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We propose a novel approach of parameter identification using the adaptive synchronized
observer by introducing an auxiliary subsystem, and some sufficient conditions are given to
guarantee the convergence of synchronization and parameter identification. We also demonstrate
the mean convergence of synchronization and parameters identification under the influence of
noise. Furthermore, in order to suppress the influence of noise, we complement a filter in the
output. Numerical simulations on Lorenz and Chen systems are presented to demonstrate the
effectiveness of the proposed approach.

1. Introduction

Since the pioneering work of Pecora and Carroll [1], chaos synchronization has become
an active research subject due to its potential applications in physics, chemical reactions,
biological networks, secure communication, control theory, and so forth [2–12]. An
important application of synchronization is in adaptive parameter estimation methods where
parameters in a model are adjusted dynamically in order to minimize the synchronization
error [13–15]. To achieve system synchronization and parameter convergence, there are
two general approaches based on the typical Lyapunov’s direct method [2–9] or LaSalle’s
principle [10]. When adaptive synchronization methods are applied to identify the uncertain
parameters, some restricted conditions on dynamical systems, such as persistent excitation
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(PE) condition [11, 15] or linear independence (LI) conditions [10], should be matched to
guarantee that the estimated parameters converge to the true values [12].

In the following, we explore a novel method for parameter estimation by introducing
an auxiliary subsystem in adaptive synchronized observer instead of Lyapunov’s direct
method and LaSalle’s principle. It will be shown that through harnessing the auxiliary
subsystem, parameters can be well estimated from a time series of dynamical systems based
on adaptive synchronized observer. Moreover, noise plays an important role in parameter
identification. However, little attention has been given to this point. Here we demonstrate
the mean convergence of synchronization and parameters identification under the influence
of noise. Furthermore, we implement a filter to recover the performance of parameter
identification suppressing the influence of the noise.

2. Parameter Identification Method

In the master-slave framework, consider the following master system:

ẋi = θifi(x) + gi(x), (i = 1, 2, . . . , n), (2.1)

where x = (x1, x2, . . . , xn) is the state vector, θi is the unique unknown parameter to be
identified, and fi, gi : Rn → R are the nonlinear functions of the state vector x in the ith
equation.

In order to obtain our main results, the auxiliary subsystem is needed

γ̇ = −Lγ + f(x), (2.2)

where L is a positive constant.

Lemma 2.1. If f(x) is bounded and does not converge to zero as t → ∞, then the state γ of system
(2.2) is bounded and does not converge to zero, when t → ∞.

Proof. If f(x) is bounded, we can easily know that γ is bounded [16]. We suppose that the
state γ of system (2.2) converges to zero, when t → ∞. According to LaSalle principle, we
have the invariant set γ = 0, then γ̇ = 0; therefore, from system (2.2), we get f(x) → 0
as t → ∞. This contradicts the condition that f(x) does not converge to zero as t → ∞.
Therefore, the state γ does not converge to zero, when t → ∞.

Based on observer theory, the following response system is designed to synchronize
the state vector and identify the unknown parameters.

Theorem 2.2. If Lemma 2.1 holds, then the following response system (2.3) is an adaptive
synchronized observer for system (2.1), in the sense that for any set of initial conditions, yi → xi

and ̂θi → θi as t → ∞.

ẏi = gi(x) + fi(x)̂θi +
(

yi − xi

)

(

−Li − kiγ
2
i (t)

)

,

˙̂θi = kiγi(t)
(

xi − yi

)

,

γ̇i(t) = −Liγi + fi(x),

(2.3)
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where yi, ̂θi are the observed state and estimated parameter of xi and θi, respectively, and ki and Li are
positive constants.

