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We consider a general weighted second-order difference equation. Two transformations are
studied which transform the given equation into another weighted second order difference
equation of the same type, these are based on the Crum transformation. We also show how
Dirichlet and non-Dirichlet boundary conditions transform aswell as how the spectra and norming
constants are affected.

1. Introduction

Our interest in this topic arose from the work done on transformations and factorisations of
continuous (as opposed to discrete) Sturm-Liouville boundary value problems by, amongst
others, Binding et al., notably [1, 2]. We make use of similar ideas to those discussed in [3–5]
to study the transformations of difference equations.

In this paper, we consider a weighted second-order difference equation of the form

ly := −c(n)y(n + 1) + b(n)y(n) − c(n − 1)y(n − 1) = c(n)λy(n), (1.1)

where c(n) > 0 represents a weight function and b(n) a potential function.
Two factorisations of the formal difference operator, l, associated with (1.1), are given.

Although there may be many alternative factorisations of this operator (see e.g., [2, 6]),
the factorisations given in Theorems 2.1 and 3.1 are of particular interest to us as they are
analogous to those used in the continuous Sturm-Liouville case. Moreover, if the original
operator is factorised by SQ, as in Theorem 2.1, or by PR, as in Theorem 3.1, then the
Darboux-Crum type transformation that we wish to study is given by the mapping Q or R,
respectively. This results in eigenfunctions of the difference boundary value problem being
transformed to eigenfunctions of another, so-called, transformed boundary value problem
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given by permuting the factors S and Q or the factors P and R, that is, by QS or RP ,
respectively, as in the continuous case. Applying this transformation must then result in a
transformed equation of exactly the same type as the original equation. In order to ensure
this, we require that the original difference equation which we consider has the form given
in (1.1). In particular the weight, c(n), also determines the dependence on the off-diagonal
elements. We note that the more general equation

c(n)y(n + 1) − b(n)y(n) + c(n − 1)y(n − 1) = −a(n)λy(n), (1.2)

can be factorised as SQ, however, reversing the factors that is, findingQS does not necessarily
result in a transformed equation of the same type as (1.2). The importance of obtaining a
transformed equation of exactly the same form as the original equation, is that ultimately
we will (in a sequel to the current paper) use these transformations to establish a hierarchy
of boundary value problems with (1.1) and various boundary conditions; see [4] for the
differential equations case. Initially we transform, in this paper, non-Dirichlet boundary
conditions to Dirichlet boundary conditions and back again. In the sequel to this paper,
amongst other things, non-Dirichlet boundary conditions are transformed to boundary
conditions which depend affinely on the eigenparameter λ and vice versa. At all times, it
is possible to keep track of how the eigenvalues of the various transformed boundary value
problems relate to the eigenvalues of the original boundary value problem.

The transformations given in Theorems 2.1 and 3.1 are almost isospectral. In particular,
depending on which transformation is applied at a specific point in the hierarchy, we either
lose the least eigenvalue or gain an eigenvalue below the least eigenvalue. It should be
noted that if we apply the two transformations of Sections 2 and 3 successively the resulting
boundary value problem has precisely the same spectrum as the boundary value problem
we began with. In fact, for a suitable choice of the solution z(n) of (1.1), with λ less than the
least eigenvalue of the boundary value problem fixed, Corollary 3.3 gives that applying the
transformation given in Theorem 2.1 followed by the transformation given in Theorem 3.1
yields a boundary value problem which is exactly the same as the original boundary value
problem, that is, the same difference equation, boundary conditions, and hence spectrum.

It should be noted that the work [6, Chapter 11] of Teschl, on spectral and inverse
spectral theory of Jacobi operators, provides a factorisation of a second-order difference
equation, where the factors are adjoints of each another. It is easy to show that the factors
given in this paper are not adjoints of each other, making our work distinct from that of
Teschl’s.

Difference equations, difference operators, and results concerning the existence and
construction of their solutions have been discussed in [7, 8]. Difference equations occur in
a variety of settings, especially where there are recursive computations. As such they have
applications in electrical circuit analysis, dynamical systems, statistics, andmany other fields.

More specifically, from Atkinson [9], we obtained the following three physical
applications of the difference equation (1.1). Firstly, we have the vibrating string. The string
is taken to be weightless and bears m particles p0, . . . , pm−1 at the points say x0, . . . , xm−1
with masses c(0), . . . , c(m − 1) and distances between them given by xr+1 − xr = 1/c(r),
r = 0, . . . , m − 2. Beyond c(m − 1) the string extends to a length 1/c(m − 1) and beyond
c(0) to a length 1/c(−1). The string is stretched to unit tension. If s(n) is the displacement
of the particle pn at time t, the restoring forces on it due to the tension of the string are
c(n− 1)(s(n)− s(n− 1)) and −c(n)(s(n+ 1)− s(n)) considering small oscillations only. Hence,
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we can find the second-order differential equation of motion for the particles. We require
solutions to be of the form s(n) = y(n) cos(ωt), where y(n) is the amplitude of oscillation of
the particle pn. Solving for y(n) then reduces to solving a difference equation of the form
(1.1). Imposing various boundary conditions forces the string to be pinned down at one
end, both ends, or at a particular particle, see Atkinson [9] for details. Secondly, there is an
equivalent scenario in electrical network theory. In this case, the c(n) are inductances, 1/c(n)
capacitances, and the s(n) are loop currents in successive meshes. The third application of
the three-term difference equation (1.1) is in Markov processes, in particular, birth and death
processes and randomwalks. Although the above three applications are somewhat restricted
due to the imposed relationship between the weight and the off-diagonal elements, they are
nonetheless interesting.

There is also an obvious connection between the three-term difference equation and
orthogonal polynomials; see [10]. Although, not the focus of this paper, one can investigate
which orthogonal polynomials satisfy the three-term recurrence relation given by (1.1) and
establish the properties of those polynomials. In Atkinson [9], the link between the norming
constants and the orthogonality of polynomials obeying a three-term recurrence relation is
given. Hence the necessity for showing how the norming constants are transformed under
the transformations given in Theorems 2.1 and 3.1. As expected, from the continuous case,
we find that the nth new norming constant is just λn − λ0 multiplied by the original nth
norming constant or 1/(λn − λ0) multiplied by the original nth norming constant depending
on which transformation is used.

