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In this paper, we investigate the singular Sturm-Liouville problem u′′ = λg(u), u′(0) = 0, βu′(1) +
αu(1) = A, where λ is a nonnegative parameter, β ≥ 0, α > 0, and A > 0. We discuss the existence
of multiple positive solutions and show that for certain values of λ, there also exist solutions that
vanish on a subinterval [0, ρ] ⊂ [0, 1), the so-called dead core solutions. The theoretical findings
are illustrated by computational experiments for g(u) = 1/

√
u and for some model problems from

the class of singular differential equations (φ(u′))′+f(t, u′) = λg(t, u, u′) discussed in Agarwal et al.
(2007). For the numerical simulation, the collocation method implemented in our MATLAB code
bvpsuite has been applied.

1. Introduction

In the theory of diffusion and reaction (see, e.g., [1]), the reaction-diffusion phenomena are
described by the equation

Δv = φ2h(x, v), (1.1)

where x ∈ Ω ⊂ R
N . Here v ≥ 0 is the concentration of one of the reactants and φ is the Thiele

modulus. In case that h is radial symmetric with respect to x, the radial solutions of the above
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equation satisfying the boundary conditions

β
δv

δn
+ αv = A (1.2)

are solutions to a boundary value problem of the type

u′′(t) + f
(
t, u′(t)

)
= φ2h(t, u(t)),

u′(0) = 0, βu′(1) + αu(1) = A, β ≥ 0, α,A > 0,
(1.3)

where t denotes the radial coordinate. Baxley and Gersdorff [2] discussed problem (1.3),
where f and h were continuous and h was allowed to be unbounded for u → 0+. They
proved the existence of positive solutions and dead core solutions (vanishing on a subinterval
[0, t0], 0 < t0 < 1) of problem (1.3), and also covered the case of the function h approximated
by some regular function hκ.

Problem (1.3) was a motivation for discussing positive, pseudo dead core, and dead
core solutions to the singular boundary value problem with a φ-Laplacian,

(
φ(u′(t)

)′ + f
(
t, u′(t)

)
= λg

(
t, u(t), u′(t)

)
, λ > 0, (1.4a)

u′(0) = 0, βu′(T) + αu(T) = A, β ≥ 0, α,A > 0, (1.4b)

see [3]. Here λ is a parameter, the function f is non-negative and satisfies the Carathéodory
conditions on (0, T] × [0,∞), f(t, 0) = 0 for a.e. t ∈ [0, T], and g is positive and satisfies the
Carathéodory conditions on (0, T] × D, D = (0, A/α] × [0,∞). Moreover, the function f(t, x)
is singular at t = 0 and g(t, x, y) is singular at x = 0.

Let us denote by ACloc(0, T] the set of functions x : (0, T] → R which are absolutely
continuous on [ε, T] for arbitrary small ε > 0.

A function u ∈ C1[0, T] is called a positive solution of problem (1.4a)-(1.4b) if u > 0 on
[0, T], φ(u′) ∈ ACloc(0, T], u satisfies (1.4b) and (1.4a) holds for a.e. t ∈ [0, T]. We say that
u ∈ C1[0, T] satisfying (1.4b) is a dead core solution of problem (1.4a)-(1.4b) if there exists a
point ρ ∈ (0, T) such that u = 0 on [0, ρ], u > 0 on (ρ, T], φ(u′) ∈ AC[ρ, T] and (1.4a) holds
for a.e. t ∈ [ρ, T]. The interval [0, ρ] is called the dead core of u. If u(0) = 0, u > 0 on (0, T],
φ(u′) ∈ ACloc(0, T], u satisfies (1.4b) and (1.4a) holds a.e. on [0, T], then u is called a pseudo
dead core solution of problem (1.4a)-(1.4b).

Since problem (1.4a)-(1.4b) is singular, the existence results in [3] are proved by a
combination of the method of lower and upper functions with regularization and sequential
techniques. Therefore, the notion of a sequential solution of problem (1.4a)-(1.4b) was
introduced. In [3], conditions on the functions φ, f , and g were specified which guarantee
that for each λ > 0, problem (1.4a)-(1.4b) has a sequential solution and that any sequential
solution is either a positive solution, a pseudo dead core solution, or a dead core solution.
Also, it was shown that all sequential solutions of (1.4a)-(1.4b) are positive solutions for
sufficiently small positive values of λ and dead core solutions for sufficiently large values
of λ.
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The differential equation (1.5a) of the following boundary value problem satisfies all
conditions specified in [3]:

((
u′(t)

)γ)′ +
u′(t)
tρ

= λ

(
1

√
u(t)

+
(
u′(t)

)ν
)

, (1.5a)

u′(0) = 0, αu(1) + βu′(1) = 1, α > 0, β > 0. (1.5b)

Here, γ, ρ ∈ (0,∞), and ν ∈ [0, γ + 1]. We note that in papers [2, 3] no information on the
number of positive and dead core solutions of the underlying problem is given.

In this paper, we discuss the singular boundary value problem

u′′(t) = λg(u(t)), λ ≥ 0, (1.6a)

u′(0) = 0, αu(1) + βu′(1) = 1, α > 0, β > 0, (1.6b)

where λ is a non-negative parameter, and the function g ∈ C(0,∞) becomes unbounded at
u = 0. Problem (1.6a)-(1.6b) is the special case of problem (1.4a)-(1.4b).

A function u ∈ C2[0, 1] is a positive solution of problem (1.6a)-(1.6b) if u satisfies the
boundary conditions (1.6b), u > 0 on [0, 1] and (1.6a) holds for t ∈ [0, 1]. A function u :
[0, 1] → [0,∞) is called a dead core solution of problem (1.6a)-(1.6b) if there exists a point
ρ ∈ (0, 1) such that u(t) = 0 for t ∈ [0, ρ], u ∈ C1[0, 1] ∩ C2(ρ, 1], u satisfies (1.6b) and (1.6a)
holds for t ∈ (ρ, 1]. The interval [0, ρ] is called the dead core of u. If ρ = 0, then u is called a
pseudo dead core solution of problem (1.6a)-(1.6b).

The aim of this paper is twofold.

(1) First of all, we analyze relations between the values of the parameter λ and the
number and types of solutions to problem (1.6a)-(1.6b), provided that

g ∈ C(0,∞), g is positive, lim
u→ 0+

g(u) =∞,
∫a

0
g(s)ds <∞ ∀a > 0

(1.7)

or

g ∈ C1(0,∞), g is positive and decreasing, lim
u→ 0+

g(u) =∞,
∫a

0
g(s)ds <∞ ∀a > 0.

(1.8)
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(2) Moreover, we compute solutions u to the singular boundary value problem

u′′(t) =
λ

√
u(t)

, λ ≥ 0, (1.9a)

u′(0) = 0, αu(1) + βu′(1) = 1, α > 0, β > 0, (1.9b)

and the singular problem (1.5a), (1.9b). Note that (1.9a) is the special case of (1.6a)
with g satisfying (1.8).

In [4] similar questions in context of (1.6a) and the Dirichlet boundary conditions
u(0) = 1, u(1) = 1 have been discussed. For further results on existence of positive and dead
core solutions to differential equations of the types u′′ = λg(t, u) and (φ(u′))′ = g(t, u, u′), we
refer the reader to [5–9]. The Dirichlet conditions have been discussed in [5–7, 9], while [8]
deals with the Robin conditions −u′(−1) + αu(−1) = a, u′(1) + αu(1) = a, α, a > 0.

We now recapitulate the main analytical results formulated in Theorems 2.10, 2.12, and
2.13. First, we introduce the auxiliary function

H
(
x, y

)
:=

⎧
⎪⎪⎨

⎪⎪⎩

αy + β
∫y

x

ds
√∫s

x g(v)dv

√∫y

x

g(v)dv, 0 ≤ x < y,

αy, 0 ≤ x = y,

(1.10)

where g satisfies (1.7). By Lemma 2.2, the equation H(x, γ(x)) = 1 has a unique continuous
solution γ ∈ C[0, 1/α], and the function

χ(x) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫ γ(x)

x

ds
√∫s

x g(v)dv
, x ∈

[
0,

1
α

)
,

0, x =
1
α

(1.11)

is continuous on [0, 1/α]. LetM := {(χ(x))2/2 : 0 < x ≤ 1/α}. Then the following statements
hold.

(i) Problem (1.6a)-(1.6b) has a positive solution if and only if λ ∈ M. In addition, for
each a ∈ (0, 1/α], problem (1.6a)-(1.6b) with λ = (χ(a))2/2 has a unique positive
solution such that u(0) = a, u(1) = γ(a).

