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We consider a delayed Holling type II predator-prey system with birth pulse and impulsive
harvesting on predator population at different moments. Firstly, we prove that all solutions of the
investigated system are uniformly ultimately bounded. Secondly, the conditions of the globally
attractive prey-extinction boundary periodic solution of the investigated system are obtained.
Finally, the permanence of the investigated system is also obtained. Our results provide reliable
tactic basis for the practical biological economics management.

1. Introduction

Theories of impulsive differential equations have been introduced into population dynamics
lately [1, 2]. Impulsive equations are found in almost every domain of applied science and
have been studied in many investigation [3–11], they generally describe phenomena which
are subject to steep or instantaneous changes. In [11], Jiao et al. suggested releasing pesticides
is combined with transmitting infective pests into an SI model. This may be accomplished
using selecting pesticides and timing the application to avoid periods when the infective
pesticides would be exposed or placing the pesticides in a location where the transmitting
infective pests would not contact it. So an impulsive differential equation tomodel the process
of releasing infective pests and spraying pesticides at different fixedmoment was represented
as

dS(t)
dt

= rS(t)
(
1 − S(t) + θI(t)

K

)
− βS(t)I(t),

dI(t)
dt

= βS(t)I(t) − I(t),
t /= (n − 1 + l)τ, t /=nτ,
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ΔS(t) = −μ1S(t),

ΔI(t) = −μ2I(t),
t = (n − 1 + l)τ, n = 1, 2, . . . ,

ΔS(t) = 0,

ΔI(t) = μ,
t = nτ, n = 1, 2, . . . .

(1.1)

The biological meaning of the parameters in System (1.1) can refer to Literature [11].
Clack [12] has studied the optimal harvesting of the logistic equation, a logistic

equation without exploitation as follows:

dx(t)
dt

= rx(t)
(
1 − x(t)

K

)
, (1.2)

where x(t) represents the density of the resource population at time t, r is the intrinsic growth
rate. the positive constant K is usually referred as the environmental carrying capacity or
saturation level. Suppose that the population described by logistic equation (1.1) is subject to
harvesting at rate h(t) = constant or under the catch-per-unit effort hypothesis h(t) = Ex(t).
Then the equations of the harvested population revise, respectively, as following

dx(t)
dt

= rx(t)
(
1 − x(t)

K

)
− h, (1.3)

or

dx(t)
dt

= rx(t)
(
1 − x(t)

K

)
− Ex(t), (1.4)

where E denotes the harvesting effort.
Moreover, in most models of population dynamics, increase in population due to birth

are assumed to be time dependent, but many species reproduce only during a period of the
year. In between these pulses of growth, mortality takes its toll, and the population decreases.
In this paper, we suggest impulsive differential equations to model the process of periodic
birth pulse and impulsive harvesting. Combining (1.2) and (1.4), we can obtain a single
population model with birth pulse and impulsive harvesting at different moments

dx(t)
dt

= −dx(t), t /= (n + l)τ, t /= (n + 1)τ,

Δx(t) = x(t)(a − bx(t)), t = (n + l)τ,

Δx(t) = −μx(t), t = (n + 1)τ, n ∈ Z+,

(1.5)

where x(t) is the density of the population. d is the death rate. The population is birth pulse
as intrinsic rate of natural increase and density dependence rate of predator population are
denoted by a, b, respectively. The pulse birth and impulsive harvesting occurs every τ period
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(τ is a positive constant). Δx(t) = x(t+) − x(t). x(t)(a − bx(t)) represents the birth effort of
predator population at t = (n + l)τ , 0 < l < 1, n ∈ Z+. 0 ≤ μ ≤ 1 represents the harvesting
effort of predator population at t = (n + 1)τ , n ∈ Z+.