The paper is set out as follows.
In Section 2, we transform (1.1) with non-Dirichlet boundary conditions at both ends

to an equation of the same form but with Dirichlet boundary conditions at both ends. We
prove that the spectrum of the new boundary value problem is the same as that of the original
boundary value problem but with one eigenvalue less, namely, the least eigenvalue.

In Section 3, we again consider an equation of the form (1.1), but with Dirichlet
boundary conditions at both ends. We assume that we have a strictly positive solution, z(n),
to (1.1) for λ = λ0 with λ0 less than the least eigenvalue of the given boundary value problem.
We can then transform the given boundary value problem to one consisting of an equation
of the same type but with specified non-Dirichlet boundary conditions at the ends. The
spectrum of the transformed boundary value problem has one extra eigenvalue, in particular
λ0.

The transformation in Section 2 followed by the transformation in Section 3, gives in
general, an isospectral transformation of the weighted second-order difference equation of
the form (1.1) with non-Dirichlet boundary conditions. However, for a particular choice of
z(n) this results in the original boundary value problem being recovered.

In the final section, we show that the process outlined in Sections 2 and 3 can be
reversed.

2. Transformation 1

2.1. Transformation of the Equation

Consider the second-order difference equation (1.1), which may be rewritten as

c(n)y(n + 1) − (b(n) − λ0c(n))y(n) + c(n − 1)y(n − 1) = −c(n)(λ − λ0)y(n), (2.1)
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where n = 0, . . . , m − 1. Denote by λ0 the least eigenvalue of (1.1) with boundary conditions

hy(−1) + y(0) = 0, Hy(m − 1) + y(m) = 0, (2.2)

where h andH are constants; see [9]. We wish to find a factorisation of the formal operator,

ly(n) := −y(n + 1) +
(
b(n)
c(n)

− λ0

)
y(n) − c(n − 1)

c(n)
y(n − 1) = (λ − λ0)y(n), (2.3)

for n = 0, . . . , m − 1, such that l = SQ, where S and Q are both first order formal difference
operators.

Theorem 2.1. Let u0(n) be a solution of (1.1) corresponding to λ = λ0 and define the formal difference
operators

Sy(n) := y(n) − y(n − 1)
u0(n − 1)c(n − 1)

u0(n)c(n)
, n = 0, . . . , m,

Qy(n) := y(n + 1) − y(n)
u0(n + 1)
u0(n)

, n = −1, . . . , m − 1.

(2.4)

Then formally ly(n) = SQy(n), n = 0, . . . , m − 1 and the so-called transformed operator is given by
l̃ỹ(n) = QSỹ(n), n = 0, . . . , m − 1. Hence the transformed equation is

c̃(n)ỹ(n + 1) − b̃(n)ỹ(n) + c̃(n − 1)ỹ(n − 1) = −c̃(n)λỹ(n), n = 0, . . . , m − 2, (2.5)

where

c̃(n) =
u0(n)c(n)
u0(n + 1)

> 0, n = −1, . . . , m − 1, (2.6)

b̃(n) =
[

u0(n)c(n)
u0(n + 1)c(n + 1)

− c(n − 1)u0(n − 1)
c(n)u0(n)

+
b(n)
c(n)

− λ0

]
u0(n)c(n)
u0(n + 1)

, n = 0, . . . , m − 1.

(2.7)

Proof. By the definition of S and Q, we have that

SQy(n) = S

(
y(n + 1) − u0(n + 1)

u0(n)
y(n)

)

= y(n + 1) − u0(n + 1)y(n)
u0(n)

−
[
y(n) − u0(n)

u0(n − 1)
y(n − 1)

]
u0(n − 1)c(n − 1)

u0(n)c(n)
.

(2.8)
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Using (2.3), substituting in for u0(n + 1) and cancelling terms, gives

SQy(n) = y(n + 1) − 1
u0(n)

[
−λ0u0(n) − c(n − 1)

c(n)
u0(n − 1) +

b(n)
c(n)

u0(n)
]
y(n)

− y(n)
u0(n − 1)c(n − 1)

u0(n)c(n)
+ y(n − 1)

c(n − 1)
c(n)

= y(n + 1) −
(
b(n)
c(n)

− λ0

)
y(n) +

c(n − 1)
c(n)

y(n − 1)

= −(λ − λ0)y(n), n = 0, . . . , m − 1.

(2.9)

Hence l = SQ.
Now, setting Qy(n) = ỹ(n), n = −1, . . . , m − 1, gives

QSỹ(n) = QSQy(n)

= −Q(λ − λ0)y(n)

= −(λ − λ0)ỹ(n), n = 0, . . . , m − 1,

(2.10)

which is the required transformed equation.
To find l̃, we need to determine QSỹ(n).
Firstly,

Sỹ(n) = ỹ(n) − ỹ(n − 1)
u0(n − 1)c(n − 1)

u0(n)c(n)
, n = 0, . . . , m − 1, (2.11)

thus for n = 0, . . . , m − 2,

Q
(
Sỹ(n)

)
= ỹ(n + 1)

− ỹ(n)
u0(n)c(n)

u0(n + 1)c(n + 1)
−
(
ỹ(n) − ỹ(n − 1)

u0(n − 1)c(n − 1)
u0(n)c(n)

)
u0(n + 1)
u0(n)

= ỹ(n + 1) − ỹ(n)
[

u0(n)c(n)
u0(n + 1)c(n + 1)

+
u0(n + 1)
u0(n)

]

+ ỹ(n − 1)
[
u0(n − 1)c(n − 1)u0(n + 1)

u0(n)c(n)u0(n)

]
.

(2.12)
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By multiplying by u0(n)c(n)/u0(n + 1), this may be rewritten as

u0(n)c(n)
u0(n + 1)

ỹ(n + 1) −
[

u0(n)c(n)
u0(n + 1)c(n + 1)

− c(n − 1)u0(n − 1)
c(n)u0(n)

+
b(n)
c(n)

− λ0

]
u0(n)c(n)
u0(n + 1)

ỹ(n)

+
u0(n − 1)c(n − 1)

u0(n)
ỹ(n − 1) = −(λ − λ0)ỹ(n)

u0(n)c(n)
u0(n + 1)

.

(2.13)

Thus we obtain (2.5).