(ii) Problem (1.6a)-(1.6b) has a pseudo dead core solution if and only if

λ =
1
2

⎛

⎜
⎝

∫ γ(0)

0

ds
√∫s

0 g(v)dv

⎞

⎟
⎠

2

. (1.12)

This solution is unique.
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(iii) Problem (1.6a)-(1.6b) has a dead core solution if and only if

λ >
1
2

⎛

⎜
⎝

∫ γ(0)

0

ds
√∫s

0 g(v)dv

⎞

⎟
⎠

2

. (1.13)

In addition, for all such λ, problem (1.6a)-(1.6b) has a unique dead core solution.
The final result concerning the multiplicity of positive solutions to problem (1.6a)-

(1.6b) is given in Theorem 2.11. Let (1.8) hold and let Γ := max{τ : τ ∈ M}. Then Γ >
(χ(0))2/2 and for each λ ∈ ((χ(0))2/2,Γ), there exist multiple positive solutions of problem
(1.6a)-(1.6b).

In Section 2 analytical results are presented. Here, we formulate the existence and
uniqueness results for the solutions of the boundary value problem (1.6a)-(1.6b) and study
the dependance of the solution on the parameter values λ. The numerical treatment of
problems (1.9a)-(1.9b) and (1.5a)-(1.5b) based on the collocation method is discussed in
Section 3, where for different values of λ, we study positive, pseudo dead core, and dead
core solutions of problem (1.9a)-(1.9b) and positive solutions of problem (1.5a)-(1.5b).

2. Analytical Results

2.1. Auxiliary Functions

Let assumption (1.7) hold, and let us introduce auxiliary functions ϕa,H, and h as

ϕa(x) :=

⎧
⎪⎪⎨

⎪⎪⎩

∫x

a

ds
√∫s

a g(v)dv
, x ∈ (a,∞),

0, x = a,

(2.1)

where a ∈ [0,∞),

H
(
x, y

)
:=

⎧
⎪⎪⎨

⎪⎪⎩

αy + β
∫y

x

ds
√∫s

x g(v)dv

√∫y

x

g(v)dv, 0 ≤ x < y,

αy, 0 ≤ x = y,

(2.2)

h
(
t, y
)

:= αy +
β

1 − t

∫y

0

ds
√∫s

0 g(v)dv

√∫y

0
g(v)dv,

(
t, y
)
∈ [0, 1) × (0,∞). (2.3)

Here, the positive constants α and β are identical with those used in boundary conditions
(1.6b). Note that the function H is used in the analysis of positive and pseudo dead core
solutions of problem (1.6a)-(1.6b), while the function h for its dead core solutions.

Properties of ϕa are described in the following lemma.

Lemma 2.1. Let assumption (1.7) hold and let a ∈ [0,∞). Then ϕa ∈ C[a,∞) ∩ C1(a,∞), and ϕa
is increasing on [a,∞).
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Proof. Let c be arbitrary, c > a. Then ϕa ∈ C[a, c] ∩ C1(a, c], and ϕa is increasing on [a, c] by
[4, Lemma 2.3 (where 1 is replaced by c)]. Since c > a is arbitrary, the result immediately
follows.

In the following lemma, we introduce functions γ and χ and discuss their properties.

Lemma 2.2. Let assumption (1.7) hold. Then the following statements follow.

(i) The functionH is continuous on Δ = {(x, y) ∈ R
2 : 0 ≤ x ≤ y}, and (∂H/∂y)(x, y) > 0

for 0 ≤ x < y.

(ii) For each x ∈ [0, 1/α], there exists a unique γ(x) ∈ [a, 1/α] such that

H
(
x, γ(x)

)
= 1 for x ∈

[
0,

1
α

]
, (2.4)

and γ ∈ C[0, 1/α], γ(x) > x for x ∈ [0, 1/α), γ(1/α) = 1/α.

(iii) The function

χ(x) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫ γ(x)

x

ds
√∫s

x g(v)dv
, x ∈

[
0,

1
α

)
,

0, x =
1
α

(2.5)

is continuous on [0, 1/α].

Proof. (i) Let us define S, P on Δ by

S
(
x, y

)
:=

√∫y

x

g(v)dv,

P
(
x, y

)
:=

⎧
⎪⎪⎨

⎪⎪⎩

∫y

x

ds
√∫s

x g(v)dv
, 0 ≤ x < y,

0, 0 ≤ x = y.

(2.6)

Then S ∈ C(Δ). Let x ≥ 0 and define m := min{g(s) : 0 < s ≤ x + 1}. Then, by (1.7), m > 0.
Hence

0 <
∫y

x

ds
√∫s

x g(v)dv
≤ 1√

m

∫y

x

ds√
s − x

= 2
√
y − x
m

, y ∈ (x, x + 1], (2.7)
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and consequently lim(x,y)∈Δ,y→xP(x, y) = 0, which means that P is continuous at (x, x). Let
0 ≤ x0 < y0. We now show that P is continuous at the point (x0, y0). Let us choose an arbitrary
y∗ in the interval (x0, y0). Then P(x, y) = I1(x) + I2(x, y) for x ∈ [0, y∗] and y > y∗, where

I1(x) =
∫y∗

x

ds
√∫s

x g(v)dv
, I2

(
x, y

)
=
∫y

y∗

ds
√∫s

x g(v)dv
. (2.8)

Since I1 ∈ C[0, y∗] by [4, Lemma 2.1 (where 1 was replaced by y∗)], it follows that I1 is
continuous at x = x0. The continuity of P at (x0, y0) now follows from the fact that I2 is
continuous at this point. Hence P is continuous on Δ, and fromH(x, y) = αy+βP(x, y)S(x, y)
we conclude H ∈ C(Δ). Since

∂H

∂y

(
x, y

)
= α + β +

βq
(
y
)

2
√∫y

x g(v)dv

∫y

x

ds
√∫s

x g(v)dv
, 0 ≤ x < y, (2.9)

we have (∂H/∂y)(x, y) > 0 for 0 ≤ x < y.
(ii) Consider the equation H(x, y) = 1, that is,

αy + β
∫y

x

ds
√∫s

x g(v)dv

√∫y

x

g(v)dv = 1. (2.10)

The function H(x, ·) is increasing on [x,∞), H(1/α, 1/α) = 1, and, for x ∈ [0, 1/α),
H(x, 1/α) > 1. Hence, for each x ∈ [0, 1/α], there exists a unique γ(x) such that H(x, γ(x)) =
1 and γ(1/α) = 1/α. Clearly, γ(x) > x for x ∈ [0, 1/α). In order to prove that γ ∈ C[0, 1/α],
suppose the contrary, that is, suppose that γ is discontinuous at a point x = x0, x0 ∈ [0, 1/α].
Then there exist sequences {νn}, {μn} in [0, 1/α] such that limn→∞νn = x0 = limn→∞μn, and
the sequences {γ(νn)}, {γ(μn)} are convergent, limn→∞γ(νn) = c1, limn→∞γ(μn) = c2, c1 /= c2.
Let n → ∞ in H(νn, γ(νn)) = 1 and in H(μn, γ(μn)) = 1. This means H(x0, cj) = 1, j = 1, 2,
and c1 = c2 = γ(x0) by the definition of the function γ , which contradicts c1 /= c2.

(iii) By (ii),

αγ(x) + βχ(x)

√∫ γ(x)

x

g(v)dv = 1, x ∈
[

0,
1
α

)
, (2.11)

γ ∈ C[0, 1/α] and γ(x) > x for x ∈ [0, 1/α). Hence, the function
√∫γ(x)

x g(v)dv is continuous
on [0, 1/α] and positive on [0, 1/α). From

χ(x) =
1 − αγ(x)

β
√∫γ(x)

x g(v)dv
, x ∈

[
0,

1
α

)
, (2.12)
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we now deduce that χ ∈ C[0, 1/α). Since

χ(x) ≤ 1√
m

∫ γ(x)

x

ds√
s − x

= 2

√
γ(x) − x

m
, x ∈

[
0,

1
α

)
, (2.13)

where m := min{g(u) : 0 < u ≤ 1/α} > 0, and χ > 0 on [0, 1/α), γ(1/α) = 1/α, we conclude
limx→ (1/α)−χ(x) = 0. Hence χ is continuous at x = 1/α, and consequently γ ∈ C[1, 1/α].

Let γ be the function from Lemma 2.2(ii) defined on the interval [0, 1/α]. From now
on, Λ denotes the value of γ at x = 0, that is,

Λ = γ(0). (2.14)

In the following lemma, we prove a property of χ which is crucial for discussing
multiple positive solutions of problem (1.6a)-(1.6b).

