 1(mod 2) and w2 ≡ 1(mod 2).
For n ∈ Z+ and m ∈ N, we have

n∑

j=0

(
n

j

)

w
j

2w
n−j
1 E

(m)
n−j,ζw1 ,qw1 (w2x)

j∑

k=0

Tk,qw2 (w1 − 1 : ζw2)

(
j

k

)

E
(m−1)
j−k,ζw2 ,qw2

(
w1y

)

=
n∑

j=0

(
n

j

)

w
j

1w
n−j
2 E

(m)
n−j,ζw2 ,qw2 (w1x)

j∑

k=0

Tk,qw1 (w2 − 1 : ζw1)

(
j

k

)

E
(m−1)
j−k,ζw1 ,qw1

(
w2y

)
.

(2.8)

Remark 2.2. Taking m = 1 and y = 0 in Theorem 2.1, we can derive the following identity:

n∑

j=0

(
n

j

)

w
j

2w
n−j
1 En−j,ζw1 ,qw1 (w2x)

j∑

k=0

Tk,qw2 (w1 − 1 : ζw2)

(
j

k

)

=
n∑

j=0

(
n

j

)

w
j

1w
n−j
2 En−j,ζw2 ,qw2 (w1x)

j∑

k=0

Tk,qw1 (w2 − 1 : ζw1)

(
j

k

)

.

(2.9)

Moreover, if we take x = 0 and y = 0 in Theorem 2.1, then we have the following
identity for the twisted q-Euler numbers of higher order.

Corollary 2.3. Let w1, w2 ∈ N with w1 ≡ 1(mod 2) and w2 ≡ 1(mod 2). For n ∈ Z+ and m ∈ N,
we have

n∑

j=0

(
n

j

)

w
j

2w
n−j
1 E

(m)
n−j,ζw1 ,qw1

j∑

k=0

Tk,qw2 (w1 − 1 : ζw2)

(
j

k

)

E
(m−1)
j−k,ζw2 ,qw2

=
n∑

j=0

(
n

j

)

w
j

1w
n−j
2 E

(m)
n−j,ζw2 ,qw2

j∑

k=0

Tk,qw1 (w2 − 1 : ζw1)

(
j

k

)

E
(m−1)
j−k,ζw1 ,qw1 .

(2.10)

We also note that taking m = 1 in Corollary 1 shows the following identity:

n∑

j=0

(
n

j

)

w
j

2w
n−j
1 En−j,ζw1 ,qw1

j∑

k=0

Tk,qw2 (w1 − 1 : ζw2)

(
j

k

)

=
n∑

j=0

(
n

j

)

w
j

1w
n−j
2 En−j,ζw2 ,qw2

j∑

k=0

Tk,qw1 (w2 − 1 : ζw1)

(
j

k

)

.

(2.11)
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Nowwe will derive another interesting identities for the twisted q-Euler numbers and
polynomials of higher order. From (2.3), we can derive that

R
(m)
q (w1, w2 : ζ)

=

{
w1−1∑

i=0
(−1)iqw2iζw2i

}{ ∞∑

k=0

(

E
(m)
k,ζw1 ,qw1

(
w2

w1
i +w2x

)

wk
1
tk

k!

}{ ∞∑

l=0

(
E
(m−1)
l,ζw2 ,qw2

(
w1y

)
wl

2

) tl

l!

}

=
∞∑

n=0

{
n∑

k=0

(
n

k

)

wk
1w

n−k
2 E

(m−1)
n−k,ζw2 ,qw2

(
w1y

)w1−1∑

i=0
(−1)iζw2iqw2iE

(m)
k,ζw1 ,qw1

(

w2x +
w2

w1
i

)}
tn

n!
.

(2.12)

From the symmetry of R(m)
q (w1, w2 : ζ) in w1 and w2, we see that

R
(m)
q (w1, w2 : ζ)

=
∞∑

n=0

{
n∑

k=0

(
n

k

)

wk
2w

n−k
1 E

(m−1)
n−k,ζw1 ,qw1

(
w2y

)w2−1∑

i=0
(−1)iζw1iqw1iE

(m)
k,ζw2 ,qw2

(

w1x +
w1

w2
i

)}
tn

n!
.

(2.13)

Comparing the coefficients on the both sides of (2.12) and (2.13), we obtain the following
theorem which shows the relationship between the power sums and the twisted q-Euler
polynomials.

Theorem 2.4. Let w1, w2 ∈ N with w1 ≡ 1(mod 2) and w2 ≡ 1(mod 2). For n ∈ Z+ and m ∈ N,
we have

n∑

k=0

(
n

k

)

wk
1w

n−k
2 E

(m−1)
n−k,ζw2 ,qw2

(
w1y

)w1−1∑

i=0
(−1)iζw2iqw2iE

(m)
k,ζw1 ,qw1

(

w2x +
w2

w1
i

)

=
n∑

k=0

(
n

k

)

wk
2w

n−k
1 E

(m−1)
n−k,ζw1 ,qw1

(
w2y

)w2−1∑

i=0
(−1)iζw1iqw1iE

(m)
k,ζw2 ,qw2

(

w1x +
w1

w2
i

)

.

(2.14)

Remark 2.5. Let m = 1 and y = 0 in Theorem 2. Then it follows that

n∑

k=0

(
n

k

)

wk
1w

n−k
2

w1−1∑

i=0
(−1)iζw2iqw2iEk,ζw1 ,qw1

(

w2x +
w2

w1
i

)

=
n∑

k=0

(
n

k

)

wk
2w

n−k
1

w2−1∑

i=0
(−1)iζw1iqw1iEk,ζw2 ,qw2

(

w1x +
w1

w2
i

)

.

(2.15)

Moreover, if we take x = 0 and y = 0 in Theorem 2.4, then we have the following identity for
the twisted q-Euler numbers of higher order.
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Corollary 2.6. Let w1, w2 ∈ N with w1 ≡ 1(mod 2), w2 ≡ 1(mod 2). For n ∈ Z+ and m ∈ N, we
have

n∑

k=0

(
n

k

)

wk
1w

n−k
2 E

(m−1)
n−k,ζw2 ,qw2

w1−1∑

i=0
(−1)iζw2iqw2iE

(m)
k,ζw1 ,qw1

(
w2

w1
i

)

=
n∑

k=0

(
n

k

)

wk
2w

n−k
1 E

(m−1)
n−k,ζw1 ,qw1

w2−1∑

i=0
(−1)iζw1iqw1iE

(m)
k,ζw2 ,qw2

(
w1

w2
i

)

.

(2.16)

If we takem = 1 in Corollary 2.3, we derive the following identity for the twisted q-Euler polynomials:
for w1, w2 ∈ N with w1 ≡ 1(mod 2), w2 ≡ 1(mod 2), and n ∈ Z+,

n∑

k=0

(
n

k

)

wk
1w

n−k
2

w1−1∑

i=0
(−1)iζw2iqw2iEk,ζw1 ,qw1

(
w2

w1
i

)

=
n∑

k=0

(
n

k

)

wk
2w

n−k
1

w2−1∑

i=0
(−1)iζw1iqw1iEk,ζw2 ,qw2

(
w1

w2
i

)

.

(2.17)

Remark 2.7. If q = 1, we can observe the result of [15].
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