But in the natural world, there are many species (especially insects) whose individual
members have a life history that takes them through two stages, immature and mature. In
[13], a stage-structured model of population growth consisting of immature and mature
individuals was analyzed, where the stage-structured was modeled by introduction of a
constant time delay. Other models of population growth with time delays were considered in
[3, 5–7, 13]. The following single- species stage-structured model was introduced by Aiello
and Freedman [14] as follows:

x′(t) = βy(t) − rx(t) − βe−rτy(t − τ),

y′(t) = βe−rτy(t − τ) − η2y
2(t),

(1.6)

where x(t), y(t) represent the immature and mature populations densities, respectively, τ
represents a constant time to maturity, and β, r and η2 are positive constants. This model is
derived as follows. We assume that at any time t > 0, birth into the immature population
is proportional to the existing mature population with proportionality constant β. We then
assume that the death rate of immature population is proportional to the existing immature
population with proportionality constant r. We also assume that the death rate of mature
population is of a logistic nature, that is, proportional to the square of the population with
proportionality constant η2. In this paper, we consider a delayed Holling type II predator-
prey system with birth pulse and impulsive harvesting on predator population at different
moments.

The organization of this paper is as follows. In the next section, we introduce the
model. In Section 3, some important lemmas are presented. In Section 4, we give the globally
asymptotically stable conditions of prey-extinction periodic solution of System (2.1), and the
permanent condition of System (2.1). In Section 5, a brief discussion is given in the last section
to conclude this paper.

2. The Model

In this paper, we consider a delayed Holling type II predator-prey model with birth pulse
and impulsive harvesting on predator population at different moments

dx1(t)
dt

= rx2(t) − re−wτ1x2(t − τ1) −wx1(t),

dx2(t)
dt

= re−wτ1x2(t − τ1) −
βx2(t)

m + x2(t)
y(t) − d1x2(t),

dy(t)
dt

=
kβx2(t)
m + x2(t)

y(t) − d2y(t),

t /= (n + l)τ, t /= (n + 1)τ,

Δx1(t) = 0,

Δx2(t) = 0,

Δy(t) = y(t)
(
a − by(t)

)
,

t = (n + l)τ, n = 1, 2 . . . ,
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Δx1(t) = 0,

Δx2(t) = 0,

Δy(t) = −μy(t),
t = (n + 1)τ, n = 1, 2 . . . ,

(2.1)

the initial conditions for (2.1) are

(
ϕ1(ζ), ϕ2(ζ), ϕ3(ζ)

) ∈ C+ = C
(
[−τ1, 0], R3

+

)
, ϕi(0) > 0, i = 1, 2, 3, (2.2)

where x1(t), x2(t) represent the densities of the immature and mature prey populations,
respectively. y(t) represents the density of predator population. r > 0 is the intrinsic growth
rate of prey population. τ1 represents a constant time to maturity. w is the natural death rate
of the immature prey population. d1 is the natural death rate of the mature prey population.
d2 is the natural death rate of the predator population. The predator population consumes
prey population following a Holling type-II functional response with predation coefficients
β, and half-saturation constantm. k is the rate of conversion of nutrients into the reproduction
rate of the predators. The predator population is birth pulse as intrinsic rate of natural
increase and density dependence rate of predator population are denoted by a, b, respectively.
The pulse birth and impulsive harvesting occurs every τ period (τ is a positive constant).
Δy(t) = y(t+) − y(t). y(t)(a − by(t)) represents the birth effort of predator population at
t = (n+ l)τ , 0 < l < 1, n ∈ Z+. 0 ≤ μ ≤ 1 represents the harvesting effort of predator population
at t = (n + 1)τ , n ∈ Z+. In this paper, we always assume that τ < (1/d) ln(1 + a).

Before going into any details, we simplify model (2.1) and restrict our attention to the
following model:

dx2(t)
dt

= re−wτ1x2(t − τ1) −
βx2(t)

m + x2(t)
y(t) − d1x2(t),

dy(t)
dt

=
kβx2(t)
m + x2(t)

y(t) − d2y(t),
t /= (n + l)τ, t /= (n + 1)τ,

Δx2(t) = 0,

Δy(t) = y(t)
(
a − by(t)

)
,

t = (n + l)τ, n = 1, 2, . . . ,

Δx2(t) = 0,

Δy(t) = −μy(t),
t = (n + 1)τ, n = 1, 2, . . . ,

(2.3)

the initial conditions for (2.3) are

(
ϕ2(ζ), ϕ3(ζ)