Lemma 2.3. Let assumption (1.8) hold and let the function χ be given by (2.5). Then there exists
ε > 0 such that

χ(x) > χ(0), for x ∈ (0, ε). (2.15)

Proof. Note that χ(0) =
∫Λ

0 (1/
√∫s

0 g(v)dv)ds. We deduce from [4, Lemma 2.2 (with 1 replaced
by Λ)] that there exists an ε > 0 such that

∫Λ

x

ds
√∫s

x g(v)dv
> χ(0) for x ∈ (0, ε). (2.16)

If γ(x) > Λ for some x ∈ (0, ε), then (2.16) yields

χ(x) =
∫ γ(x)

x

ds
√∫s

x g(v)dv
>

∫Λ

x

ds
√∫s

x g(v)dv
> χ(0). (2.17)

Consequently, inequality (2.15) holds for such an x. If the statement of the lemma were false,
then some x∗ ∈ (0, ε) would exist such that γ(x∗) ≤ Λ and

χ(x∗) ≤ χ(0). (2.18)
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From the following equalities, compare (2.4),

1 = αΛ + βχ(0)

√∫Λ

0
g(v)dv,

1 = αγ(x∗) + βχ(x∗)

√√
√
√
∫ γ(x∗)

x∗

g(v)dv,

(2.19)

and from γ(x∗) ≤ Λ, we conclude that

χ(x∗) ≥ χ(0)

√√
√
√
√

∫Λ
0 g(v)dv

∫γ(x∗)
x∗

g(v)dv
. (2.20)

Finally, from

∫Λ

0
g(v)dv >

∫ γ(x∗)

x∗

g(v)dv, (2.21)

we have χ(x∗) > χ(0), which contradicts (2.18).

In order to discuss dead core solutions of problem (1.6a)-(1.6b) and their dead cores,
we need to introduce two additional functions μ and p related to h and study their properties.

Lemma 2.4. Assume that (1.7) holds and let h be given by (2.3). Then for each t ∈ [0, 1), there exists
a unique μ(t) ∈ (0, 1/α) such that

h
(
t, μ(t)

)
= 1 for t ∈ [0, 1). (2.22)

The function μ is continuous and decreasing on [0, 1), and the function

p(t) :=
1

1 − t

∫μ(t)

0

ds
√∫s

0 g(v)dv
, t ∈ [0, 1), (2.23)

is continuous and increasing on [0, 1). Moreover, limt→ 1−p(t) =∞.

Proof. It follows from (1.7) that h ∈ C([0, 1)×(0,∞)). Also, h is increasing w.r.t. both variables,
limt→ 1−h(t, y) = ∞ for any y ∈ (0, 1/α], and limy→ 0+h(t, y) = 0, limy→ 1/αh(t, y) > 1 for any
t ∈ [0, 1). Hence, for each t ∈ [0, 1), there exists a unique μ(t) ∈ (0, 1/α) such that h(t, μ(t)) = 1.
In order to prove that μ is decreasing on [0, 1), assume on the contrary that μ(t1) ≤ μ(t2) for
some 0 ≤ t1 < t2 < 1. Then h(t1, μ(t1)) < h(t2, μ(t2)) which contradicts h(tj , μ(tj)) = 1 for
j = 1, 2. Hence, μ is decreasing on [0, 1). If μ was discontinuous at a point t0 ∈ [0, 1), then
there would exist sequences {νn} and {τn} in [0, 1) such that limn→∞νn = t0 = limn→∞τn and
{μ(νn)}, {μ(τn)} are convergent, limn→∞μ(νn) = c1, and limn→∞μ(τn) = c2 with c1 /= c2. Taking
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the limits n → ∞ in h(νn, μ(νn)) = 1 and h(τn, μ(τn)) = 1, we obtain h(t0, cj) = 1, j = 1, 2.
Consequently, c1 = c2 = μ(x0) by the definition of the function μ, which is not possible.

By (2.22),

αμ(t) +
β

1 − t

∫μ(t)

0

ds
√∫s

0 g(v)dv

√∫μ(t)

0
g(v)dv = 1 for t ∈ [0, 1), (2.24)

and therefore,

p(t) =
1 − αμ(t)

β
√∫μ(t)

0 g(v)dv
, t ∈ [0, 1). (2.25)

It follows from the properties of μ that the functions 1−αμ(t), 1/
√∫μ(t)

0 g(v)dv are continuous,
positive, and increasing on [0, 1). Hence (2.25) implies that p ∈ C[0, 1) and p is increasing.

Moreover, limt→ 1−p(t) =∞ since
∫μ(t)

0 (1/
√∫s

0 g(v)dv) ds is bounded on [0, 1).

Corollary 2.5. Let assumption (1.7) hold. Then

1
1 − t

∫μ(t)

0

ds
√∫s

0 g(v)dv
>

∫Λ

0

ds
√∫s

0 g(v)dv
for t ∈ (0, 1), (2.26)

and for each λ satisfying the inequality

λ >
1
2

⎛

⎜
⎝

∫Λ

0

ds
√∫s

0 g(v)dv

⎞

⎟
⎠

2

, (2.27)

there exists a unique ρ ∈ (0, 1) such that

∫μ(ρ)

0

ds
√∫s

0 g(v)dv
=
(
1 − ρ

)√
2λ. (2.28)

Proof. The equalities h(0, y) = H(0, y) for y ∈ (0,∞) and H(0,Λ) = 1 imply that μ(0) = Λ.
Since the function p defined by (2.23) is continuous and increasing on [0, 1), it follows that
p(t) > p(0) for t ∈ (0, 1); see (2.26). Let us choose an arbitrary λ satisfying (2.27). Then

√
2λ >

p(0). Now, the properties of p guarantee that equation
√

2λ = p(t) has a unique solution
ρ ∈ (0, 1). This means that (2.28) holds for a unique ρ ∈ (0, 1).

2.2. Dependence of Solutions on the Parameter λ

The following two lemmas characterize the dependence of positive and dead core solutions
of problem (1.6a)-(1.6b) on the parameter λ.
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Lemma 2.6. Let assumption (1.7) hold and let u be a positive solution of problem (1.6a)-(1.6b) for
some λ > 0. Also, let a := min{u(t) : 0 ≤ t ≤ 1}, and Q := max{u(t) : 0 ≤ t ≤ 1}. Then a = u(0),
Q = u(1),

∫Q

a

ds
√∫s

a g(v)dv
=
√

2λ, (2.29)

∫u(t)

a

ds
√∫s

a g(v)dv
=
√

2λt for t ∈ [0, 1], (2.30)

H(a,Q) = 1, (2.31)

where the functionH is given by (2.2).

Proof. Since u′(0) = 0 and u′′(t) = λg(u(t)) > 0 for t ∈ [0, 1], we conclude that u′ > 0 on
(0, 1] and a = u(0), Q = u(1). By integrating the equality u′′(t)u′(t) = λg(u(t))u′(t) over
[0, t] ⊂ [0, 1], we obtain

(
u′(t)

)2 = 2λ
∫u(t)

a

g(v)dv, (2.32)

and consequently, since u′ > 0 on (0, 1],

u′(t) =
√

2λ

√∫u(t)

a

g(v)dv, t ∈ [0, 1]. (2.33)

Finally, integrating

u′(t)
√∫u(t)

a g(v)dv
=
√

2λ, t ∈ (0, 1], (2.34)

over [0, t] yields (2.30). Now we set t = 1 in (2.30) and obtain (2.29). Equality (2.31) follows
from αu(1) + βu′(1) = 1 and from

u(1) = Q, u′(1) =
√

2λ

√∫Q

a

g(v)dv =
∫Q

a

ds
√∫s

a g(v)dv

√∫Q

a

g(v)dv. (2.35)

Remark 2.7. Let (1.7) hold and let u be a pseudo dead core solution of problem (1.6a)-(1.6b).
Then, by the definition of pseudo dead core solutions, u(0) = 0. We can proceed analogously
to the proof of Lemma 2.6 in order to show that

∫Q

0

ds
√∫s

a g(v)dv
=
√

2λ, (2.36)
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where Q = u(1), and

∫u(t)

0

ds
√∫s

a g(v)dv
=
√

2λt for t ∈ [0, 1], (2.37)

H(0, Q) = 1. (2.38)

From (2.38), we finally have Q = Λ. Consequently, u(1) = Λ.

Remark 2.8. If λ = 0, then u(t) = 1/α, t ∈ [0, 1], is the unique solution of problem (1.6a)-(1.6b).
This solution is positive.