Proof. From system (2.3), we have

ẏi = gi(x) + fi(x)̂θi +
(

yi − xi

)

(−Li) + γi(t)
˙̂θi. (2.4)

Let ei = yi − xi, ˜θi = ̂θi − θi, wi(t) = ei(t) − ˜θiγi(t), and note that θ̇i = 0; then

ẇi(t) = −Liei + fi(x)˜θi + γi(t)
˙̂θi − γ̇i(t)˜θi − γi(t)

˙̃θi

= −Li

(

wi(t) + γi(t)˜θi
)

+ fi(x)˜θi − γ̇i(t)˜θi

= −Liwi(t) + ˜θi
(−Liγi(t) + fi(x) − γ̇i(t)

)

.

(2.5)

Since γi(t) is generated by (2.3), then

ẇi(t) = −Liwi(t). (2.6)

Obviously, wi(t) → 0 as t → ∞.

From ˙̂θi = kiγi(t)(xi − yi) and θ̇i = 0, we have

˙̃θi =
˙̂θi − θ̇i

= −kiγi(t)ei
= −kiγi(t)

(

wi(t) + γi(t)˜θi
)

.

(2.7)

Let us focus on the homogeneous part of system (2.7), which is

˙̃θi = −kiγ2i (t)˜θi. (2.8)

The solution of system (2.8) is ˜θi(t) = ˜θi(0)e−
∫ t
0 kiγ

2
i (s)ds. From the lemma, we know that γi(t)

does not converge to zero. According to Barbalat theorem, we have
∫ t

0 kiγ
2
i (s)ds → ∞ as t →

∞; correspondingly, ˜θi → 0 as t → ∞, that is, the system ˙̃θi = −kiγ2i (t)˜θi is asymptotically
stable.

Now from the exponential convergence of wi(t) in system (2.6) and asymptotical
convergence of ˜θi in system (2.8), we obtain that ˜θi in system (2.7) are asymptotical
convergent to zero.

Finally, from wi(t) → 0, ˜θi(t) → 0, and γi(t) being bounded, we conclude that ei =
wi + γi ˜θ → 0 are global asymptotical convergence.

The proof of Theorem 2.2 is completed.

Note 1. When fi(x) = 1 and θi is the offset, in this condition no matter x is in stable, periodic,
or chaotic state, we could use system (2.3) to estimate and synchronize the system (2.1).
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Note 2. When the system is in stable state, parameter estimation methods based on adaptive
synchronization cannot work well [10]. For this paper, when the system is in stable state, such
that fi(x) → 0 as t → ∞, which leads to the lemma not being hold, so system (2.3) cannot be
directly applied to identify the parameters. Here, we supplement auxiliary signal si in drive
system (2.1), such that fi(x) does not converge to zero as t → ∞. Then the master system
becomes

ẋi = θifi(x) + gi(x) + si, (2.9)

and the corresponding slave system can be constructed as

ẏi = gi(x) + fi(x)̂θi +
(

yi − xi

)

(

−Li − kiγ
2
i (t)

)

+ si,

˙̂θi = kiγi(t)
(

xi − yi

)

,

γ̇i = −Liγi + fi(x).

(2.10)

In doing so, synchronization of the system and parameters estimation can be achieved.

3. Application of the Above-Mentioned Scheme

To demonstrate and verify the performance of the proposed method, numerical simulations
are presented here. We take Lorenz system as the master system [17], which is described by

ẋ1 = a(x2 − x1),

ẋ2 = (b − x3)x1 − x2,

ẋ3 = x1x2 − cx3,

(3.1)

where the parameters a, b, and c are unknown, and all the states aremeasurable.When a = 10,
b = 28, c = 8/3, Lorenz system is chaotic.

We construct the slave systems as follows:

ẏ1 = (x2 − x1)â +
(

y1 − x1
)

(

−L1 − k1γ
2
1 (t)

)

,

ẏ2 = (−x1x3 − x2) + x1̂b +
(

y2 − x2
)

(

−L2 − k2γ
2
2 (t)

)

,

ẏ3 = x1x2 − x3ĉ +
(

y3 − x3
)

(

−L3 − k3γ
2
3 (t)

)

,

˙̂a = k1γ1(t)
(

x1 − y1
)

,

γ̇1(t) = −L1γ1 + (x2 − x1),

˙̂b = k2γ2(t)
(

x2 − y2
)

,

γ̇2(t) = −L2γ2 + x1,

˙̂c = k3γ3(t)
(

x3 − y3
)

,

γ̇3(t) = −L3γ3 − x3.