) ∈ C+ = C
(
[−τ1, 0], R2

+

)
, ϕi(0) > 0, i = 2, 3. (2.4)

3. The Lemma

Before discussing main results, we will give some definitions, notations and lemmas. Let
R+ = [0,∞), R3

+ = {x ∈ R3 : x > 0}. Denote f = (f1, f2, f3) the map defined by the right hand
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of system (2.1). Let V : R+ × R3
+ → R+, then V is said to belong to class V0, if

(i) V is continuous in (nτ, (n + l)τ] × R3
+ and ((n + l)τ, (n + 1)τ] × R3

+, for each x ∈ R3
+,

n ∈ Z+, lim(t,y)→ ((n+l)τ+,x)V (t, y) = V ((n + l)τ+, x) and lim(t,y)→ ((n+1)τ+,x)V (t, y) =
V ((n + 1)τ+, x) exist.

(ii) V is locally Lipschitzian in x.

Definition 3.1. V ∈ V0, then for (t, z) ∈ (nτ, (n+ l)τ]×R3
+ and ((n+ l)τ, (n+1)τ]×R3

+, the upper
right derivative of V (t, z) with respect to the impulsive differential system (2.1) is defined as

D+V (t, z) = lim
h→ 0

sup
1
h

[
V
(
t + h, z + hf(t, z)

) − V (t, z)
]
. (3.1)

The solution of (2.1), denote by z(t) = (x(t), y(t))T , is a piecewise continuous function x:R+ →
R3

+, z(t) is continuous on (nτ, (n + l)τ] × R3
+ and ((n + l)τ , (n + 1)τ] × R3

+(n ∈ Z+, 0 ≤ l ≤ 1).
Obviously, the global existence and uniqueness of solutions of (2.1) is guaranteed by the
smoothness properties of f , which denotes the mapping defined by right-side of system (2.1)
Lakshmikantham et al. [1]. Before we have the the main results. we need give some lemmas
which will be used as follows.

Now, we show that all solutions of (2.1) are uniformly ultimately bounded.

Lemma 3.2. There exists a constant M > 0 such that x1(t) ≤ M/k, x2(t) ≤ M/k, y(t) ≤ M for
each solution (x1(t), x2(t), y(t)) of (2.1) with all t large enough.

Proof. Define V (t) = kx1(t) + kx2(t) + y(t).
(i) If d1 > r, then d = min{d1, d2, d1 − r}, when t /=nτ , we have

D+V (t) + dV (t) = −k(d1 − r − d)x1(t) − k(d2 − d)x2(t) − (d2 − d)y(t) Δ= ξ ≤ 0. (3.2)

When t = (n + l − 1)τ,

V ((n + l)τ+) = kx((n + l)τ) + y((n + l)τ) + y((n + l)τ)
(
a − by((n + l)τ)

)

= V ((n + l)τ) − b
(
y((n + l)τ) − a

2b

)2
+
a2

4b

≤ V ((n + l)τ) +
a2

4b
.

(3.3)

For convenience, we make a notation as ξ1
Δ= a2/4b. When t = nτ,

V ((n + 1)τ+) = kx((n + 1)τ) +
(
1 − μ

)
y((n + 1)τ) ≤ V ((n + 1)τ). (3.4)
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From [17, Lemma 2.2, Page 23] for t ∈ ((n − 1)τ, (n + l − 1)τ] and ((n + l − 1)τ, nτ], we have

V (t) ≤ V (0+)e−dt +
ξ

d

(
1 − e−dt

)
+ ξ1

e−d(t−τ)

1 − e−dτ
+ ξ1

edτ

edτ − 1
−→ ξ

d
+ ξ1

edτ

edτ − 1
, as t −→ ∞.

(3.5)

(ii) If d1 < r, then d = 0, we can easily obtain

V (t) ≤ V (0+), as t −→ ∞. (3.6)

SoV (t) is uniformly ultimately bounded. Hence, by the definition of V (t), there exists a
constantM > 0 such that x(t) ≤ M/k, y(t) ≤ M for t large enough. The proof is complete.