Lemma 2.9. Let assumption (1.7) hold and let u be a dead core solution of problem (1.6a)-(1.6b) for
some λ = λ0. Moreover, let Q := max{u(t) : 0 ≤ t ≤ 1}. Then Q = u(1) and there exists a point
ρ ∈ (0, 1) such that u(t) = 0 for t ∈ [0, ρ],

∫u(t)

0

ds
√∫s

0 g(v)dv
=
√

2λ0
(
t − ρ

)
for t ∈

[
ρ, 1
]
, (2.39)

∫Q

0

ds
√∫s

0 g(v)dv
=
√

2λ0
(
1 − ρ

)
, (2.40)

h
(
ρ,Q

)
= 1, (2.41)

where the function h is given by (2.3). Furthermore, u is the unique dead core solution of problem
(1.6a)-(1.6b) with λ = λ0.

Proof. Since u is a dead core solution of problem (1.6a)-(1.6b) with λ = λ0, there exists by
definition, a point ρ ∈ (0, 1) such that u ∈ C1[0, 1] ∩ C2(ρ, 1], u(t) = 0 for t ∈ [0, ρ] and u > 0
on (ρ, 1]. Consequently, u′ > 0 on (ρ, 1], and Q = u(1). We can now proceed analogously to
the proof of Lemma 2.6 to show that

u′(t) =
√

2λ0

√∫u(t)

0
g(v)dv, t ∈

[
ρ, 1
]
, (2.42)

and (2.39) holds. Setting t = 1 in (2.39), we obtain (2.40). Also, from (1.6b), u(1) = Q,

u′(1) =
√

2λ0

√∫Q

0
g(v)dv =

1
1 − ρ

∫Q

0

ds
√∫s

0 g(v)dv

√∫Q

0
g(v)dv, (2.43)

equality (2.41) follows.
It remains to verify that u is the unique dead core solution of problem (1.6a)-(1.6b)

with λ = λ0. Let us suppose that w is another dead core solution of the above problem. Let
w(t) = 0 for t ∈ [0, ρ1] and w > 0 on (ρ1, 1] for some ρ1 ∈ (0, 1). Then w′′(t) = λ0g(w(t)) > 0
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for t ∈ (ρ1, 1], and consequently w′ > 0 on (ρ1, 1] and Q1 := max{w(t) : 0 ≤ t ≤ 1} = w(1).
Hence, compare (2.40) and (2.41),

∫Q1

0

ds
√∫s

0 g(v)dv
=
√

2λ0
(
1 − ρ1

)
, (2.44)

αQ1 + β
√

2λ0

√∫Q1

0
g(v)dv = 1. (2.45)

Since

αQ + β
√

2λ0

√∫Q

0
g(v)dv = 1 (2.46)

by (2.41), and the function p(r) := αr + β
√

2λ0

√∫ r
0 g(v)dv is increasing and continuous on

(0,∞), we deduce from (2.45) and (2.46) that Q = Q1. Then (2.40) and (2.44) yield ρ = ρ1.

Therefore,
∫w(t)

0 (1/
√∫s

0 g(v)dv) ds =
√

2λ0(t − ρ) for t ∈ [ρ, 1]. Finally, since w(t) = 0 for
t ∈ [0, ρ] and since by Lemma 2.1 the function ϕ0 is increasing on [0,∞), u = w follows. This
completes the proof.

2.3. Main Results

Let the function χ be given by (2.5) and let us denote by M the range of the function χ2/2
restricted to the interval (0, 1/α],

M :=

{(
χ(x)

)2

2
: 0 < x ≤ 1

α

}

. (2.47)

Since χ ∈ C[0, 1/α] by Lemma 2.2(iii), χ(x) > 0 for x ∈ [0, 1/α) and χ(1/α) = 0, we can have
either (i) χ(x) < χ(0) for x ∈ (0, 1/α], or (ii) χ(x1) ≥ χ(0) for some x1 ∈ (0, 1/α]. For (i), we
haveM = [0, (χ(0))2/2), while in case of (ii),M = [0,Γ] with

Γ := max{τ : τ ∈ M} (2.48)

holds. Clearly, Γ ≥ (χ(0))2/2.
Positive solutions of problem (1.6a)-(1.6b) are analyzed in the following theorem.

Theorem 2.10. Let assumption (1.7) hold. Then problem (1.6a)-(1.6b) has a positive solution if and
only if λ ∈ M. Additionally, for each a ∈ (0, 1/α], problem (1.6a)-(1.6b) with λ = (χ(a))2/2 has a
unique positive solution u such that u(0) = a and u(1) = γ(a).

Proof. Let u be a positive solution of problem (1.6a)-(1.6b) for λ > 0. By Lemma 2.6, (2.31)
holds with a = u(0) > 0 and Q = u(1). Furthermore, by Lemmas 2.2(ii) and 2.6, Q = γ(a),
which together with (2.29) implies that

√
2λ = χ(a). Consequently, λ ∈ M. For λ = 0, problem
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(1.6a)-(1.6b) has the unique positive solution u = 1/α; see Remark 2.8. Since χ(1/α) = 0,
0 ∈ M. Consequently, if problem (1.6a)-(1.6b) has a positive solution, then λ ∈ M.

We now show that for each λ ∈ M, problem (1.6a)-(1.6b) has a positive solution, and
if λ = (χ(a))2/2 for some a ∈ (0, 1/α], then problem (1.6a)-(1.6b) has a unique positive
solution u such that u(0) = a and u(1) = γ(a). Let us choose λ ∈ M. Then

√
2λ = χ(a) for

some a ∈ (0, 1/α]. If a = 1/α, then χ(a) = 0. Consequently, λ = 0 and u = 1/α is the unique
solution of problem (1.6a)-(1.6b). Clearly, u(0) = a and u(1) = γ(a) since a = γ(a) = 1/α. Let
us suppose that a ∈ (0, 1/α). If u is a positive solution of problem (1.6a)-(1.6b) and u(0) = a,
then, by Lemma 2.6; see (2.30), the equality ϕa(u(t)) =

√
2λt holds for t ∈ [0, 1], where ϕa

is given by (2.1). Hence, in order to prove that for λ = (χ(a))2/2 problem (1.6a)-(1.6b) has
a unique positive solution u such that u(0) = a and u(1) = γ(a), we have to show that the
equation

ϕa(u(t)) =
√

2λt, t ∈ [0, 1], (2.49)

has a unique solution u; this solution is a positive solution of problem (1.6a)-(1.6b), and
u(0) = a, u(1) = γ(a). Since ϕa ∈ C[a,∞) ∩ C1(a,∞), ϕa is increasing by Lemma 2.1, and
ϕa(γ(a)) = χ(a), (2.49) has a unique solution u ∈ C[0, 1]. It follows from ϕa(a) = 0 and
ϕa(u(1)) =

√
2λ = χ(a) that u(a) = a and u(1) = γ(a). In addition,

u′(t) =

√
2λ

ϕ′a(u(t))
=

√

2λ
∫u(t)

a

g(v)dv, t ∈ (0, 1]. (2.50)

Hence, u ∈ C1(0, 1] and limt→ 0+u
′(t) = 0. In order to show that u′ is continuous at t = 0, we

set M = max{g(s) : a ≤ s ≤ 1/α} > 0. Then, compare (2.49),

√
2λt =

∫u(t)

a

ds
√∫s

a g(v)dv
≥ 1√

M

∫u(t)

a

ds√
s − a

= 2

√
u(t) − a
M

, (2.51)

and therefore,

0 <
u(t) − u(0)

t
=
u(t) − a

t
≤ Mλt

2
, t ∈ (0, 1]. (2.52)

Consequently, u′(0) = limt→ 0+((u(t) − a)/t) = 0, and so u′ is continuous at t = 0, or
equivalently, u ∈ C1[0, 1]. Now (2.50) indicates that u ∈ C2(0, 1] and

u′′(t) =
√

2λ
g(u(t))u′(t)

2
√∫u(t)

a g(v)dv
= λg(u(t)) for t ∈ (0, 1]. (2.53)
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Moreover, by the de L’Hospital rule,

lim
t→ 0+

u′(t) − u′(0)
t

= lim
t→ 0+

u′(t)
t

= lim
t→ 0+

1
t

√

2λ
∫u(t)

a

g(v)dv

=
√

2λ lim
t→ 0+

g(u(t))u′(t)

2
√∫u(t)

a g(v)dv
= λ lim

t→ 0+
g(u(t))

= λg(u(0)).

(2.54)

As a result u ∈ C2[0, 1] and u′′(t) = λg(u(t)) for t ∈ [0, 1]. Since u(1) = γ(a) and, by (2.50),

u′(1) = χ(a)
√∫γ(a)

a g(v)dv, we have

αu(1) + βu′(1) = αγ(a) + β
∫ γ(a)

a

ds
√∫s

a g(v)dv

√∫ γ(a)

a

g(v)dv = H
(
a, γ(a)

)
= 1 (2.55)

by Lemma 2.2(ii). Thus, u satisfies (1.6b), and therefore u is a unique positive solution of
problem (1.6a)-(1.6b) such that u(0) = a and u(1) = γ(a).

