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We present a new generating function related to the q-Bernoulli numbers and q-Bernoulli
polynomials. We give a new construction of these numbers and polynomials related to the
second-kind Stirling numbers and q-Bernstein polynomials. We also consider the generalized q-
Bernoulli polynomials attached to Dirichlet’s character χ and have their generating function. We
obtain distribution relations for the q-Bernoulli polynomials and have some identities involving
q-Bernoulli numbers and polynomials related to the second kind Stirling numbers and q-Bernstein
polynomials. Finally, we derive the q-extensions of zeta functions from the Mellin transformation
of this generating function which interpolates the q-Bernoulli polynomials at negative integers and
is associated with q-Bernstein polynomials.

1. Introduction, Definitions, and Notations

Let C be the complex number field. We assume that q ∈ C with |q| < 1 and that the q-number
is defined by [x]q = (qx − 1)/(q − 1) in this paper.

Many mathematicians have studied q-Bernoulli, q-Euler polynomials, and related
topics (see [1–23]). It is known that the Bernoulli polynomials are defined by

t

et − 1
ext =

∞∑

n=0

Bn(x)
tn

n!
, for |t| < 2π, (1.1)

and that Bn = Bn(0) are called the nth Bernoulli numbers.
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The recurrence formula for the classical Bernoulli numbers Bn is as follows,

B0 = 1, (B + 1)n − Bn = 0, if n > 0 (1.2)

(see [1, 3, 23]). The q-extension of the following recurrence formula for the Bernoulli numbers
is

B0,q = 1, q
(
qB + 1

)n − Bn,q =

⎧
⎨

⎩
1, if n = 1,

0, if n > 1,
(1.3)

with the usual convention of replacing Bn by Bn,q (see [5, 7, 14]).
Now, by introducing the following well-known identities

[
x + y

]
q = [x]q + qx

[
y
]
q, [−x]q = − 1

qx
[x]q,

[
xy
]
q = [x]q

[
y
]
qx (1.4)

(see [6]).
The generating functions of the second kind Stirling numbers and q-Bernstein

polynomials, respectively, can be defined as follows,

(
et − 1

)k

k!
=

∞∑

n=0

S(n, k)
tn

n!
, (1.5)

Fk

(
x, t; q

)
=

(
t[x]q

)k

k!
et[1−x]q =

∞∑

n=0

Bk,n

(
x; q
) tn

n!
, t ∈ C, k = 0, 1, . . . , n (1.6)

(see [2]), where limq→ 1Fk(x, t; q) = Fk(t, x) = ((tx)k/k!)et(1−x) (see [4]).
Throughout this paper,Z,Q,Zp,Qp, andCp will respectively denote the ring of rational

integers, the field of rational numbers, the ring p-adic rational integers, the field of p-adic
rational numbers, and the completion of the algebraic closure of Qp. Let vp be the normalized
exponential valuation of Cp such that |p|p = p−vp(p) = 1/p. If q ∈ Cp, we normally assume

|q − 1|p < p−1/(p−1) or |1 − q|p < 1 so that qx = exp(x log q) for |x|p ≤ 1 (see [7–19]).
In this study, we present a new generating function related to the q-Bernoulli

numbers and q-Bernoulli polynomials and give a new construction of these numbers and
polynomials related to the second kind Stirling numbers and q-Bernstein polynomials. We
also consider the generalized q-Bernoulli polynomials attached to Dirichlet’s character χ
and have their generating function. We obtain distribution relations for the q-Bernoulli
polynomials and have some identities involving q-Bernoulli numbers and polynomials
related to the second kind Stirling numbers and q-Bernstein polynomials. Finally, we derive
the q-extensions of zeta functions from the Mellin transformation of this generating function
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which interpolates the q-Bernoulli polynomials at negative integers and are associated with
q-Bernstein polynomials.

2. New Approach to q-Bernoulli Numbers and Polynomials

Let N be the set of natural numbers and N
∗ = N ∪ {0}. For q ∈ C with |q| < 1, let us define the

q-Bernoulli polynomials Bn,q(x) as follows,

Dq(t, x) = −t
∞∑

y=0

qye[x+y]t =
∞∑

n=0

Bn,q(x)
tn

n!
. (2.1)

Note that

lim
q→ 1

Dq(t, x) =
t

et − 1
ext =

∞∑

n=0

Bn(x)
tn

n!
, |t| < 2π, (2.2)

where Bn(x) are classical Bernoulli polynomials. In the special case x = 0, Bn,q = Bn,q(0) are
called the nth q-Bernoulli numbers. That is,

Dq(t) = Dq(t, 0) = −t
∞∑

y=0

qye[y]t =
∞∑

n=0

Bn,q
tn

n!
. (2.3)

From (2.1) and (2.3), we note that

qDq(t, 1) −Dq(t) = qetDq

(
qt
) −Dq(t)

= q

( ∞∑

l=0

tl

l!