2.2. Transformation of the Boundary Conditions

We now show how the non-Dirichlet boundary conditions (2.2) are transformed under Q.
By the boundary conditions (2.2) y is defined for n = −1, . . . , m.

Theorem 2.2. The mapping y �→ ỹ given by ỹ(n) = y(n + 1) − y(n)u0(n + 1)/u0(n), n =
−1, . . . , m − 1, where u0 is an eigenfunction to the least eigenvalue λ0 of (1.1), (2.2), transforms
y obeying boundary conditions (2.2) to ỹ obeying Dirichlet boundary conditions of the form

ỹ(−1) = 0, ỹ(m − 1) = 0. (2.14)

Proof. Since ỹ(n) = y(n + 1) − y(n)u0(n + 1)/u0(n), we get that

ỹ(−1) = y(0) − y(−1) u0(0)
u0(−1)

= −hy(−1) − y(−1)(−h)
= 0.

(2.15)

Hence as y obeys the non-Dirichlet boundary condition hy(−1) + y(0) = 0, ỹ obeys the
Dirichlet boundary condition, ỹ(−1) = 0.

Similarly, for the second boundary condition,

ỹ(m − 1) = y(m) − y(m − 1)
u0(m)

u0(m − 1)

= −Hy(m − 1) − y(m − 1)(−H)

= 0.

(2.16)

We call (2.14) the transformed boundary conditions.
Combining the above results we obtain the following corollary.

Corollary 2.3. The transformation y �→ ỹ, given in Theorem 2.2, takes eigenfunctions of the
boundary value problem (1.1), (2.2) to eigenfunctions of the boundary value problem (2.5), (2.14).
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The spectrum of the transformed boundary value problem (2.5), (2.14) is the same as that of (1.1),
(2.2), except for the least eigenvalue, λ0, which has been removed.

Proof. Theorems 2.1 and 2.2 prove that the mapping y �→ ỹ transforms eigenfunctions of (1.1),
(2.2) to eigenfunctions (or possibly the zero solution) of (2.5), (2.14). The boundary value
problem (1.1), (2.2) has m eigenvalues which are real and distinct and the corresponding
eigenfunctions u0(n), . . . , um−1(n) are linearly independent when considered for n = 0, . . . , m−
1; see [11] for the case of vector difference equations of which the above is a special case. In
particular, if λ0 < λ1 < · · · < λm−1 are the eigenvalues of (1.1), (2.2) with eigenfunctions
u0, . . . , um−1, then ũ0 ≡ 0 and ũ1, . . . , ũm−1 are eigenfunctions of (2.5), (2.14) with eigenvalues
λ1, . . . , λm−1. By a simple computation it can be shown that ũ1, . . . , ũm−1 /≡ 0. Since the interval
of the transformed boundary value problem is precisely one shorter than the original interval,
(2.5), (2.14) has one less eigenvalue. Hence λ1, . . . , λm−1 constitute all the eigenvalues of (2.5),
(2.14).

2.3. Transformation of the Norming Constants

Let λ0 < · · · < λm−1 be the eigenvalues of (1.1)with boundary conditions (2.2) and y0, . . . , ym−1
be associated eigenfunctions normalised by yn(0) = 1.We prove, in this subsection, that under
the mapping given in Theorem 2.2, the new norming constant is 1/(λn−λ0) times the original
norming constant.

Lemma 2.4. Let ρn denote the norming constants of (1.1) and be defined by

ρn :=
m−1∑
j=0

(−c(j))
(

yn

(
j
)

yn(0)

)2

=
m−1∑
j=0

(−c(j))yn

(
j
)2
. (2.17)

If τ̃n is defined by

τ̃n :=
m−2∑
j=0

(−c̃(j))ỹn

(
j
)2
, (2.18)

then, for u0 an eigenfunction for λ = λ0 normalised by u0(0) = 1,

(λn − λ0)ρn = τ̃n − c(−1)u0(−1)
u0(0)

yn(0)2 + c(−1)yn(−1)yn(0) − yn(m − 1)2c(m − 1)
u0(m)

u0(m − 1)

+ yn(m − 1)yn(m)c(m − 1).
(2.19)
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Proof. Substituting in for ỹn(j) and c̃(j), n = 1, . . . , m − 1, we have that

τ̃n =
m−2∑
j=0

(
−u0

(
j
)
c
(
j
)

u0
(
j + 1

) yn

(
j + 1

)2 + 2yn

(
j
)
yn

(
j + 1

)
c
(
j
) − u0

(
j + 1

)
u0
(
j
) c

(
j
)
yn

(
j
)2)

=
m−2∑
j=0

(
−u0

(
j
)
c
(
j
)

u0
(
j + 1

) yn

(
j + 1

)2 + 2yn

(
j
)
yn

(
j + 1

)
c
(
j
) − (

b
(
j
) − c

(
j
)
λ0
)
yn

(
j
)2

+c
(
j − 1

)u0
(
j − 1

)
u0
(
j
) yn

(
j
)2)

=
m−2∑
j=0

(
2yn

(
j
)
yn

(
j + 1

)
c
(
j
) − [

b
(
j
) − c

(
j
)
λ0
]
yn

(
j
)2) + c(−1)u0(−1)

u0(0)
yn(0)2

− c(m − 2)
u0(m − 2)
u0(m − 1)

yn(m − 1)2.

(2.20)

Then, using the definition of ρn, we obtain that

(λn − λ0)ρn =
m−1∑
j=0

(λn − λ0)
(−c(j))yn

(
j
)
yn

(
j
)

=
m−1∑
j=0

(
c
(
j
)
yn

(
j + 1

) − (
b
(
j
) − λ0c

(
j
))
yn

(
j
)
+ c

(
j − 1

)
yn

(
j − 1

))
yn

(
j
)

= 2
m−1∑
j=0

[
c
(
j
)
yn

(
j + 1

)
yn

(
j
)] − m−1∑

j=0

[(
b
(
j
) − λ0c

(
j
))
yn

(
j
)2]

+ c(−1)yn(−1)yn(0) − c(m − 1)yn(m − 1)yn(m)

=
m−2∑
j=0

[
2
(
c
(
j
)
yn

(
j + 1

)
yn

(
j
)) − [

b
(
j
) − λ0c

(
j
)]
yn

(
j
)2]

+ c(m − 1)yn(m)yn(m − 1) − [b(m − 1) − λ0c(m − 1)]yn(m − 1)2

+ c(−1)yn(−1)yn(0)

= τ̃n + c(m − 2)
u0(m − 2)
u0(m − 1)

yn(m − 1)2 + c(m − 1)yn(m)yn(m − 1)

− (b(m − 1) − λ0c(m − 1))yn(m − 1)2 + c(−1)yn(−1)yn(0)

− c(−1)u0(−1)
u0(0)

yn(0)2.