The following theorem deals with multiple positive solutions of problem (1.6a)-(1.6b).

Theorem 2.11. Let assumption (1.8) hold. Then Γ > (χ(0))2/2, with Γ given by (2.48), and for each
λ ∈ ((χ(0))2/2,Γ), there exist multiple positive solutions of problem (1.6a)-(1.6b).

Proof. By Lemmas 2.2(iii) and 2.3, χ ∈ C[0, 1/α], χ(1/α) = 0, and χ(x) > χ(0) in a right
neighbourhood of x = 0. Hence, Γ > (χ(0))2/2. Let us choose λ ∈ ((χ(0))2/2,Γ). Then there
exist 0 < x1 < x2 < 1/α such that λ = (χ(xj))

2/2 for j = 1, 2. Now Theorem 2.10 guarantees
that problem (1.6a)-(1.6b) has positive solutions u1 and u2 such that uj(0) = xj , j = 1, 2. Since
x1 /=x2, we have u1 /=u2 and therefore, for each λ ∈ ((χ(0))2/2,Γ), problem (1.6a)-(1.6b) has
multiple positive solutions.

Next, we present results for pseudo dead core solutions of problem (1.6a)-(1.6b). Note
that here Λ = γ(0).

Theorem 2.12. Let assumption (1.7) hold. Then problem (1.6a)-(1.6b) has a pseudo dead core
solution if and only if

λ =
1
2

⎛

⎜
⎝

∫Λ

0

ds
√∫s

0 g(v)dv

⎞

⎟
⎠

2

. (2.56)

Moreover, for λ given by (2.56), problem (1.6a)-(1.6b) has a unique pseudo dead core solution such
that u(1) = Λ.
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Proof. Let us assume that u is a pseudo dead core solution of problem (1.6a)-(1.6b) and let
Q := u(1). Then, by Remark 2.7, equalities (2.36), (2.38) hold, and Q = Λ. Also, (2.37) implies
that u is a solution of the equation

ϕ0(u(t)) =
√

2λt, t ∈ [0, 1], (2.57)

where ϕ0 and λ are given by (2.1) and (2.56), respectively. The result follows by showing that
equation (2.57) has a unique solution and that this solution is a pseudo dead core solution of
problem (1.6a)-(1.6b). We verify these facts for solutions of (2.57) arguing as in the proof of
Theorem 2.10, with a replaced by 0.

In the final theorem below, we deal with dead core solutions of problem (1.6a)-(1.6b).

Theorem 2.13. Let assumption (1.7) hold and let μ be the function defined in Lemma 2.4. Then the
following statements hold.

(i) Problem (1.6a)-(1.6b) has a dead core solution if and only if

λ >
1
2

⎛

⎜
⎝

∫Λ

0

ds
√∫s

0 g(v)dv

⎞

⎟
⎠

2

. (2.58)

(ii) For each λ satisfying (2.58), problem (1.6a)-(1.6b) has a unique dead core solution.

(iii) If the subinterval [0, ρ] is the dead core of a dead core solution u of problem (1.6a)-(1.6b),
then max{u(t) : 0 ≤ t ≤ 1} = μ(ρ) and

∫μ(ρ)

0

ds
√∫s

0 g(v)dv
=
(
1 − ρ

)√
2λ. (2.59)

Proof. (i) Let u be a dead core solution of problem (1.6a)-(1.6b) for some λ = λ0 and let Q :=
u(1). Then there exists a point ρ ∈ (0, 1) such that u(t) = 0 for t ∈ [0, ρ], and equalities (2.39),
(2.40), and (2.41) are satisfied by Lemma 2.9. We deduce from (2.41) and from Lemma 2.4
that Q = μ(ρ). Therefore, compare (2.40),

1
1 − ρ

∫μ(ρ)

0

ds
√∫s

0 g(v)dv
=
√

2λ0. (2.60)

Since

1
1 − ρ

∫μ(ρ)

0

ds
√∫s

0 g(v)dv
>

∫Λ

0

ds
√∫s

0 g(v)dv
(2.61)
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by Corollary 2.5, we have

λ0 >
1
2

⎛

⎜
⎝

∫Λ

0

ds
√∫s

0 g(v)dv

⎞

⎟
⎠

2

. (2.62)

Hence, if problem (1.6a)-(1.6b) has a dead core solution, then λ satisfies inequality (2.58).
We now prove that for each λ satisfying (2.58), problem (1.6a)-(1.6b) has a dead core

solution. Let us choose λ satisfying (2.58). Then, by Corollary 2.5, there exists a unique ρ ∈
(0, 1) such that

∫μ(ρ)

0

ds
√∫s

0 g(v)dv
=
(
1 − ρ

)√
2λ. (2.63)

Let us now consider, compare (2.39),

ϕ0(w(t)) =
(
t − ρ

)√
2λ, t ∈

[
ρ, 1
]
, (2.64)

where ϕ0 is given by (2.1). Since ϕ0 ∈ C[0,∞) ∩ C1(0,∞) and ϕ0 is increasing on [0,∞) by
Lemma 2.1, ϕ0(0) = 0, and, by (2.63), ϕ0(μ(ρ)) = (1 − ρ)

√
2λ, there exists a unique solution

w ∈ C[ρ, 1] of (2.64) and w(ρ) = 0, w(1) = μ(ρ). In addition,

w′(t) =

√
2λ

ϕ′0(w(t))
=

√

2λ
∫w(t)

0
g(v)dv, t ∈

(
ρ, 1
]
, (2.65)

and consequently, w ∈ C1(ρ, 1] and limt→ ρ+w
′(t) = 0. Since

(
t − ρ

)√
2λ =

∫w(t)

0

ds
√∫s

0 g(v)dv
=

w(t)
√∫ ξ(t)

0 g(v)dv
, t ∈

(
ρ, 1
]
, (2.66)

by the Mean Value Theorem for integrals, where 0 < ξ(t) < w(t), we have

w(t) −w
(
ρ
)

t − ρ =
w(t)
t − ρ =

√

2λ
∫ ξ(t)

0
g(v)dv. (2.67)

Therefore,

lim
t→ ρ+

w(t) −w
(
ρ
)

t − ρ = lim
t→ ρ+

√

2λ
∫ ξ(t)

0
g(v)dv = 0 (2.68)
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since limt→ ρ+ξ(t) = 0. Hence, w′ is continuous at t = ρ, and w ∈ C1[ρ, 1]. Furthermore,

w′′(t) =

√
2λg(w(t))w′(t)

2
√∫w(t)

0 g(v)dv
= λg(w(t)), t ∈

(
ρ, 1
]
. (2.69)

Let

u(t) :=

⎧
⎨

⎩

0, for t ∈
[
0, ρ
)
,

w(t), for t ∈
[
ρ, 1
]
.

(2.70)

Then u ∈ C1[0, 1] ∩ C2(ρ, 1], u′′(t) = λg(u(t)) for t ∈ (ρ, 1], u(ρ) = u′(ρ) = 0, u(1) = μ(ρ), and

u′(1) =

√

2λ
∫u(1)

0
g(v)dv =

1
1 − ρ

∫μ(ρ)

0

ds
√∫s

0 g(v)dv

√∫μ(ρ)

0
g(v)dv. (2.71)

Thus,

αu(1) + βu′(1) = αμ
(
ρ
)
+

β

1 − ρ

∫μ(ρ)

0

ds
√∫s

0 g(v)dv

√∫μ(ρ)

0
g(v)dv = h

(
ρ, μ

(
ρ
))
, (2.72)

where h is given by (2.3). Since h(ρ, μ(ρ)) = 1 by Lemma 2.4, u satisfies the boundary
conditions (1.6b). Consequently, u is a dead core solution of problem (1.6a)-(1.6b).

(ii) Let us choose an arbitrary λ satisfying (2.58). By (i), problem (1.6a)-(1.6b) has a
dead core solution which is unique by Lemma 2.9.

(iii) Let the subinterval [0, ρ] be the dead core of a dead core solution u of problem
(1.6a)-(1.6b). Then, by Lemma 2.9, equalities (2.40) and (2.41) hold with λ0 replaced by λ and
Q = max{u(t) : 0 ≤ t ≤ 1}. Since h(ρ, μ(ρ)) = 1 by the definition of the function μ, we have
μ(ρ) = Q. Equality (2.59) now follows from (2.40) with Q and λ0 replaced by μ(ρ) and λ,
respectively.