)( ∞∑

m=0

qmBm,q
tm

m!

)
−

∞∑

n=0

Bn,q
tn

n!

= q
∞∑

n=0

(
n∑

l=0

(
n

l

)
qlBl,q

)
tn

n!
−

∞∑

n=0

Bn,q
tn

n!
.

(2.4)

From (2.1) and (2.3), we can easily derive the following equation:

qDq(t, 1) −Dq(t) = 1. (2.5)

Equations (2.4) and (2.5), we see that B0,q = 1 and

n∑

l=0

(
n

l

)
ql+1Bl,q − Bn,q =

⎧
⎨

⎩

1, if n = 0

0, if n > 0.
(2.6)

Therefore, we obtain the following theorem.
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Theorem 2.1. For n ∈ N
∗, one has

B0,q = 1, q
(
qB + 1

)n − Bn,q =

⎧
⎨

⎩
1, if n = 0

0, if n > 0.
(2.7)

with the usual convention of replacing Bi and Bi,q.
From (2.1), one notes that

Dq(t, x) = e[x]qtDq

(
qxt
)

=

( ∞∑

n=0
[x]nq

tn

n!

)( ∞∑

n=0

qnxBn,q
tn

n!

)

=
∞∑

n=0

(
n∑

l=0

(
n

l

)
qlxBl,q[x]n−lq

)
tn

n!
.

(2.8)

Therefore, one obtains the following theorem.

Theorem 2.2. For n ∈ N
∗, one has

Bn,q(x) =
n∑

l=0

(
n

l

)
qlxBl,q[x]n−lq . (2.9)

By (2.1), one sees that

Dq(t, x) =
∞∑

n=0

(
−t

∞∑

m=0

qm[x +m]nq

)
tn

n!

=
∞∑

n=0

(
1

(
1 − q

)n
n∑

l=0

(
n

l

)
(−1)lqlx l + 1

[l + 1]q

)
tn

n!
.

(2.10)

By (2.1) and (2.10), one obtains the following theorem.

Theorem 2.3. For n ∈ N
∗, one has

Bn,q(x) =
1

(
1 − q

)n
n∑

l=0

(
n

l

)
(−1)lqlx l + 1

[l + 1]q
. (2.11)

From (2.11) one can derive that, for s ∈ N,

Dq(t, x) =
s−1∑

a=0

qaDqs

(
t[s]q,

x + a

s

)
. (2.12)
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By (2.12), one sees that, for s ∈ N,

∞∑

n=0

Bn,q(x)
tn

n!
=

∞∑

n=0

(
[s]nq

s−1∑

a=0

qaBn,qs

(
x + a

s

))
tn

n!
. (2.13)

Therefore, one obtains the following theorem.

Theorem 2.4. For s ∈ N
∗, one has

Bn,q(x) = [s]nq
s−1∑

a=0

qaBn,qs

(
x + a

s

)
. (2.14)

In (2.9), substitute 1 − x instead of x, one obtains

Bn,q(1 − x) =
n∑

v=0

(
n

v

)
Bv,qq

v(1−x)[1 − x]n−vq

=
n∑

v=0

(
n

v

)
[x]vq[1 − x]n−vq Bv,q · qv(1−x)[x]−vq

=
∞∑

m=0

n∑

v=0

Bv,n

(
x; q
)
(
v +m − 1

m

)
qv
(
1 − q

)m[x]m−v
q Bv,q,

(2.15)

which is the relation between q-Bernoulli polynomials, q-Bernoulli numbers, and q-Bernstein
polynomials. In (1.5), substitute (x log q) instead of t, one gets

[x]kq =
k!

(
q − 1

)k
∞∑

y=0

S
(
y, k
)(
x log q

)y

y!
. (2.16)

In (2.16), substitute m − v instead of k, and putting the result in (2.15), one has the following
theorem.

Theorem 2.5. For n ∈ N
∗ and |q| < 1, one has

Bn,q(x) =
∞∑

m,y=0

n∑

v=0

v∑

j=0

(
v +m − 1

m

)(
v

j

)
(−1)m−v+j(m − v)!qv+j

y!

× S
(
y,m − v

)
Bn−v,n

(
x; q
)
Bv,q

(
x log q

)y
,

(2.17)

whereS(k, n)and Bk,n(x; q) are the second kind Stirling numbers and q-Bernstein polynomials,
respectively.