(2.21)
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Now,

− (b(m − 1) − λ0c(m − 1))yn(m − 1)2

= −c(m − 1)yn(m)yn(m − 1) − c(m − 2)yn(m − 2)yn(m − 1)

− c(m − 1)(λn − λ0)yn(m − 1)2.

(2.22)

Therefore,

(λn − λ0)ρn = τ̃n − c(−1)u0(−1)
u0(0)

yn(0)2 + c(−1)yn(−1)yn(0) + c(m − 2)
u0(m − 2)
u0(m − 1)

yn(m − 1)2

− c(m − 2)yn(m − 2)yn(m − 1) − c(m − 1)(λn − λ0)yn(m − 1)2.
(2.23)

Using (1.1) to substitute in for c(m − 2)u0(m − 2) and c(m − 2)yn(m − 2) gives

(λn − λ0)ρn = τ̃n − c(−1)u0(−1)
u0(0)

yn(0)2 + c(−1)yn(−1)yn(0)

+ yn(m − 1)2
[
−c(m − 1)λ0 + b(m − 1) − c(m − 1)

u0(m)
u0(m − 1)

]

− yn(m − 1)
[−c(m − 1)λnyn(m − 1) + b(m − 1)yn(m − 1) − c(m − 1)yn(m)

]

− c(m − 1)(λn − λ0)yn(m − 1)2

= τ̃n − c(−1)u0(−1)
u0(0)

yn(0)2 + c(−1)yn(−1)yn(0) − yn(m − 1)2c(m − 1)
u0(m)

u0(m − 1)

+ yn(m − 1)yn(m)c(m − 1).
(2.24)

Theorem 2.5. If ρn, as defined in Lemma 2.4, are the norming constants of (1.1) with boundary
conditions (2.2) and

ρ̃n :=
m−2∑
j=0

(−c̃(j))
(

ỹn

(
j
)

ỹn(0)

)2

(2.25)

are the norming constants of (2.5) with boundary conditions (2.14), then

ρn = (λn − λ0)ρ̃n. (2.26)

Proof. The boundary conditions (2.2) together with Lemma 2.4 give

(λn − λ0)ρn = τ̃n. (2.27)
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Now by (2.14), ỹ(−1) = 0, and thus

ỹ(0) = y(1) − u0(1)
u0(0)

y(0) = y(1) − u0(1) = −(λ − λ0). (2.28)

Therefore,

(λn − λ0)ρn =
(
ỹn(0)

)2m−2∑
j=0

(−c̃(j))
(

ỹn

(
j
)

ỹn(0)

)2

= (λn − λ0)
2
m−2∑
j=0

(−c̃(j))
(

ỹn

(
j
)

ỹn(0)

)2

. (2.29)

Thus we have that

ρn = (λn − λ0)ρ̃n. (2.30)

3. Transformation 2

3.1. Transformation of the Equation

Consider (2.5), where n = 0, . . . , m − 2 and ỹ(n), n = −1, . . . , m − 1, obeys the boundary
conditions (2.14).

Let z(n) be a solution of (2.5) with λ = λ0 such that z(n) > 0 for all n = −1, . . . , m − 1,
where λ0 is less than the least eigenvalue of (2.5), (2.14).

We want to factorise the operator lz, where

lzỹ(n) = −ỹ(n + 1) +

(
b̃(n)
c̃(n)

− λ0

)
ỹ(n) − c̃(n − 1)

c̃(n)
ỹ(n − 1) = (λ − λ0)ỹ(n), (3.1)

for n = 0, . . . , m − 2, such that lz = PR, where P and R are both formal first order difference
operators.

Theorem 3.1. Let

Pỹ(n) := ỹ(n + 1) − ỹ(n)
z(n − 1)c̃(n − 1)

z(n)c̃(n)
, n = 0, . . . , m − 2,

Rỹ(n) := ỹ(n) − ỹ(n − 1)
z(n)

z(n − 1)
, n = 0, . . . , m − 1.

(3.2)

Then lz = PR and ŷ(n) = Rỹ(n) is a solution of the transformed equation RPŷ = −(λ− λ0)ŷ giving,
for n = 1, . . . , m − 2,

l̂ŷ(n) := −ĉ(n)ŷ(n + 1) + b̂(n)ŷ(n) − ĉ(n − 1)ŷ(n − 1) = ĉ(n)λŷ(n), (3.3)



Advances in Difference Equations 11

where, for n = 0, . . . , m − 1,

ĉ(n) =
z(n − 1)c̃(n − 1)

z(n)
,

b̂(n) =
[
z(n − 1)c̃(n − 1)

z(n)c̃(n)
+

z(n)
z(n − 1)

]
z(n − 1)c̃(n − 1)

z(n)
.

(3.4)

Proof. By the definition of P and R, we get

PRỹ(n) = ỹ(n + 1) − ỹ(n)
z(n + 1)
z(n)

−
(
ỹ(n) − ỹ(n − 1)

z(n)
z(n − 1)

)
z(n − 1)c̃(n − 1)

z(n)c̃(n)

= ỹ(n + 1) − ỹ(n)

[
−λ0 − c̃(n − 1)z(n − 1)

c̃(n)z(n)
+
b̃(n)
c̃(n)

]
− ỹ(n)

z(n − 1)c̃(n − 1)
z(n)c̃(n)

+ ỹ(n − 1)
c̃(n − 1)
c̃(n)

= ỹ(n + 1) − ỹ(n)

(
b̃(n)
c̃(n)

− λ0

)
+ ỹ(n − 1)

c̃(n − 1)
c̃(n)

= −(λ − λ0)ỹ(n).