Example 2.14. We now turn to the case study of the boundary value problem (1.9a)-(1.9b),

u′′(t) =
λ

√
u(t)

, u′(0) = 0, αu(1) + βu′(1) = 1, α > 0, β > 0. (2.73)

Note that (1.9a)-(1.9b) is a special case of (1.6a)-(1.6b) with g(u) = 1/
√
u satisfying (1.8).
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Since

∫y

x

ds
√∫s

x

(
1/
√
v
)
dv

=
4

3
√

2

√√
y −
√
x
(√

y + 2
√
x
)
, 0 ≤ x < y, (2.74)

we have

H
(
x, y

)
= αy + β

∫y

x

ds
√∫s

x

(
1/
√
v
)
dv

√∫y

x

dv√
v
= αy +

4β
3
(√

y −
√
x
)(√

y + 2
√
x
)

(2.75)

for 0 ≤ x < y, and H(x, x) = αx for x ≥ 0. By Lemma 2.2, the equation H(x, y) = 1 has
a unique solution y = γ(x) for x ∈ [0, 1/α], γ ∈ C[0, 1/α], γ(x) > x for x ∈ [0, 1/α), and
γ(1/α) = 1/α. Let

k(x) :=
x

γ(x)
for x ∈

[
0,

1
α

]
. (2.76)

Then k ∈ C[0, 1/α], k(0) = 0, and k(1/α) = 1. In order to show that k is increasing on [0, 1/α]
it is sufficient to verify that k is injective. Let us assume that this is not the case, then there
exist x1, x2 ∈ [0, 1/α], x1 /=x2, such that k(x1) = k(x2). From H(xj , γ(xj)) = 1, j = 1, 2, or
equivalently, from

3α + 4β
(

1 −
√
k
(
xj
)
)(

1 + 2
√
k
(
xj
)
)

=
3

γ
(
xj
) , j = 1, 2, (2.77)

it follows that γ(x1) = γ(x2), and x1 = x2, which is a contradiction. Hence, k is increasing on
[0, 1/α] and therefore, there exists the inverse function k−1 mapping [0, 1] onto [0, 1/α]. Since

H
(
k(x)γ(x), γ(x)

)
= γ(x)

[
α +

4β
3

(
1 −

√
k(x)

)(
1 + 2

√
k(x)

)]
(2.78)

and H(k(x)γ(x), γ(x)) = 1 for x ∈ [0, 1/α], we have

γ(x) =
3

3α + 4β
(

1 −
√
k(x)

)(
1 + 2

√
k(x)

) . (2.79)
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Consequently,

(
χ(x)

)2 =

⎛

⎜
⎝

∫ γ(x)

x

ds
√∫s

x(1/
√
v)dv

⎞

⎟
⎠

2

=
8
9

(√
γ(x) −

√
x

)(√
γ(x) + 2

√
x

)2

=
8
9
(
γ(x)

)3/2
(

1 −
√
k(x)

)(
1 + 2

√
k(x)

)2

=
8
9

⎛

⎜
⎝

3

3α + 4β
(

1 −
√
k(x)

)(
1 + 2

√
k(x)

)

⎞

⎟
⎠

3/2
(

1 −
√
k(x)

)(
1 + 2

√
k(x)

)2

.

(2.80)

In order to discuss the range M of the function χ2/2 and the value of (χ(x))2/2 for x ∈
[0, 1/α], we first consider properties of the function

δ(x) :=
4
9

(
3

3α + 4β(1 −
√
x)(1 + 2

√
x)

)3/2
(
1 −
√
x
)(

1 + 2
√
x
)2 (2.81)

defined on [0, 1]. Let

f(x) := δ

((
x − 1

2

)2
)

for x ∈ [1, 3]. (2.82)

Then

f(x) =
2
9

(
3

3α + 2βx(3 − x)

)3/2

x2(3 − x),

f ′(x) =
2x
3

(
3

3α + 2βx(3 − x)

)3/2 p(x)
3α + 2βx(3 − x) ,

(2.83)

where p(x) = 6α + 3(β − α)x − βx2. The function p vanishes only at point

x∗ =
1

2β

(
3
(
β − α

)
+
√

9
(
β − α

)2 + 24αβ
)

(2.84)

in the interval [1, 3], and 2 < x∗ < 3, because p(2) > 0 and p(3) < 0. Since f ′(x∗) = 0, p > 0 on
[1, x∗), p < 0 on (x∗, 3] and

2x
3

(
3

3α + 2βx(3 − x)

)3/2 1
3α + 2βx(3 − x) > 0 (2.85)
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for x ∈ [1, 3], we have f ′ > 0 on [1, x∗) and f ′ < 0 on (x∗, 3]. Let us define k∗ := ((x∗ − 1)/2)2.
Then k∗ ∈ (1/4, 1), and it follows from f ′(x) = ((x − 1)/2)δ′(((x − 1)/2)2) that δ′ > 0 on
(0, k∗) and δ′ < 0 on (k∗, 1]. Consequently, δ is increasing on [0, k∗] and decreasing on [k∗, 1].
It follows from the equality (χ(x))2 = 2δ(k(x)) for x ∈ [0, 1/α] and from the properties of
the functions δ and k that χ2 is increasing on [0, k−1(k∗)] and decreasing on [k−1(k∗), 1/α].
Hence,M = [0,M], where M := max{δ(x) : 0 ≤ x ≤ 1}. Also,

(
χ(0)

)2 =
8
9

(
3

3α + 4β

)3/2

, χ(1) = 0. (2.86)

Using properties of the function χ and the results of Theorems 2.10–2.13, we can now
characterize the structure of the solution u.

(i) For each λ ∈ (M,∞), there exists only a unique dead core solution of problem
(1.9a)-(1.9b).

(ii) For λ = M, there exist a unique dead core solution and a unique positive solution
of problem (1.9a)-(1.9b).

(iii) For each λ ∈ (4/9(3/(3α + 4β))3/2,M), there exist a unique dead core solution and
exactly two positive solutions of problem (1.9a)-(1.9b).

(iv) For λ = 4/9(3/(3α+4β))3/2, there exist the unique pseudo dead core solution u(t) =
(3/(3α + 4β))t4/3 and a unique positive solution of problem (1.9a)-(1.9b).

(v) For each λ ∈ [0, 4/9(3/(3α + 4β))3/2), there exist only a unique positive solution of
problem (1.9a)-(1.9b).

Using Theorem 2.10, Lemma 2.6, and the properties of the function δ, we can specify further
properties of positive solutions of problem (1.9a)-(1.9b).

(i) If u is the (unique) positive solution of problem (1.9a)-(1.9b) with λ ∈
[0, 4/9(3/(3α + 4β))3/2) ∪ {M}, then u(0) = x0u(1), where x0 /= 0 is the root of the
equation δ(x) − λ = 0.

(ii) If u1, u2 are the (unique) positive solutions of problem (1.9a)-(1.9b) with λ ∈
(4/9(3/(3α + 4β))3/2,M), then uj(0) = xjuj(1), j = 1, 2, where 0 < x1 < k∗ < x2 < 1,
are the roots of the equation δ(x) − λ = 0.

We are also able to give some more information on the dead core solutions of problem (1.9a)-
(1.9b). Since

h
(
t, y
)
= αy +

β

1 − t

∫y

0

ds
√∫s

0

(
1/
√
v
)
dv

√∫y

0

dv√
v
= αy +

4βy
3(1 − t) , (2.87)

the function μ(t) = 3(1− t)/(3α(1− t)+4β), t ∈ [0, 1), is the solution of the equation h(t, y) = 1.
Let us choose an arbitrary λ > 4/9(3/(3α + 4β))3/2. By Corollary 2.5, the equation; see (2.28),

4

3
√

2

(
3(1 − t)

3α(1 − t) + 4β

)3/4

= (1 − t)
√

2λ, t ∈ [0, 1), (2.88)
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has a unique solution ρ ∈ (0, 1). Consequently,

λ =
4

9
√

1 − ρ

(
3

3α(1 − ρ) + 4β

)3/2

. (2.89)

One can easily show that the function

u(t) =

⎧
⎪⎪⎨

⎪⎪⎩

0, for t ∈
[
0, ρ
]
,

(
3
2

√
λ
(
t − ρ

)
)4/3

, for t ∈
(
ρ, 1
]
,

(2.90)

is the unique dead core solution of problem (1.9a)-(1.9b). Additionally, it follows from
Theorem 2.13(iii) that max{u(t) : 0 ≤ t ≤ 1} = 3(1 − ρ)/(3α(1 − ρ) + 4β) since max{u(t) :
0 ≤ t ≤ 1} = μ(ρ).

