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We study the existence and uniqueness of solutions and nonlocal controllability for the impulsive
semilinear nonlocal fuzzy integrodifferential equations in n-dimensional fuzzy vector space (En)"
by using short-term perturbations techniques and Banach fixed point theorem. This is an extension
of the result of Kwun et al. (Kwun et al., 2009) to impulsive system.

1. Introduction

The theory of differential equations with discontinuous trajectories during the last twenty
years has been to a great extent stimulated by their numerous applications to problem arising
in mechanics, electrical engineering, the theory of automatic control, medicine and biology.
For the monographs of the theory of impulsive differential equations, see the papers of Bainov
and Simenov [1], Lakshmikantham et al. [2] and Samoileuko and Perestyuk [3], where
numerous properties of their solutions are studied and detailed bibliographies are given.
Rogovchenko [4] followed the ideas of the theory of impulsive differential equations which
treats the changes of the state of the evolution process due to a short-term perturbations
whose duration can be negligible in comparison with the duration of the process as an instant
impulses. In 2001, Lakshmikantham and McRae [5] studied basic results for fuzzy impulsive
differential equations. Park et al. [6] studied the existence and uniqueness of fuzzy solutions
and controllability for the impulsive semilinear fuzzy integrodifferential equations in one-
dimensional fuzzy vector space E},. Rodriguez-Lopez [7] studied periodic boundary value
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problems for impulsive fuzzy differential equations. Fuzzy integrodifferential equations are
a field of interest, due to their applicability to the analysis of phenomena with memory
where imprecision is inherent. Balasubramaniam and Muralisankar [8] proved the existence
and uniqueness of fuzzy solutions for the semilinear fuzzy integrodifferential equation with
nonlocal initial condition. They considered the semilinear one-dimensional heat equation
on a connected domain (0,1) for material with memory. In one-dimensional fuzzy vector
space E, Park et al. [9] proved the existence and uniqueness of fuzzy solutions and
presented the sufficient condition of nonlocal controllability for the following semilinear
fuzzy integrodifferential equation with nonlocal initial condition.

In [10], Kwun et al. proved the existence and uniqueness of fuzzy solutions for
the semilinear fuzzy integrodifferential equations by using successive iteration. In [11],
Kwun et al. investigated the continuously initial observability for the semilinear fuzzy
integrodifferential equations. Bede and Gal [12] studied almost periodic fuzzy-number-
valued functions. Gal and N’Guerekata [13] studied almost automorphic fuzzy-number-
valued functions. More recently, Kwun et al. [14] studied the existence and uniqueness of
solutions and nonlocal controllability for the semilinear fuzzy integrodifferential equations
in n-dimensional fuzzy vector space.

In this paper, we study the existence and uniqueness of solutions and nonlocal
controllability for the following impulsive semilinear nonlocal fuzzy integrodifferential
equations in n-dimensional fuzzy vector space by using short-term perturbations techniques
and Banach fixed point theorem:

dxi(t) _ A; [xi(t) + ft G(t- s)xi(S)dS] + fi <f, xi(t), ft qi(t,s, xi(s))d5> +u;(t) on EL,
dt 0 0

xi(0) + gi(x;) = x, € EY,

Axi(te) = Ie(xi(te)), t#t, k=1,2,...,m, i=1,2,...,n,
(1.1)

where A; : [0,T] — EY is fuzzy coefficient, EY; is the set of all upper semicontinuously
convex fuzzy numbers on R with E}; # EN (i#7), fi: [0, T] x Ey x Eyy — Ej and g; : [0,T] x
[0,T] x EY, are nonlinear regular fuzzy functions, g; : E; — E}; is a nonlinear continuous
function, G(t) is an n x n continuous matrix such that dG(t)x;/dt is continuous for x; € E};
and t € [0,T] with |G(t)|]| < k, k > 0, u; : [0,T] — E} is a control function, xo, € E}; is an
initial value and Iy € C(E}, E};) are bounded functions, Ax;(tx) = xi(tZ) - xi(t;), where x;(t,)
and x;(t;) represent the left and right limits of x;(t) at t = t, respectively.

2. Preliminaries

A fuzzy set u of R" is a function u : R" — [0,1]. For each fuzzy set u, we denote by [u]” =
{x € R": u(x) > a} for any a € [0, 1] its a-level set.

Let u, v be fuzzy sets of R". It is well known that [u]”" = [v]” for each a € [0, 1] implies
u=nu.
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Let E" denote the collection of all fuzzy sets of R" that satisfies the following
conditions:

(1) u is normal, that is, there exists an xy € R" such that u(x,) = 1;

(2) u is fuzzy convex, that is, u(Ax + (1 — \)y) > min{u(x),u(y)} for any x,y € R",
0<ALT,;

(3) u(x) is upper semicontinuous, that is, u(xg) > Ekawu(xk) for any xx € R"(k =
0,1,2,...), xk = xo;

(4) [u]’is compact.

We call u € E" an n-dimension fuzzy number.

Wang et al. [15] defined n-dimensional fuzzy vector space and investigated its
properties.

Forany u; € E,i =1,2,...,n, we call the ordered one-dimension fuzzy number class
Ui, Uy, ..., Uy (i-e., the Cartesian product of one-dimension fuzzy number u;, uy, ..., u,) an n-
dimension fuzzy vector, denote it as (1, uy, . .., u,), and call the collection of all n-dimension

—SN—
fuzzy vectors (i.e., the Cartesian product E x E x - -- x E) n-dimensional fuzzy vector space,
and denote it as (E)".