(3.5)

Hence lz = PR.
Setting ŷ(n) = Rỹ(n) gives

RPŷ(n) = R
(
PRỹ(n)

)
= −R(λ0 − λ)ỹ(n) = −(λ − λ0)ŷ(n) (3.6)

giving that ŷ is a solution of the transformed equation.
We now explicitly obtain the transformed equation. From the definitions of R and P ,

we get

RPŷ(n) = R

(
ŷ(n + 1) − ŷ(n)

z(n − 1)c̃(n − 1)
z(n)c̃(n)

)

= ŷ(n + 1) − ŷ(n)
z(n − 1)c̃(n − 1)

z(n)c̃(n)
−
[
ŷ(n) − ŷ(n − 1)

z(n − 2)c̃(n − 2)
z(n − 1)c̃(n − 1)

]
z(n)

z(n − 1)

= ŷ(n + 1) − ŷ(n)
[
z(n − 1)c̃(n − 1)

z(n)c̃(n)
+

z(n)
z(n − 1)

]
+ ŷ(n − 1)

z(n − 2)c̃(n − 2)z(n)
z(n − 1)c̃(n − 1)z(n − 1)

.

(3.7)
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This implies that

z(n − 1)c̃(n − 1)
z(n)

ŷ(n + 1) −
[
z(n − 1)c̃(n − 1)

z(n)c̃(n)
+

z(n)
z(n − 1)

]
z(n − 1)c̃(n − 1)

z(n)
ŷ(n)

+
z(n − 2)c̃(n − 2)

z(n − 1)
ŷ(n − 1) = −(λ − λ0)ŷ(n)

z(n − 1)c̃(n − 1)
z(n)

.

(3.8)

3.2. Transformation of the Boundary Conditions

At present, ŷ(n) is defined for n = 0, . . . , m − 1. We extend the definition of ŷ(n) to n =
−1, . . . , m by forcing the boundary conditions

ĥŷ(−1) + ŷ(0) = 0, Ĥŷ(m − 1) + ŷ(m) = 0, (3.9)

where

ĥ :=

[
ĉ(0)
ĉ(−1)

(
b̃(0)
c̃(0)

− z(1)
z(0)

− b̂(0)
ĉ(0)

)]−1
,

Ĥ :=
b̃(m − 2)
c̃(m − 2)

− b̂(m − 1)
ĉ(m − 1)

− z(m − 2)ĉ(m − 2)
z(m − 1)ĉ(m − 1)

.

(3.10)

Here we take ĉ(−1) = c(−1).

Theorem 3.2. The mapping ỹ �→ ŷ given by ŷ(n) = ỹ(n)− ỹ(n−1)(z(n)/z(n−1)), n = 0, . . . , m−
1, where z(n) is as previously defined (in the beginning of the section), transforms ỹ which obeys
boundary conditions (2.14) to ŷ which obeys the non-Dirichlet boundary conditions (3.9) and ŷ is a
solution of l̂ŷ(n) = λĉ(n)ŷ(n) for n = 0, . . . , m − 1.

Proof. By the construction of ĥ and Ĥ it follows that the boundary conditions (3.9) are obeyed
by ŷ.

We now show that ŷ is a solution to the extended problem. From Theorem 3.1 we need
only prove that l̂ŷ(n) = λĉ(n)ŷ(n) for n = 0 and n = m− 1. For n = 0, from (3.3)with (3.9), we
have that

ĉ(0)ŷ(1) + ĉ(−1)
(−ŷ(0)

ĥ

)
=
(
b̂(0) − ĉ(0)λ

)
ŷ(0). (3.11)

Also the mapping, for n = 0, gives

ŷ(0) = ỹ(0) − ỹ(−1) z(0)
z(−1) . (3.12)
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Thus using (2.14), we obtain that ŷ(0) = ỹ(0). So we now have

ĉ(0)ŷ(1) + ĉ(−1)
(−ỹ(0)

ĥ

)
=
(
b̂(0) − ĉ(0)λ

)
ỹ(0). (3.13)

Next, using the mapping at n = 1, we obtain that

ĉ(0)
(
ỹ(1) − ỹ(0)

z(1)
z(0)

)
+ ĉ(−1)

(−ỹ(0)
ĥ

)
=
(
b̂(0) − ĉ(0)λ

)
ỹ(0). (3.14)

Rearranging the terms above results in

ỹ(1) −
(

b̂(0)
ĉ(0)

+
ĉ(−1)
ĉ(0)ĥ

+
z(1)
z(0)

)
ỹ(0) = −λỹ(0). (3.15)

Also, (2.5), for n = 0, together with (2.14) gives

ỹ(1) − b̃(0)
c̃(0)

ỹ(0) = −λỹ(0). (3.16)

Subtracting (3.15) from (3.16) yields

ĉ(0)

(
b̃(0)
c̃(0)

− z(1)
z(0)

− b̂(0)
ĉ(0)

)
=

ĉ(−1)
ĥ

. (3.17)

In a similar manner, we can show that (3.3) also holds for n = m − 1. Hence ŷ is a solution of
l̂ŷ(n) = λĉ(n)ŷ(n) for n = 0, . . . , m − 1.

Combining Theorems 3.1 and 3.2 we obtain the corollary below.

Corollary 3.3. Let z(n) be a solution of (2.5) for λ = λ0, where λ0 is less than the least eigenvalue of
(2.5), (2.14), such that z(n) > 0 for n = −1, . . . , m − 1. Then we can transform the given equation,
(2.5), to an equation of the same type, (3.3) with a specified non-Dirichlet boundary condition, (3.9),
at either the initial or end point. The spectrum of the transformed boundary value problem (3.3), (3.9)
is the same as that of (2.5), (2.14) except for one additional eigenvalue, namely, λ0.

Proof. Theorems 3.1 and 3.2 prove that the mapping ỹ �→ ŷ, transforms eigenfunctions of
(2.5), (2.14) to eigenfunctions of (3.3), (3.9). In particular if λ1 < · · · < λm−1 are the eigenvalues
of (2.5), (2.14), n = −1, . . . , m − 1, with eigenfunctions ũ1, . . . , ũm−1, then z, ũ1, . . . , ũm−1 are
eigenfunctions of (3.3), (3.9), n = −1, . . . , m, with eigenvalues λ0, λ1, . . . , λm−1. Since the index
set of the transformed boundary value problem is precisely one larger than the original, (3.3),
(3.9) has one more eigenvalue. Hence λ0, λ1, . . . , λm−1 constitute all the eigenvalues of (3.3),
(3.9).