If x(t) = 0, we have the following subsystem of System (2.1):

dy(t)
dt

= −d2y(t), t /= (n + l)τ, t /= (n + 1)τ,

Δy(t) = y(t)
(
a − by(t)

)
, t = (n + l)τ,

Δy(t) = −μy(t), t = (n + 1)τ, n ∈ Z+.

(3.7)

We can easily obtain the analytic solution of System (3.7) between pulses, that is,

y(t) =

⎧⎨
⎩
y(nτ+)e−d2(t−nτ), t ∈ [nτ, (n + l)τ),
[
(1 + a)e−d2lτy(nτ+) + be−2d2lτy2(nτ+)

]
e−d2(t−(n+l)τ), t ∈ [(n + l)τ, (n + 1)τ).

(3.8)

Considering the last two equations of system (3.7), we have the stroboscopic map of System
(3.7) as follows:

y((n + 1)τ+) =
(
1 − μ

)
(1 + a)e−d2τy(nτ+) − (1 − μ

)
be−d2(1+l)τy2(nτ+). (3.9)

The are two fixed points of (3.9) are obtained as G1(0) and G2(y∗), where

y∗ =
1 + a

b
ed2lτ − 1(

1 − μ
)
b
ed2(1+l)τ with μ < 1 − 1

1 + a
ed2τ . (3.10)

Lemma 3.3. (i) If μ > 1 − (1/(1 + a))ed2τ , the fixed point G1(0) is globally asymptotically stable;
(ii) if μ < 1 − (1/(1 + a))ed2τ , the fixed point G2(y∗) is globally asymptotically stable.

Proof. For convenience, make notation yn = y(nτ+), then Difference equation (3.9) can be
rewritten as

yn+1 = F
(
yn

)
. (3.11)
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(i) If μ > 1 − (1/(1 + a))ed2τ , G1(0) is the unique fixed point, we have

dF(y)
dy

∣∣∣∣
y=0

=
(
1 − μ

)
(1 + a)e−d2τ < 1, (3.12)

then G1(0) is globally asymptotically stable.

(ii) If μ < 1 − (1/(1 + a))ed2τ , G1(0) is unstable. For

dF(y)
dy

∣∣∣∣
y=y∗

= −(1 − μ
)
(1 + a)e−d2τ + 2 < 1, (3.13)

then G1(y∗) is globally asymptotically stable. This complete the proof.

It is well known that the following lemma can easily be proved.

Lemma 3.4. (i) If μ > 1 − (1/(1 + a))ed2τ , the triviality periodic solution of System (3.7) is globally
asymptotically stable;

(ii) if μ < 1 − (1/(1 + a))ed2τ , the periodic solution of System (3.7)

ỹ(t) =

⎧⎨
⎩
y∗e−d2(t−nτ), t ∈ [nτ, (n + l)τ),[
(1 + a)e−d2lτy∗ + be−2d2lτ

(
y∗)2]e−d2(t−(n+l)τ), t ∈ [(n + l)τ, (n + 1)τ)

(3.14)

is globally asymptotically stable. Here,

y∗ =
1 + a

b
ed2lτ − 1(

1 − μ
)
b
ed2(1+l)τ . (3.15)

Lemma 3.5 (see [22]). Consider the following delay equation:

x′(t) = a1x(t − τ) − a2x(t) = 0, (3.16)

one assumes that a1, a2, τ > 0; x(t) > 0 for −τ ≤ t ≤ 0. Assume that a1 < a2. Then

lim
t→∞

x(t) = 0. (3.17)

4. The Dynamics

In this section, we will firstly obtain the sufficient condition of the global attractivity of prey-
extinction periodic solution of System (2.1)with (2.2).
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Theorem 4.1. If

μ < 1 − 1
1 + a

ed2τ , (4.1)

re−wτ1 <
kβ

km +M

{[
e−d2lτ + (1 + a)e−d2τ

]
y∗ + be−d2(1+l)τ

(
y∗)2} + d1 (4.2)

hold, the prey-extinction solution (0, 0, ỹ(t)) of System (2.1) with (2.2) is globally attractive

y∗ =
1 + a

b
ed2lτ − 1(

1 − μ
)
b
ed2(1+l)τ . (4.3)