3. Numerical Treatment

We now aim at the numerical approximation to the solution of the following two-point
boundary value problem:

u′′(t) = f(t, u(t)), t ∈ [0, 1],

u′(0) = 0, βu′(1) + αu(1) = A, β ≥ 0, α,A > 0.
(3.1)

For the numerical solution of (3.1), we are using the collocation method implemented in our
Matlab code bvpsuite. It is a new version of the general purpose Matlab code sbvp, compare
[10–12]. This code has already been used to treat a variety of problems relevant in application;
see, for example, [13–17]. Collocation is a widely used and well-studied standard solution
method for two-point boundary value problems, compare [18] and the references therein. It
can also be successfully applied to boundary value problems with singularities.

In the scope of the code are systems of ordinary differential equations of arbitrary
order. For simplicity of notation we present a problem of maximal order four which can be
given in a fully implicit form,

F
(
t, u(4)(t), u(3)(t), u′′(t), u′(t), u(t)

)
= 0, 0 ≤ t ≤ 1, (3.2a)

b
(
u(3)(0), u′′(0), u′(0), u(0), u(3)(1), u′′(1), u′(1), u(1)

)
= 0. (3.2b)

In order to compute the numerical approximation, we first introduce a mesh

Δh := {τi : i = 0, . . . ,N}, 0 = τ0 < τ1 · · · < τN = 1. (3.3)
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Figure 1: δ(x) for α = β = 1 (a) and for α = 5, β = 0.5 (b).

The approximation for u is a collocation function

p(t) := pi(t), t ∈ [τi, τi+1], i = 0, . . . ,N − 1, (3.4)

where we require p ∈ Cq−1[0, 1] in case that the order of the underlying differential equation
is q. Here, pi are polynomials of maximal degree m − 1 + q which satisfy the system (3.2a) at
m inner collocation points

{
ti,j = τi + ρj(τi+1 − τi), i = 0, . . . ,N − 1, j = 1, . . . , m

}
, 0 < ρ1 < · · · < ρm < 1, (3.5)

and the associated boundary conditions (3.2b).
Classical theory, compare [18], predicts that the convergence order for the global error

of the method is at least O(hm), where h is the maximal stepsize, h := maxi(τi+1 − τi). To
increase efficiency, an adaptive mesh selection strategy based on an a posteriori estimate for
the global error of the collocation solution is utilized. A more detailed description of the
numerical approach can be found in [4].

The code bvpsuite also allows to follow a path in the parameter-solution space. This
means that in the following problem setting, parameter ϑ is unknown:

F
(
t, u(4)(t), u(3)(t), u′′(t), u′(t), u(t), ϑ

)
= 0, 0 ≤ t ≤ 1, (3.6a)

b
(
u(3)(0), u′′(0), u′(0), u(0), u(3)(1), u′′(1), u′(1), u(1)

)
= 0, ϑ = λ, (3.6b)

where λ is given. The path following strategy can also cope with turning points in the path.
The theoretical justification for the path following strategy implemented in bvpsuite has
been given in [19].

We first study the boundary problem (1.9a)-(1.9b). Positive solutions of problem
(1.5a)-(1.5b) will be discussed in Section 3.4.
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The above analytical discussion indicates that depending on the values of α, β, λ, the
problem has one or more positive solutions, a pseudo dead core solution or a dead core
solution. All numerical approximations have been calculated on a fixed mesh with N = 500
subintervals and collocation degree m = 4. Figure 1 shows δ(x) for our choice of parameters
used in the following sections. Here, δ is given by (2.81).

3.1. Positive Solutions

For λ ∈ [0, δ(0)), δ(0) = (4/9)(3/(3α + 4β))3/2, there exist a unique positive solution. This
solution was found numerically by using the original problem formulation (1.9a)-(1.9b). For
α = β = 1 we obtain δ(0) ≈ 0.12469. In Figure 2 we display the numerical solution, the error
estimate and the residual for λ = 0.05. The residual r(t) is calculated by substituting the
numerical solution p(t) into the differential equation,

r(t) := p′′(t) − λ
√
p(t)

. (3.7)

Due to the very small size of the error estimate and residual, it is obvious that the
numerical approximation is very accurate. According to the analytical results, a solution to
the problem satisfies |u(0) − x0u(1)| = 0 where x0 is a root of δ(x) − λ = 0. Here, we have x0 =
0.972608 and |u(0) − x0u(1)| = 6.4 10−8 which again shows the high quality of the numerical
solution. In Figure 3 we depict the results for the parameter α = 5, β = 0.5 and λ = 0.02 <
δ(0) ≈ 0.03294. For this choice of parameters x0 = 0.877692 and |u(0) − x0u(1)| = 3.5 10−8.

For λ = δ(0) = (4/9)(3/(3α+4β))3/2 there exists a unique positive solution. To compute
its numerical approximation, we rewrite the problem (1.9a)-(1.9b) and consider

u′′(t)
√
u(t) = λ =

4
9

(
3

3α + 4β

)3/2

, t ∈ [0, 1],

u′(0) = 0, αu(1) + βu′(1) = 1, α > 0, β > 0.

(3.8)

The numerical results related to parameter sets α = 1, β = 1, and α = 5, β = 0.5 are shown in
Figure 4 and Figure 5, respectively.

Again, the error estimate and the residual are both very small and x0 = 0.919315, so
|u(0) − x0u(1)| = 3.5 10−7. Moreover, for the second set of parameters, x0 = 0.783283 and
|u(0) − x0u(1)| = 1.7 10−8.

For λ ∈ (δ(0),M) with M = max{δ(x) : 0 ≤ x ≤ 1} there exist two positive solutions.
These two different solutions for a fixed value of λ can be characterized via the roots x1,2 of
δ(x) − λ = 0 for x ∈ [0, 1]. The choice of parameters remains the same. For α = 1, β = 1
and λ = 0.15 the solution corresponding to x1 ≈ 0.009159 is shown in Figure 6. The solution
corresponding to x2 ≈ 0.896054 is depicted in Figure 7. Note that for these values of α and β
we have M ≈ 0.28049.
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Figure 2: Problem (1.9a)-(1.9b): The numerical solution, the error estimate, and the residual for α = 1, β = 1
and λ = 0.05.
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Figure 3: Problem (1.9a)-(1.9b): The numerical solution, the error estimate, and the residual for α = 5,
β = 0.5 and λ = 0.02.
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Figure 4: Problem (3.8): The numerical solution, the error estimate, and the residual for α = 1, β = 1 and
λ = (4/9)(3/(3α + 4β))3/2.
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Figure 5: Problem (3.8): The numerical solution, the error estimate, and the residual for α = 5, β = 0.5 and
λ = (4/9)(3/(3α + 4β))3/2.
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Figure 6: Problem (3.8): The numerical solution, the error estimate, and the residual for α = 1, β = 1 and
λ = 0.15. The associated root is x1.
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Figure 7: Problem (3.9): The numerical solution, the error estimate, and the residual for α = 1, β = 1 and
λ = 0.15. The associated root is x2.
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Figure 8: Problem (3.8): The numerical solution, the error estimate, and the residual for α = 5, β = 0.5 and
λ = 0.05. The associated root is x1.
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Figure 9: Problem (3.9): The numerical solution, the error estimate, and the residual for α = 5, β = 0.5 and
λ = 0.05. The associated root is x2.
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Figure 10: Problem (3.8): The numerical solution, the error estimate, and the residual for α = 1, β = 1 and
λ = 0.28049410745840.
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Figure 11: Problem (3.8): The numerical solution, the error estimate, and the residual for α = 5, β = 0.5 and
λ = 0.06608546529011.

The first of those two solutions was found using the reformulated problem (3.8) with λ
as the right-hand side. For the second solution it was necessary to rewrite the problem again
and use

u′′(t)
√
u(t) =

4
9

(
3

3α + 4β(1 −
√
x)(1 + 2

√
x)

)3/2
(
1 −
√
x
)(

1 + 2
√
x
)2
, t ∈ [0, 1],

u′(0) = 0, αu(1) + βu′(1) = 1, α > 0, β > 0,

(3.9)

with x as a free unknown parameter and x = x2 as a necessary additional boundary condition.
Here, x1 = 0.009159 and |u(0) − x1u(1)| = 1.7 10−15. For comparison, x2 = 0.896054 and |u(0) −
x2u(1)| = 4.1 10−7. In Figures 8 and 9, two different positive solutions for the second parameter
set, α = 5, β = 0.5, and λ = 0.05, are shown. Note that M ≈ 0.06608, x1 ≈ 0.037199 and x2 ≈
0.624635. For this example x1 = 0.037119 and |u(0) − x1u(1)| = 5.5 10−17. Here, x2 = 0.624635
and |u(0) − x2u(1)| = 8.1 10−8. Finally, for λ = M, there exists a unique positive solution. In
Figures 10 and 11 we display the numerical results for α = 1, β = 1 and for α = 5, β = 0.5,
respectively. In this example, x0 = 0.525260 and |u(0) − x0u(1)| = 2.5 10−6. Using this latter set
of parameters, we obtain x0 = 0.283205 and |u(0) − x0u(1)| = 4.1 10−6. All positive solutions
could be easily found and they all show a very satisfactory level of accuracy.
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Figure 12: Problem (3.10): The numerical solution, the error estimate, and the residual for α = 1, β = 1 and
λ = (4/9)(3/(3α + 4β))3/2.
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Figure 13: Problem (3.10): The numerical solution, the error estimate, and the residual for α = 5, β = 0.5
and λ = (4/9)(3/(3α + 4β))3/2.