Thus we have proved the following.
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Corollary 3.4. The transformation of (1.1), (2.2) to (2.5), (2.14) and then to (3.3), (3.9) is an
isospectral transformation. That is, the spectrum of (1.1), (2.2) is the same as the spectrum of (3.3),
(3.9).

We now show that for a suitable choice of z(n) the transformation of (1.1), (2.2) to
(2.5), (2.14) and then to (3.3), (3.9) results in the original boundary value problem.

Without loss of generality, by a shift of the spectrum, it may be assumed that the least
eigenvalue, λ0, of (1.1), (2.2) is λ0 = 0. Furthermore, let u0(n) be an eigenfunction to (1.1),
(2.2) for the eigenvalue λ0 = 0.

Theorem 3.5. If z(n) := 1/u0(n)c(n), then z(n) is a solution of (2.5), for λ = λ0 = 0. Here λ0 = 0 is
less than the least eigenvalue of (2.5), (2.14) and z(n) has no zeros in the interval n = −1, . . . , m − 1.
In addition, ĥ = h, Ĥ = H, ĉ(n) = c(n) for n = −1, . . . , m − 1 and b̂(n) = b(n) for n = 0, . . . , m − 1.

Proof. The left hand-side of (2.5), with ỹ = z, becomes

c̃(n)z(n + 1) − b̃(n)z(n) + c̃(n − 1)z(n − 1), n = 0, . . . , m − 1, (3.18)

which, when we substitute in for z, c̃, and b̃, simplifies to zero. Obviously the right-hand side
of (2.5) is equal to 0 for λ = λ0 = 0. Thus z(n) is a solution of (2.5) for λ = λ0 = 0, where λ0 = 0
is less than the least eigenvalue of (2.5), (2.14).

Substituting for z(n), z(n − 1) and c̃(n − 1), in the equation for ĉ(n), we obtain
immediately that ĉ(n) = c(n) for n = 0, . . . , m − 1 and by assumption ĉ(−1) = c(−1).

Next, a similar substitution into the equation for b̂(n) yields

b̂(n) =
[

u0(n)c(n)
u0(n − 1)c(n − 1)

u0(n − 1)c(n − 1)u0(n + 1)
u0(n)u0(n)c(n)

+
u0(n − 1)c(n − 1)

u0(n)c(n)

]
c(n)

=
c(n)u0(n + 1) + u0(n − 1)c(n − 1)

u0(n)
.

(3.19)

But u0(n) is an eigenfunction of (1.1), (2.2) corresponding to the eigenvalue λ0 = 0, thus

b̂(n) =
−c(n)λ0u0(n) + b(n)u0(n)

u0(n)
= b(n), n = 0, . . . , m − 1. (3.20)

Lastly, by definition

ĥ =

[
ĉ(0)
ĉ(−1)

(
b̃(0)
c̃(0)

− z(1)
z(0)

− b̂(0)
ĉ(0)

)]−1
. (3.21)

Substituting in for b̂(0), ĉ(0), and using that ĉ(−1) = c(−1), we get

ĥ =

[
z(−1)c̃(−1)
z(0)c(−1)

(
b̃(0)
c̃(0)

− z(1)
z(0)

−
(
z(−1)c̃(−1)
z(0)c̃(0)

+
z(0)
z(−1)

))]−1
. (3.22)
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Since z is a solution of (2.5) for λ0 = 0, we have, for n = 0,

z(1)
z(0)

− b̃(0)
c̃(0)

+
z(−1)c̃(−1)
z(0)c̃(0)

= 0. (3.23)

Putting this into the equation for ĥ above yields

ĥ = −c(−1)
c̃(−1) . (3.24)

Substituting in for c̃(−1) gives

ĥ =
−u0(0)
u0(−1) , (3.25)

so by (2.2) ĥ = h.
Using precisely the same method, it can be easily shown that Ĥ = H.

Hence, as claimed, we have proved the following result.

Corollary 3.6. The transformation of (1.1), (2.2) to (2.5), (2.14) and then to (3.3), (3.9) with
z(n) := 1/u0(n)c(n) results in the original boundary value problem.

3.3. Transformation of the Norming Constants

Assume that we have the following normalisation: ỹ(0) = 1. A result analogous to that in
Theorem 2.5 is obtained.

Lemma 3.7. As before let ρ̃n denote the norming constants of (2.5) and be defined by

ρ̃n =
m−2∑
j=0

(−c̃(j))
(

ỹn

(
j
)

ỹn(0)

)2

=
m−2∑
j=0

(−c̃(j))ỹn

(
j
)2
. (3.26)

If τ̂n is defined by

τ̂n =
m−1∑
j=0

(−ĉ(j))ŷn

(
j
)2
, (3.27)

then,

(λn − λ0)ρ̃n = τ̂n + c̃(−1) z(0)
z(−1) ỹn(−1)2 − c̃(−1)ỹn(−1)ỹn(0) + ỹn(m)2c̃(m − 1)

z(m − 1)
z(m)

− ỹn(m − 1)ỹn(m)c̃(m − 1).

(3.28)
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Proof. Substituting in for ĉ and ŷ, we obtain that

τ̂n =
m−1∑
j=0

[
−z(j − 1

)
c̃
(
j − 1

)
z
(
j
) ỹn

(
j
)2 + 2ỹn

(
j − 1

)
ỹn

(
j
)
c̃
(
j − 1

) − ỹn

(
j − 1

)2 z
(
j
)

z
(
j − 1

) c̃(j − 1
)]

=
m−1∑
j=0

[
−z(j − 1

)
c̃
(
j − 1

)
z
(
j
) ỹn

(
j
)2 + 2ỹn

(
j − 1

)
ỹn

(
j
)
c̃
(
j − 1

)]

−
m−1∑
j=1

ỹn(j − 1)2
[
b̃
(
j − 1

) − c̃
(
j − 2

)z(j − 2
)

z
(
j − 1

) − c̃
(
j − 1

)
λ0

]
− ỹn(−1)2 z(0)

z(−1) c̃(−1)