(3.2)
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Figure 1: (a) The curves of [f1, f2, f3] = [(x2 − x1), x1, x3]; (b) Identified results of a, b, c versus time.

When the Lorenz system is in chaotic state, all states of [f1, f2, f3] = [(x2 − x1), x1, x3]
are not convergent to zero as t → ∞ (see Figure 1(a)). Then according to Theorem 2.2, we
realize that not only the synchronization can be achieved but also the unknown parameters
a, b, and c can be estimated at the same time.

Figure 1(a) shows the curves of [f1, f2, f3] = [(x2 − x1), x1, x3]. All parameters a = 10,
b = 28, and c = 8/3 are estimated accurately and depicted in Figure 1(b). Figures 2(a)–2(c)
display the results of synchronization for systems (3.1) and (3.2), where the initial conditions
of simulation are [x1(0), x2(0), x3(0)] = [10, 2, 5], [k1, k2, k3] = [100, 1, 10], and y1(0) = y2(0) =
y3(0) = 0, L1 = L2 = L3 = 1.

When a = 1, b = 28, and c = 8/3, the states of Lorenz system are not chaotic but
convergent to a fixed point. Figure 3(a) shows the curves of [f1, f2, f3] = [(x2 − x1), x1, x3]. In
this case, as displayed in Figure 3(a), f1 = x2 − x1 convergence to zero as t → ∞. Figure 3(b)
depicts the estimated results of parameters a, b, and c. From Figure 3(b), we can see that
parameters b = 28, and c = 8/3 have been estimated accurately. However, the parameter
a = 1 cannot be estimatedwell. According to the analysis of Note 2, we add an auxiliary signal
s = sin(t) in the first subsystem of master system (3.1) and we obtain ẋ1 = a(x2 − x1) + sin(t),
such that all states of [f1, f2, f3] = [(x2 − x1), x1, x3] do not converge to zero as t → ∞.
The curves of [(x2 − x1), x1, x3] are shown in Figure 4(a). Correspondingly, we add signal
s = sin(t) in the first subsystem of slave system (3.2) and we have ẏ1 = (x2 − x1)â + (y1 −
x1)(−L1 + k1γ

2
1 (t)) + sin(t); then all parameters a = 1, b = 28, and c = 8/3 are estimated

accurately and depicted in Figure 4(b).
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Figure 2: (a) The curve of e1; (b) The curve of e2; (c) The curve of e3.

In recent years, more novel chaotic systems are found such as Chen system [18], Lü
system [19], and Liu system [20]. Let us consider the identification problem for Chen system.
We take Chen system as the master system, which is described by

ẋ1 = a(x2 − x1),

ẋ2 = b(x2 + x1) − ax1 − x3x1,

ẋ3 = x1x2 − cx3,

(3.3)

where the parameters a, b, and c are unknown, and all the states aremeasurable.When a = 35,
b = 28, and c = 3, Chen system is chaotic.
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Figure 3: (a) The curves of [f1, f2, f3] = [(x2 − x1), x1, x3]; (b) Identified results of a, b, c versus time.
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Figure 4: (a) The curves of [f1, f2, f3] = [(x2 − x1), x1, x3]; (b) Identified results of a, b, c versus time.
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We construct the slave systems as follows:

ẏ1 = (x2 − x1)â +
(

y1 − x1
)

(

−L1 − k1γ
2
1 (t)

)

,

ẏ2 = −x1x3 + ̂b(x2 + x1) − x1â +
(

y2 − x2
)

(

−L2 − k2γ
2
2 (t)

)

,

ẏ3 = x1x2 − x3ĉ +
(

y3 − x3
)

(

−L3 − k3γ
2
3 (t)

)

,

˙̂a = k1γ1(t)
(

x1 − y1
)

,

γ̇1(t) = −L1γ1 + (x2 − x1),

˙̂b = k2γ2(t)
(

x2 − y2
)

,

γ̇2(t) = −L2γ2 + x2 + x1,

˙̂c = k3γ3(t)
(

x3 − y3
)

,

γ̇3(t) = −L3γ3 − x3.