3.2. Pseudo Dead Core Solutions

In order to calculate the pseudo dead core solutions, we solved the following problem:

u′′(t)
√
u(t)u(t) = λu(t), t ∈ [0, 1],

u′(0) = 0, αu(1) + βu′(1) = 1, α > 0, β > 0,
(3.10)

where the differential equation has been premultiplied by the factor u. Otherwise, the
problem formulated as (3.1) or (3.8), would have not been well defined at all points t /= 0
such that u(t) = 0. In Figures 12 and 13, we report on the pseudo dead core solutions for

λ =
4
9

(
3

3α + 4β

)3/2

. (3.11)

In this case, the analytical unique pseudo dead core solution is known,

u(t) =
3

3α + 4β
t4/3, t ∈ [0, 1]. (3.12)
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Figure 14: Problem (3.10): The initial profile, the numerical solution, the error estimate, and the residual
for α = 1, β = 1 and t1 = 0.2.

Table 1: Problem (3.10): Exact global error of the pseudo dead core solution.

α β maxt∈[0,1]|u(t) − p(t)|
1 1 1.5 · 10−5

5 0.5 5.1 · 10−6

Therefore, the exact global error is accessible. In Table 1, we show the values for the global
error, max0≤t≤1|u(t) − p(t)|where p(t) is the numerical solution at t.

3.3. Dead Core Solutions

We now deal with the dead core solutions of the problem. Note that they only occur for

λ >
4
9

(
3

3α + 4β

)3/2

. (3.13)
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Figure 15: Problem (3.10): The initial profile, the numerical solution, the error estimate, and the residual
for α = 1, β = 1 and t1 = 0.8.

Moreover, the relation between λ and t1, where t1 is such that the solution vanishes on [0, t1],
is given by

λ =
4

9
√

1 − t1

(
3

3α(1 − t1) + 4β

)3/2

. (3.14)

Also, the dead core solution is known,

u(t) =
(

3
2

√
λ(t − t1)

)4/3

, t ∈ [t1, 1]. (3.15)

For the experiments, we used t1 = 0.2 and t1 = 0.8, in order to solve the problem,

u′′(t)
√
u(t)u(t) = λu(t), t ∈ [t1, 1],

u′(t1) = 0, αu(1) + βu′(1) = 1, α > 0, β > 0.
(3.16)
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Figure 16: Problem (3.10): The initial profile, the numerical solution, the error estimate, and the residual
for α = 5, β = 0.5 and t1 = 0.2.

Clearly, if we approached the problem (3.16) directly, we had to use the knowledge of t1
which is not available in general. Therefore, it is especially important to note that we were
able to find the dead core solution without explicit knowledge of t1 by treating the problem
(3.10), formulated on the whole interval [0, 1],

u′′(t)
√
u(t)u(t) = λu(t), t ∈ [0, 1],

u′(0) = 0, αu(1) + βu′(1) = 1, α > 0, β > 0,
(3.17)

instead of solving (3.16). In Figures 14 and 15, we report on the numerical test runs for α = 1,
β = 1, and two values of t1, t1 = 0.2 and t1 = 0.8, respectively. In Figures 16 and 17, analogous
results for α = 5, β = 0.5, and t1 = 0.2, t1 = 0.8, respectively, can be found.
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Figure 17: Problem (3.10): The initial profile, the numerical solution, the error estimate, and the residual
for α = 5, β = 0.5 and t1 = 0.8.

Table 2 contains the information on the exact global error of the numerical dead
core solution. We report on its maximal value maxt∈[0,1]|u(t) − p(t)| for a wide range of
parameters. Obviously, dead core solutions can be found without exact use of the known
solution structure, but the initial profile must be chosen carefully to guarantee the Newton
iteration to convergence.

3.4. Positive Solutions of Problem (1.5a)-(1.5b)

In this section, we deal with problem (1.5a)-(1.5b). Since this problem is very involved, we
decided to simulate it numerically first in order to provide some preliminary information
about its solution. The numerical treatment of (1.5a)-(1.5b) turned out to be not at all
straightforward, but nevertheless, for a certain choice of parameters, γ = 3, ρ = 2, ν = 2,
and α = 0.1, β = 1, we were able to solve the problem and provide the error estimate and
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Table 2: Maximum of the exact global error of the numerical dead core solution.

α β t1 maxt∈[0,1]|u(t) − p(t)|
1 1 0.2 9.7 × 10−4

1 1 0.5 1.2 × 10−3

1 1 0.8 1.7 × 10−3

0.5 1.5 0.2 1.5 × 10−3

0.5 1.5 0.5 1.5 × 10−3

0.5 1.5 0.8 1.2 × 10−3

0.5 0.8 0.3 5.5 × 10−2

0.5 0.8 0.5 1.8 × 10−3

0.5 0.8 0.8 2.8 × 10−3

0.3 5 0.2 7.4 × 10−4

0.3 5 0.5 7.1 × 10−4

0.3 5 0.8 6.2 × 10−4

5 0.5 0.2 3.6 × 10−4

5 0.5 0.5 6.2 × 10−4

5 0.5 0.8 6.7 × 10−4
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Figure 18: Graph of the ‖p‖ − λ path obtained in 76 steps of the path following procedure, where ‖p‖ =
maxt∈[0,1]|p(t)|. The turning point has been found at λ ≈ 1.8442.
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Figure 19: Problem (3.18): The numerical solution, the error estimate, and the residual for λ =
0.69901190254861.
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Figure 20: Problem (3.18): The numerical solution, the error estimate, and the residual for λ =
1.08259965025194.
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Figure 21: Problem (3.18): The numerical solution, the error estimate, and the residual for λ =
1.21752999971798.
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Figure 22: Problem (3.18): The numerical solution, the error estimate, and the residual for λ =
1.21476799699434.
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Figure 23: Problem (3.18): The numerical solution, the error estimate, and the residual for λ =
1.42604644036221.
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Figure 24: Problem (3.18): The numerical solution, the error estimate, and the residual for λ =
1.42139222684689.
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Figure 25: Problem (3.18): The numerical solution, the error estimate, and the residual for λ =
1.84118395344504.
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Figure 26: Problem (3.18): The numerical solution, the error estimate, and the residual for λ =
1.84416811671110.
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Figure 27: Problem (3.18): The numerical solution, the error estimate, and the residual for λ =
1.84240837502548.
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Figure 28: Problem (3.18): The numerical solution, the error estimate, and the residual for λ =
1.14216524081032.

the residual for its approximative solution. We have applied the path following strategy
implemented in bvpsuite to the boundary value problem

((
u′(t)

)3
)′

+
u′(t)
t2

= ϑ

(
1

√
u(t)

+
(
u′(t)

)2

)

, 0 < t ≤ 1,

u′(0) = 0, 0.1u(1) + u′(1) = 1, ϑ = λ.

(3.18)

In Figures 19 to 28, we present numerical results for problem (3.18). The values of λ for
which we were able to calculate the associated numerical solutions, are shown in Figure 18.
According to Figure 18, we have found a turning point at λ ≈ 1.8442. In a certain region below
this value, there exist for any λ two different positive solutions.

In order to start the path following procedure we set λ = 0.5 and used u ≡ 1 as
an initial profile. For each further step, we used the solution from the previous step as an
initial profile. The solution corresponding to the values of λ shown in Figures 19 and 20 is
unique. For λ ≈ 1.215 we have found two different positive solutions, compare Figures 21
and 22. Also, for λ ≈ 1.425, two different positive solutions exist; see Figures 23 and 24.
Interestingly, solutions found in the vicinity of the turning point change rather fast, although
the values of λ do not; see Figures 25 to 26. Finally, in the last step of the procedure, we
obtained a solution which nearly reaches a pseudo dead core solution with p(0) ≈ u(0) ≈ 0.
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