=
m−1∑
j=1

[
2ỹn

(
j − 1

)
ỹn

(
j
)
c̃
(
j − 1

) − ỹn

(
j − 1

)2(
b̃
(
j − 1

) − c̃
(
j − 1

)
λ0
)]

− ỹn(−1)2 z(0)
z(−1) c̃(−1)

− z(m − 2)c̃(m − 2)
z(m − 1)

ỹn(m − 1)2 + 2ỹn(−1)ỹn(0)c̃(−1).
(3.29)

Then, using the definition of ρ̃n, we obtain that

(λn − λ0)ρ̃n =
m−2∑
j=0

(λn − λ0)
(−c̃(j))ỹn

(
j
)
ỹn

(
j
)

=
m−2∑
j=0

(
c̃
(
j
)
ỹn

(
j + 1

) − (
b̃
(
j
) − λ0c̃

(
j
))

ỹn

(
j
)
+ c̃

(
j − 1

)
ỹn

(
j − 1

))
ỹn

(
j
)

= 2
m−2∑
j=0

[
c̃
(
j
)
ỹn

(
j + 1

)
ỹn

(
j
)] − m−2∑

j=0

[(
b̃
(
j
) − λ0c̃

(
j
))

ỹn

(
j
)2]

+ c̃(−1)ỹn(−1)ỹn(0) − c̃(m − 2)ỹn(m − 2)ỹn(m − 1)

= τ̂n + ỹn(−1)2 z(0)
z(−1) c̃(−1) +

z(m − 2)c̃(m − 2)
z(m − 1)

ỹn(m − 1)2 − c̃(−1)ỹn(−1)ỹn(0)

− c̃(m − 2)ỹn(m − 2)ỹn(m − 1).
(3.30)

Theorem 3.8. If ρ̃n, as given in Lemma 3.7, are the norming constants of (2.5) with boundary
conditions (2.14) and

ρ̂n :=
m−1∑
j=0

(−ĉ(j))
(

ŷn

(
j
)

ŷn(0)

)2

(3.31)
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are the norming constants of (3.3) with boundary conditions (3.9), then

ρ̃n =
1

(λn − λ0)
ρ̂n. (3.32)

Proof. Using the boundary conditions (2.14) together with Lemma 3.7, we obtain that

(λn − λ0)ρ̃n = τ̂n. (3.33)

Now,

ŷ(0) = ỹ(0) = 1. (3.34)

Therefore,

(λn − λ0)ρ̃n = ŷn(0)2
m−1∑
j=0

(−ĉ(j))
(

ŷn

(
j
)

ŷn(0)

)2

=
m−1∑
j=0

(−ĉ(j))
(

ŷn

(
j
)

ŷn(0)

)2

. (3.35)

Thus,

ρ̃n =
1

(λn − λ0)
ρ̂n. (3.36)

4. Conclusion

To conclude, we illustrate how the process may be done the other way around. To do this we
start by transforming a second-order difference equation with Dirichlet boundary conditions
at both ends to a second-order difference equation of the same type with non-Dirichlet
boundary conditions at both ends and then transform this back to the original boundary
value problem.

Consider ṽ(n) such that ṽ(n) satisfies (2.5) and (2.14). The mapping ṽ �→ v̂, given by

v̂(n) = ṽ(n) − ṽ(n − 1)
z(n)

z(n − 1)
, n = 0, . . . , m − 1, (4.1)

can be extended to include v̂(−1) and v̂(m) by forcing (3.9). Here z(n) is a solution of (2.5)
for λ = λ0 = 0, with λ0 less than the least eigenvalue of (2.5), (2.14) such that z(n) > 0 for
all n = −1, . . . , m − 1. The mapping ṽ �→ v̂ then gives that v̂(n) satisfies (3.3) and (3.9). So
(3.3), (3.9) has the same spectrum as (2.5), (2.14) except that one eigenvalue has been added,
namely, λ = λ0 = 0.

Now the mapping v̂ �→ v given by

v(n) = v̂(n + 1) − v̂(n)
u0(n + 1)
u0(n)

, n = −1, . . . , m − 1, (4.2)
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where u0(n) is an eigenfunction of (3.3), (3.9) corresponding to the eigenvalue λ0 = 0 yields

c(n)v(n + 1) − b(n)v(n) + c(n − 1)v(n − 1) = −c(n)λv(n), n = 0, . . . , m − 2, (4.3)

where

c(n) =
u0(n)ĉ(n)
u0(n + 1)

> 0,

b(n) =

[
u0(n)ĉ(n)

u0(n + 1)ĉ(n + 1)
− ĉ(n − 1)u0(n − 1)

ĉ(n)u0(n)
+
b̂(n)
ĉ(n)

− λ0

]
u0(n)ĉ(n)
u0(n + 1)

,

(4.4)

with boundary conditions

v(−1) = 0, v(m − 1) = 0. (4.5)

Thus this boundary value problem in v has the same spectrum as that of (3.3), (3.9) but with
one eigenvalue removed, namely, λ = λ0 = 0.

Lemma 4.1. Let u0(n) := 1/z(n − 1)c̃(n − 1), where z(n) is a solution of (2.5) with λ = λ0 = 0,
where λ0 is less than the least eigenvalue of (2.5), (2.14), such that z(n) > 0 for all n = −1, . . . , m−1.
Then u0(n) is an eigenfunction of (3.3), (3.9) corresponding to the eigenvalue λ0 = 0, where we define
u0(0) via l̂u0(1) = 0 and u0(−1) = −u0(0)/ĥ.