(3.4)

Figures 5 and 6 show the synchronization error and identification results, respectively,
and where [x1(0), x2(0), x3(0)] = [1, 3, 7], [k1, k2, k3] = [1, 2, 3], and [y1(0), y2(0), y3(0)] =
[0, 0, 0], [L1, L2, L3] = [3, 5, 7].

From the simulation results of Lorenz and Chen system above, we can see that the
unknown parameters could be identified. It indicates that the proposed parameter identifier
in this paper could be used as an effective parameter estimator.

4. Parameter Identification in the Presence of Noise

Noise plays an important role in synchronization and parameters identification of dynamical
systems. Noise usually deteriorates the performance of parameter identification and results in
the drift of parameter identification around their true values. Here we consider the influence
of noise. Suppose that there are addition noise in drive system (2.1).

ẋi = θifi(x) + gi(x) + ηi, (i = 1, 2, . . . , n), (4.1)

where ηi is the zero mean, bounded noise.

Theorem 4.1. If the above lemma is hold and ηi is independent to fi(x), gi(x), and γi(t), using the
synchronized observer (2.3), then for any set of initial conditions, E(ei) and E(˜θi(t)) converge to zero
asymptotically as t → ∞, where E(ei) and E(˜θi(t)) are mean values of ei and ˜θi(t), respectively.

Proof. Similarly with the proof of Theorem 2.2, let wi = ei − γi ˜θi; then

ẇi = −Liwi(t) + ˜θi
(−Liγi(t) + fi(x) − γ̇i

)

+ ηi,

˙̃θi = −kiγi(t)
(

wi + γi(t)˜θi
)

.
(4.2)
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Figure 5: The curves of e1, e2, and e3.

We have ẇi = −Liwi(t) + ηi; then

dE(wi)
dt

= −LiE(wi(t)) + E
(

ηi
)

,

dE
(

˜θi
)

dt
= E

(−kiγi(t)wi

)

+ E
(

−kiγ2i ˜θi
)

,

(4.3)

ηi is independent to fi(x), gi(x), and γi(t), and note that E(ηi) = 0; then

dE(wi)
dt

= −LiE(wi(t)),

dE
(

˜θi
)

dt
= −kiγi(t)

(

E(wi) + γi(t)E
(

˜θi
))

.

(4.4)

So similarly we have E(wi) → 0, E(˜θi) → 0, and therefore, E(ei) → 0 as t → ∞.
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Figure 6: Identified results of a, b, c versus time.

From Theorem 4.1, we know that that E(˜θi) → 0 as t → ∞, which means that the
estimated values for unknown parameters will fluctuate around their true values. As an
illustrating example, we revisit the Lorenz system (3.1) and its slave systems (3.2), and we
assume all the subsystems (3.1) are disturbed by uniformly distributed random noise with
amplitude ranging from −100 to 100. Figure 7(a) shows that the estimated parameters a, b,
and c fluctuate around their true values.

To suppress the estimation fluctuation caused by the noise, it is suitable to use mean
filters. Here we introduce the following filter:

̂θ =

∫ t

0
̂θ(s)ds
t

. (4.5)

It is clear to see from Figure 7(b) that unknown parameters a, b, and c can be identified
with high accuracy even in the presence of large random noise.
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Figure 7: (a) Identified results of a, b, c in presence of noises; (b) Identified results of a, b, c in presence of
noises and with filters.

5. Conclusions

In this paper, we propose a novel approach of identifying parameters by the adaptive
synchronized observer, and a filter in the output is introduced to suppress the influence
of noise. In our method, Lyapunov’s direct method and LaSalle’s principle are not
needed. Considerable simulations on Lorenz and Chen systems are employed to verify the
effectiveness and feasibility of our approach.
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