Proof. It is clear that the global attraction of prey-extinction periodic solution (0, 0, ỹ(t))
of System (2.1) with (2.2) is equivalent to the global attraction of prey-extinction periodic
solution (0, ỹ(t)) of System (2.3). So we only devote to System (2.3)with (2.4). Since

re−wτ1 <
kβ

km +M

{[
e−d2lτ + (1 + a)e−d2τ

]
y∗ + be−d2(1+l)τ

(
y∗)2} + d1, (4.4)

we can choose ε0 sufficiently small such that

re−wτ1 <
kβ

km +M

{[
e−d2lτ + (1 + a)e−d2τ

]
y∗ + be−d2(1+l)τ

(
y∗)2 − ε0

}
+ d1. (4.5)

It follows from that the second equation of System (2.3) with (2.4) that dy(t)/dt ≥ −d2y(t).
So we consider the following comparison impulsive differential system:

dx(t)
dt

= −d2x(t), t /= (n + l)τ, t /= (n + 1)τ,

Δx(t) = x(t)(a − bx(t)), t = (n + l)τ,

Δx(t) = −μx(t), t = (n + 1)τ.

(4.6)

In view of Condition (4.1) and Lemma 3.4, we obtain that the periodic solution of System
(4.6)

x̃(t) =

⎧⎨
⎩
x∗e−d2(t−nτ), t ∈ [nτ, (n + l)τ),[
(1 + a)e−d2lτx∗ + be−2d2lτ(x∗)2

]
e−d2(t−(n+l)τ), t ∈ [(n + l)τ, (n + 1)τ),

(4.7)

is globally asymptotically stable. Here,

x∗ =
1 + a

b
ed2lτ − 1(

1 − μ
)
b
ed2(1+l)τ . (4.8)
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By the comparison theorem of impulsive equation (see [13, Theorem 3.1.1]), we have
y(t) ≥ x(t) and x(t) → x̃(t) = ỹ(t) as t → ∞. Then there exists an integer k2 > k1, t > k2 such
that

y(t) ≥ x(t) ≥ ỹ(t) − ε0, nτ < t ≤ (n + 1)τ, n > k2, (4.9)

that is

y(t) > ỹ(t) − ε0 ≥
{[

e−d2lτ + (1 + a)e−d2τ
]
y∗ + be−d2(1+l)τ

(
y∗)2} − ε0

Δ= 
,

nτ < t ≤ (n + 1)τ, n > k2.

(4.10)

From (2.3), we get

dx2(t)
dt

≤ re−wτ1x2(t − τ1) −
(

kβ


km +M
+ d1

)
x2(t), t > nτ + τ1, n > k2. (4.11)

Consider the following comparison differential system:

dz(t)
dt

= re−wτ1z(t − τ1) −
(

kβ


km +M
+ d1

)
z(t), t > nτ + τ1, n > k2, (4.12)

from (4.5), we have re−wτ1 < (kβ
/(km + M) + d1). According to Lemma 3.5, we have
limt→∞z(t) = 0.

Let (x2(t), y(t)) be the solution of system (2.3)with initial conditions (2.4) and x2(ζ) =
ϕ2(ζ) (ζ ∈ [−τ1, 0]), y(t) is the solution of system (4.12)with initial conditions z(ζ) = ϕ2(ζ)(ζ ∈
[−τ1, 0]). By the comparison theorem, we have limt→∞x2(t) < limt→∞z(t) = 0. Incorporating
into the positivity of x2(t), we know that

lim
t→∞

x2(t) = 0. (4.13)

Therefore, for any ε1 > 0 (sufficiently small), there exists an integer k3(k3τ > k2τ + τ1) such
that x2(t) < ε1 for all t > k3τ .