6 Advances in Difference Equations

Let χ be Dirichlet’s character with s ∈ N. Then, one defines the generalized q-Bernoulli
polynomials attached to χ as follows,

Dq,χ(t, x) = −t
∞∑

d=0

χ(d)qde[d+x]qt =
∞∑

n=0

Bn,χ,q(x)
tn

n!
. (2.18)

In the special case x = 0, Bn,χ,q = Bn,χ,q(0) are called the nth generalized q-Bernoulli
numbers attached to χ. Thus, the generating function of the generalized q-Bernoulli numbers
attached to χ are as follows,

Dq,χ(t, x) = −t
∞∑

d=0

χ(d)qde[d]qt

=
∞∑

n=0

Bn,χ,q
tn

n!
.

(2.19)

By (2.1) and (2.18), one sees that

Dq,χ(t, x) =
s−1∑

a=0

qaχ(a)Dqs

(
t[s]q,

x + a

s

)

=
∞∑

n=0

(
[s]nq

s−1∑

a=0

qaχ(a)Bn,qs

(
x + a

s

))
tn

n!
.

(2.20)

Therefore, one obtains the following theorem.

Theorem 2.6. For n ∈ N
∗ and s ∈ N, one has

Bn,χ,q(x) = [s]nq
s−1∑

a=0

qaχ(a)Bn,qs

(
x + a

s

)
. (2.21)

By (2.18) and (2.19), one sees that

Dq,χ(t, x) = e[x]qtDq,χ

(
qxt
)
=

∞∑

n=0

(
n∑

d=0

(
n

d

)
qdx[x]n−dq Bd,χ,q

)
tn

n!
. (2.22)

Hence,

Bn,χ,q(x) =
n∑

d=0

(
n

d

)
qdx[x]n−dq Bd,χ,q. (2.23)
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For s ∈ C, one now considers the Mellin transformation for the generating function of
Dq(t, x). That is,

1
Γ(s)

∫∞

0
Dq(−t, x)ts−2dt =

∞∑

n=0

qn

[x + n]sq
, (2.24)

for s ∈ C, and x /= 0,−1,−2, . . ..

From (2.24), one defines the zeta type function as follows,

ζ�q(s, x) =
∞∑

n=0

qn

[x + n]sq
, s ∈ C, x /= 0,−1,−2, . . . . (2.25)

Note that ζ�q(s, x) is an analytic function in the whole complex s-plane. Using the Laurent
series and the Cauchy residue theorem, one has

−nζ�q(1 − n, x) = Bn,q(x), for n ∈ N
∗. (2.26)

By the same method, one can also obtain the following equations:

1
Γ(s)

∫∞

0
Dq,χ(−t, x)ts−2dt =

∞∑

n=0

χ(n)qn

[n + x]sq
. (2.27)

For s ∈ C,one defines Dirichlet type q-l-function as

lq
(
s, x | χ) =

∞∑

n=0

χ(n)qn

[n + x]sq
, (2.28)

where x /= 0,−1,−2, . . .. Note that lq(s, x | χ) is also a holomorphic function in the whole
complex s-plane. From the Laurent series and the Cauchy residue theorem, one can also
derive the following equation:

−nlq
(
1 − n, x | χ) = Bn,χ,q(x). (2.29)

In (2.23), substitute 1 − x instead of x, one obtains

Bn,χ,q(1 − x) =
n∑

v=0

(
n

v

)
Bv,χ,qq

v(1−x)[1 − x]n−vq

=
n∑

v=0

(
n

v

)
[x]vq[1 − x]n−vq Bv,χ,q · qv(1−x)[x]−vq

=
∞∑

m=0

n∑

v=0

Bv,n

(
x; q
)
(
v +m − 1

m

)
qv
(
1 − q

)m[x]m−v
q Bv,χ,q,

(2.30)
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which is the relation between the nth generalized q-Bernoulli numbers and q-Bernoulli
polynomials attached to χ and q-Bernstein polynomials. From (2.16), one has the following
theorem.

Theorem 2.7. For n ∈ N
∗ and |q| < 1, one has

Bn,χ,q(x) =
∞∑

m,y=0

n∑

v=0

v∑

j=0

(
v +m − 1

m

)(
v

j

)
(−1)m−v+j(m − v)!qv+j

y!

× S
(
y,m − v

)
Bn−v,n

(
x; q
)
Bv,χ,q

(
x log q

)y
.

(2.31)

One now defines particular q-zeta function as follows,

Hq(s, a | F) =
∑

m≡a( mod F)

qm

[m]sq
. (2.32)

From (2.32), one has

Hq(s, a | F) = qa

[F]sq
ζ∗
qF

(
s,

a

F

)
, (2.33)

where ζ∗
qF
(s, a/F) is given by (2.25). By (2.26), one has

Hq(1 − n, a | F) = −
qa[F]n−1q Bn,qF (a/F)

n
, n ∈ N. (2.34)

Therefore, one obtains the following theorem.

Theorem 2.8. For n ∈ N, we have

Bn,qF

(a
F

)
= −nHq(1 − n, a | F)

qa[F]n−1q

. (2.35)
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