Proof. By construction, we have that

ĥu0(−1) + u0(0) = 0. (4.6)

Also

Ĥ =
b̃(m − 2)
c̃(m − 2)

− b̂(m − 1)
ĉ(m − 1)

− z(m − 2)
z(m − 1)

ĉ(m − 2)
ĉ(m − 1)

. (4.7)

By substituting in for b̂(m − 1), ĉ(m − 1) and ĉ(m − 2), we obtain

Ĥ =
b̃(m − 2)
c̃(m − 2)

− z(m − 2)
z(m − 1)

c̃(m − 2)
c̃(m − 1)

− z(m − 1)
z(m − 2)

− z(m − 3)c̃(m − 3)
z(m − 2)c̃(m − 2)

. (4.8)

Thus

Ĥ = − z(m − 2)
z(m − 1)

c̃(m − 2)
c̃(m − 1)

. (4.9)
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Hence substituting the expressions for u0(m−1), u0(m), and Ĥ into the above equation yields

Ĥu0(m − 1) + u0(m) = 0. (4.10)

Thus u0(n) obeys the boundary conditions (3.9).
Next, we show that u0(n) solves (3.3). Substituting in for u0(n), we obtain that, for

n = 1, . . . , m − 1,

ĉ(n)u0(n+1)−b̂(n)u0(n)+ĉ(n−1)u0(n−1) = ĉ(n)
z(n)c̃(n)

− b̂(n)
z(n − 1)c̃(n − 1)

+
ĉ(n−1)

z(n−2)c̃(n−2) .
(4.11)

Using the expressions for ĉ and b̂, we obtain by direct substitution that

ĉ(n)u0(n + 1) − b̂(n)u0(n) + ĉ(n − 1)u0(n − 1) = 0, n = 1, . . . , m − 1. (4.12)

Now, if we examine the right-hand side of (3.3), we immediately see that it is equal to 0 for
λ0 = 0.

We now show that u0(n) solves (3.3) for n = 0 as well, that is l̂u0(0) = 0. By (3.3) for
λ0 = 0,

l̂u0(0) = −ĉ(0)u0(1) + b̂(0)u0(0) − ĉ(−1)u0(−1). (4.13)

Using u0(−1) = − u0(0)/ĥ,

l̂u0(0) = −ĉ(0)u0(1) +
(
b̂(0) +

ĉ(−1)
ĥ

)
u0(0). (4.14)

Now, l̂u0(1) = 0 gives

u0(0) = − ĉ(1)u0(2) + b̂(1)u0(1)
ĉ(0)

. (4.15)

Thus,

l̂u0(0) = −ĉ(0)u0(1) +
b̂(0)
ĉ(0)

(
−ĉ(1)u0(2) + b̂(1)u0(1)

)
+
ĉ(−1)
ĥĉ(0)

(
−ĉ(1)u0(2) + b̂(1)u0(1)

)
.

(4.16)
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Substituting in for ĉ(n), b̂(n), n = 0, 1, and u0(n), n = 1, 2, we obtain that

l̂u0(0) =
(
z(−1)c̃(−1)
z(0)c̃(0)

+
z(0)
z(−1)

)[
− z(0)c̃(0)

z(1)
1

z(1)c̃(1)
+

1
z(1)

(
z(0)c̃(0)
z(1)c̃(1)

+
z(1)
z(0)

)]

+
ĉ(−1)
ĥĉ(0)

[
− z(0)c̃(0)

z(1)
1

z(1)c̃(1)
+

1
z(1)

(
z(0)c̃(0)
z(1)c̃(1)

+
z(1)
z(0)

)]
− z(−1)c̃(−1)

z(0)
1

z(0)c̃(0)
.

(4.17)

Note that

ĉ(−1)
ĥĉ(0)

=
b̃(0)
c̃(0)

− z(1)
z(0)

− b̂(0)
ĉ(0)

, (4.18)

which when we substitute in for b̂(0) and ĉ(0) becomes

ĉ(−1)
ĥĉ(0)

=
b̃(0)
c̃(0)

− z(1)
z(0)

− z(−1)c̃(−1)
z(0)c̃(0)

− z(0)
z(−1) . (4.19)

Hence,

l̂u0(0) = −z(−1)c̃(−1)
z(0)

1
z(0)c̃(0)

+

(
b̃(0)
c̃(0)

− z(1)
z(0)

)[
− z(0)c̃(0)

z(1)
1

z(1)c̃(1)
+

z(0)c̃(0)
z(1)c̃(1)z(1)

+
1

z(0)

]
.

(4.20)

From (2.5) for n = 0 and λ0 = 0, we have that

− b̃(0)
c̃(0)

+
z(1)
z(0)

+
c̃(−1)z(−1)
c̃(0)z(0)

= 0. (4.21)

Therefore,

l̂u0(0) = −z(−1)c̃(−1)
z(0)

1
z(0)c̃(0)

+
c̃(−1)z(−1)
c̃(0)z(0)

[
− z(0)c̃(0)

z(1)
1

z(1)c̃(1)
+

z(0)c̃(0)
z(1)c̃(1)z(1)

+
1

z(0)

]
,

(4.22)

giving by a straightforward calculation

l̂u0(0) = 0. (4.23)

Thus u0(n) is a solution for (3.3), n = 0, . . . , m − 1 and hence an eigenfunction of (3.3), (3.9)
corresponding to the eigenvalue λ0 = 0.
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Theorem 4.2. The boundary value problem (4.3) with boundary conditions

v(−1) = 0, v(m − 1) = 0, (4.24)

is the same as the original boundary value problem for ṽ(n), that is, (2.5) and (2.14), where u0(n) is
as in Lemma 4.1.

Proof. All we need to show is that c(n) = c̃(n) and b(n) = b̃(n). Substituting in for u0 gives
directly that

c(n) = c̃(n). (4.25)

Now,

b(n) =

[
u0(n)ĉ(n)

u0(n + 1)ĉ(n + 1)
− ĉ(n − 1)u0(n − 1)

ĉ(n)u0(n)
+
b̂(n)
ĉ(n)

− λ0

]
u0(n)ĉ(n)
u0(n + 1)

, (4.26)

which since c(n) = c̃(n) and c(n) = u0(n)ĉ(n)/u0(n + 1) gives

b(n) =
[

c̃(n)
ĉ(n + 1)

− c̃(n − 1)
ĉ(n)

+
z(n − 1)c̃(n − 1)

z(n)c̃(n)
+

z(n)
z(n − 1)

− λ0

]
c̃(n). (4.27)

Using the expression for ĉ, we obtain that

b(n) =
[
c̃(n)z(n + 1)
c̃(n)z(n)

− c̃(n − 1)z(n)
c̃(n − 1)z(n − 1)

+
z(n − 1)c̃(n − 1)

z(n)c̃(n)
+

z(n)
z(n − 1)

− λ0

]
c̃(n). (4.28)

But z(n) obeys (2.5) for λ = λ0 = 0 thus

b(n) =

[
b̃(n)z(n)
z(n)c̃(n)

]
c̃(n) = b̃(n). (4.29)
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