For System (2.3), we have

−d2y(t) ≤
dy(t)
dt

≤
(
−d2 +

kβε1
m + ε1

)
y(t), (4.14)
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then we have z1(t) ≤ y(t) ≤ z2(t) and z1(t) → ỹ(t), z2(t) → ỹ(t) as t → ∞, while z1(t) and
z2(t) are the solutions of

dz1(t)
dt

= −d2z1(t), t /= (n + l)τ, t /= (n + 1)τ,

Δz1(t) = z1(t)(a + bz1(t)), t = (n + l)τ,

Δz1(t) = −μz1(t), t = (n + 1)τ,

dz2(t)
dt

=
(
−d2 +

kβε1
m + ε1

)
z2(t), t /= (n + l)τ, t /= (n + 1)τ,

Δz2(t) = z2(t)(a + bz2(t)), t = (n + l)τ,

Δz2(t) = −μz2(t), t = (n + 1)τ,

(4.15)

respectively,

˜z2(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

z∗2e
(−d2+kβε1/(m+ε1))(t−nτ), t ∈ [nτ, (n + l)τ),[

(1 + a)e(−d2+kβε1/(m+ε1))lτz∗2 + be2(−d2+kβε1/(m+ε1))lτ
(
z∗2
)2]

×e(−d2+kβε1/(m+ε1))(t−(n+l)τ), t ∈ [(n + l)τ, (n + 1)τ),
(4.16)

Here,

z∗2 =
1 + a

b
ed2−(kβε1/(m+ε1))lτ − 1(

1 − μ
)
b
e(d2−kβε1/(m+ε1))(1+l)τ . (4.17)

Therefore, for any ε2 > 0. there exists a integer k4, n > k4 such that

ỹ(t) − ε2 < y(t) < ỹ(t) + ε2, (4.18)

Let ε1 → 0, so we have

ỹ(t) − ε2 < y(t) < ỹ(t) + ε2, (4.19)

for t large enough, which implies y(t) → ỹ(t) as t → ∞. This completes the proof.

The next work is to investigate the permanence of the system (2.4). Before starting our
theorem, we give the definition of permanence of system (2.4).

Definition 4.2. System (2.1) is said to be permanent if there are constants m,M > 0
(independent of initial value) and a finite time T0 such that for all solutions (x1(t), x2(t), y(t))
with all initial values x1(t) > 0, x2(0+) > 0, y(0+) > 0, m ≤ x1(t) < M/k, x2(t) ≤ M/k, m ≤
x3(t) ≤ M holds for all t ≥ T0. Here T0 may depend on the initial values (x1(0+), x2(0+), y(0+)).
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Theorem 4.3. If

re−wτ1 >
β

m

{[
1 + (1 + a)e(−d2+kβx∗

2/(m+x∗
2))lτ
]
v∗ + be2(−d2+kβx∗

2/(m+x∗
2))lτ(v∗)2

}
+ d1, (4.20)

then there is a positive constant q such that each positive solution (x2(t), y(t)) of (2.3) with (2.4)
satisfies

x2(t) ≥ q, (4.21)

for t large enough, where x∗
2 is determined as the following equation:

[
1 + (1 + a)e(−d2+kβx∗

2/(m+x∗
2))lτ
]
×
[
1 + a

b
ed2−(kβx∗

2/(m+x∗
2))lτ − 1(

1 − μ
)
b
e(d2−kβx∗

2/(m+x∗
2))(1+l)τ

]

+ be2(−d2+kβx∗
2/(m+x∗

2))lτ ×
(

1 + a

b
ed2−(kβx∗

2/(m+x∗
2))lτ − 1(

1 − μ
)
b
e(d2−kβx∗

2/(m+x∗
2))(1+l)τ

)2

=
m

β

(
re−wτ1 − d1

)
.

(4.22)

Proof. The first equation of System (2.3) can be rewritten as

dx2(t)
dt

=
(
re−wτ1 − βy(t)

m + x2(t)
− d1

)
x2(t) − re−wτ1

d

dt

∫ t

t−τ1
x2(u)du. (4.23)

Let us consider any positive solution (x2(t), y(t)) of System (2.3). According to(4.23), V (t) is
defined as

V (t) = x2(t) + re−wτ1

∫ t

t−τ1
x2(u)du. (4.24)

We calculate the derivative of V (t) along the solution of (2.3) as follows:

dV (t)
dt

=
[
re−wτ1 − βy(t)

m + x2(t)
− d1

]
x2(t), (4.25)

Equation (4.25) can also be written

dV (t)
dt

>

[
re−wτ1 − β

m
y(t) − d1

]
x2(t). (4.26)
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We claim that for any t0 > 0, it is impossible that x2(t) < x∗
2 for all t > t0. Suppose that

the claim is not valid. Then there is a t0 > 0 such that x2(t) < x∗
2 for all t > t0. It follows from

the second equation of System (2.3) that for all t > t0,

dy(t)
dt

<

(
kβx∗

2

m + x∗
2
− d2

)
y(t). (4.27)

Consider the following comparison impulsive system for all t > t0

dv(t)
dt

=
(

kβx∗
2

m + x∗
2
− d2

)
v(t), t /= (n + l)τ, (n + 1)τ,

Δv(t) = v(t)(a − bv(t)), t = (n + l)τ,

Δv(t) = −μv(t), t = (n + 1)τ.

(4.28)

By Lemma 3.4, we obtain

ṽ(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v∗e(−d2+kβx∗
2/(m+x∗

2))(t−nτ), t ∈ [nτ, (n + l)τ),[
(1 + a)e(−d2+kβx∗

2/(m+x∗
2))lτv∗ + be2(−d2+kβx∗

2/(m+x∗
2))lτ(v∗)2

]

×e(−d2+kβx∗
2/(m+x∗

2))(t−(n+l)τ), t ∈ [(n + l)τ, (n + 1)τ),
(4.29)

is the unique positive periodic solution of (4.28) which is globally asymptotically stable,
where

v∗ =
1 + a

b
ed2−(kβx∗

2/(m+x∗
2))lτ − 1(

1 − μ
)
b
e(d2−kβx∗

2/(m+x∗
2))(1+l)τ . (4.30)

By the comparison theorem for impulsive differential equation [1, 2], we know that there
exists t1(> t0 + τ1) such that the following inequality holds for t ≥ t1:

y(t) ≤ ṽ(t) + ε. (4.31)

Thus,

y(t) ≤
[
1 + (1 + a)e(−d2+kβx∗

2/(m+x∗
2))lτ
]
v∗ + be2(−d2+kβx∗

2/(m+x∗
2))lτ(v∗)2 + ε, (4.32)

for all t ≥ t1. For convenience, we make notation as σ = [1 + (1 + a)e(−d2+kβx∗
2/(m+x∗

2))lτ]v∗ +
be2(−d2+kβx∗

2/(m+x∗
2))lτ(v∗)2 + ε. From (4.20), we can choose a ε such that have

re−wτ1 >
β

m

[
1 + (1 + a)e(−d2+kβx∗

2/(m+x∗
2))lτ
]
v∗ + be2(−d2+kβx∗

2/(m+x∗
2))lτ(v∗)2 + ε + d1, (4.33)
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By (4.26), we have

V ′(t) > x2(t)
(
re−wτ1 − β

m
σ − d1

)
, (4.34)

for all t > t1. Set

xm
2 = min

t∈[t1,t1+τ1]
x2(t), (4.35)

We will show that x2(t) ≥ xm
2 for all t ≥ t1. Suppose the contrary. Then there is a T0 > 0 such

that x2(t) ≥ xm
2 for t1 ≤ t ≤ t1 + τ1 + T0, x2(t1 + τ1 + T0) = xm

2 and x′
2(t1 + τ1 + T0) < 0. Hence, the

first equation of system (2.3) and (4.33) imply that

x′
2(t1 + τ1 + T0) = re−wτ1x2(t1 + T0) −

βx2(t1 + τ1 + T0)y(t1 + τ1 + T0)
m + x2(t1 + τ1 + T0)

− d1x2(t1 + τ1 + T0),

≥
(
re−wτ1 − β

m
σ − d1

)
xm
2

> 0.

(4.36)

This is a contradiction. Thus, x2(t) ≥ xm
2 for all t > t1. As a consequence, (4.26) and (4.33) lead

to

V ′(t) > xm
2

(
re−wτ1 − β

m
σ − d1

)
> 0, (4.37)

for all t > t1. This implies that as t → ∞, V (t) → ∞. It is a contradiction to V (t) ≤ M(1 +
rτ1e

−wτ1). Hence, the claim is complete.
By the claim, we are left to consider two case. First, x2(t) ≥ x∗

2 for all t large enough.
Second, x2(t) oscillates about x∗

2 for t large enough.
Define

q = min
{
x∗
2

2
, q1

}
, (4.38)

where q1 = x∗
2e

−(βM/(m+M)+d1)τ1 . We hope to show that x2(t) ≥ q for all t large enough. The
conclusion is evident in first case. For the second case, let t∗ > 0 and ξ > 0 satisfy x2(t∗) =
x2(t∗ + ξ) = x∗

2 and x2(t) < x∗
2 for all t

∗ < t < t∗ + ξ where t∗ is sufficiently large such that

y(t) < σ for t∗ < t < t∗ + ξ, (4.39)

x2(t) is uniformly continuous. The positive solutions of (2.3) are ultimately bounded and
x2(t) is not affected by impulses. Hence, there is a T (0 < t < τ1 and T is dependent of the
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choice of t∗) such that x2(t∗) > x∗
2/2 for t∗ < t < t∗ + T . If ξ < T , there is nothing to prove. Let

us consider the case T < ξ < τ1. Since x′
2(t) > −(βM/(m + M) + d1)x2(t) and x2(t∗) = x∗

2, it
is clear that x2(t) ≥ q1 for t ∈ [t∗, t∗ + τ1]. Then, proceeding exactly as the proof for the above
claim. We see that x2(t) ≥ q1 for t ∈ [t∗ + τ1, t

∗ + ξ]. Because the kind of interval t ∈ [t∗, t∗ + ξ]
is chosen in an arbitrary way ( we only need t∗ to be large). We concluded x2(t) ≥ q for all
large t. In the second case. In view of our above discussion, the choice of q is independent of
the positive solution, and we proved that any positive solution of (2.3) satisfies x2(t) ≥ q for
all sufficiently large t. This completes the proof of the theorem.

From Theorems 4.1 and 4.3, we can easily obtain the following theorem.

Theorem 4.4. If

re−wτ1 >
β

m

{[
1 + (1 + a)e(−d2+kβx∗

2/(m+x∗
2))lτ
]
v∗ + be2(−d2+kβx∗

2/(m+x∗
2))lτ(v∗)2

}
+ d1, (4.40)

then System (2.1) with (2.2) is permanent, where x∗
2 is determined as the following equation:

[
1 + (1 + a)e(−d2+kβx∗

2/(m+x∗
2))lτ
]
×
[
1 + a

b
ed2−kβx∗

2/(m+x∗
2)lτ − 1(

1 − μ
)
b
e(d2−kβx∗

2/(m+x∗
2))(1+l)τ

]

+ be2(−d2+kβx∗
2/(m+x∗

2))lτ ×
(
1 + a

b
ed2−(kβx∗

2/(m+x∗
2))lτ − 1

(1 − μ)b
e(d2−kβx∗

2/(m+x∗
2))(1+l)τ

)2

=
m

β

(
re−wτ1 − d1

)
.

(4.41)

5. Discussion

In this paper, considering the fact of the biological sourcemanagement, we consider a delayed
Holling type II predator-prey system with birth pulse and impulsive harvesting on predator
population at different moments. We prove that all solutions of System (2.1) with (2.2)
are uniformly ultimately bounded. The conditions of the globally attractive prey-extinction
boundary periodic solution of System (2.1) with (2.2) are obtained. The permanence of the
System (2.1) with (2.2) is also obtained. The results show that the successful management of
a renewable resource is based on the concept of a sustain yield, that is, an exploitation does
not the threaten the long-term persistence of the species. Our results provide reliable tactic
basis for the practical biological resource management.
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