Definition 2.1 (see [15]). If u € E", and [u]” is a hyperrectangle, thatis, [u]” can be represented
by [T, [uf, uf, ], thatis, [uf), uf, 1x[u3, us,]x- - -x[u%, us, | forevery a € [0,1], where uj, uf, € R
with uf} <uf, whena € (0,1],i=1,2,...,n, then we call u a fuzzy n-cell number. We denote

the collection of all fuzzy n-cell numbers by L(E").

Theorem 2.2 (see [15]). For any u € L(E") with [u]® = [TiL, [uf, uf](a € [0,1]), there exists a
unique (uy, Uy, ..., uy) € (E)" such that [u;]* = [u§,u3] (i=1,2,...,nand a € [0,1]). Conversely,
for any (uy,uy, ..., u,) € (E)" with [w;]* = [u§,ul] (i=1,2,...,nand a € [0,1]), there exists a
unique u € L(E") such that [u]" = TTi.; [u§, ul](a € [0,1]).
Note 1 (see [15]). Theorem 2.2 indicates that fuzzy n-cell numbers and n-dimension fuzzy
vectors can represent each other, so L(E") and (E)" may be regarded as identity. If
(u1,uz, ..., uy) € (E)" is the unique n-dimension fuzzy vector determined by u € L(E"),
then we denote u = (u1,uy, ..., uy).

- Let (E;'\])” = E]l\] X EJZV x .- x EY,, where Ejv (i=1,2,...,n)is a fuzzy subset of R. Then
(Ei)" € (B)".

Definition 2.3 (see [15]). The complete metric Dy on (Eé\])” is defined by

Dy (u,v) = supd([u]”, [v]") = sup {r<1_ax{ |uf —of|, |uf, — 5|} 2.1)
0<a<l O<a<11sisn

forany u,v € (Ej\])”, which satisfies dy (u + w, v + w) = dr(u,v).

Definition 2.4. Letu,v € C([0,T] : (E{,)"),

Hi(u,v) = Os<1t1<pT Dy (u(t),v(t)). (2.2)
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Definition 2.5 (see [15]). The derivative x'(t) of a fuzzy process x € (Eé\])" is defined by
a L ! !
oI =TT [, &) o] (23)
i=1

provided that equation defines a fuzzy x'(t) € (Eé\,)".

Definition 2.6 (see [15]). The fuzzy integral J’Z x(t)dt, a,b € [0,T] is defined by

b

U: x(t)dt] " 1i[ U: x§(t)dt, Ju x;’;(t)dt] (2.4)

provided that the Lebesgue integrals on the right-hand side exist.

3. Existence and Uniqueness

In this section we consider the existence and uniqueness of the fuzzy solution for (1.1) (u = 0).

We define
A= (A1, A, ..., A,
X = (x1,X2,...,%n),
f=Ufor i fu) (3.1)
q="(91,92--,qn),
u=(u,uy, ..., uy),
8=1(81,8/-,8n),
xo = (x0,, X0,,- - -, X0,)- (3.2)
Then
A x f g % u ge (Ey)" 53

Instead of (1.1), we consider the following fuzzy integrodifferential equations in (E%,)"

% = A[x(t) + f;c;(t - s)x(s)ds] +f<t,x(t),f;q(t, s,x(s))ds> +u(t) on (E;’V)",
(3.4)
x(0) + g(x) = xo € (E;’V)", (3.5)

Ax(ty) = I (x(ty)), t#t, k=12,...,m,i=1,2,...,n, (3.6)
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with fuzzy coefficient A : [0,T] — (EL;)", initial value xo € (E,)", and u : [0,T] — _(E}'\])"
being a control function. Given nonlinear regular fuzzy functions f : [0, T]x (E)" < (ER)" —
(E)"and g : [0, T]x[0,T] x (E\)" — (E4,)" satisfy global Lipschitz conditions, that is, there

exist finite constants kq, ko, M > 0 such that

dr([f(s, &), m)]% [f(s,&(5),m2(5))]%)
< kidp ([&1(5)]% [&2(5)]7) + kodr ([m1(9)] %, [m2()] %),
di([q(ts, 1)) [a(ts,92(5))]") < Mdr([pr(s)]" [92(5)]")

(3.7)

(3.8)

for all ¢;(s),n;(s),;(s) € (EX)"(j = 1,2), the nonlinear function g : (Ey)" — (EY)" is

continuous and satisfies the Lipschitz condition
([ [g(y()]") < hdrL(IxO)1% [yO]%)

forall x(-), y(:) € (Eé\[)", h is a finite positive constant.

Definition 3.1. The fuzzy process x : I = [0,T] — (E})" with a-level set [x(t)]* =TT

n 14
T, [,
if

(x2)(t) = min{Af;.(t) [xf‘k(t) + It G(t - s)x;’k(s)ds] ij k= l,r},

0

(x2)(t) = max{A;;(t) [x;*k(t) + jt G(t- s)x;*k(s)ds] ik = l,r},

0

x5(0) + g (x5) = x5, x5(0) + gr(x) = xg, i=1,2,...,n

For the sequel, we need the following assumption:

(3.9)

= [xi ]u =
x7.] is a fuzzy solution of (3.4) and (3.5) without nonhomogeneous term if and only

(3.10)

(H1) S(t) is a fuzzy number satisfying, for vy € (Eﬁv)", (d/ansityy € C(a

(E\)")NC(I = (E)"), the equation
d t
—S(ty = A[S(t)y + j G(t-s)S(s)y ds], tel,
i .

where

n n

[SM1” =T [1sim1* =T [[si), S51)],  S©) =1

i=1 i=1

and Si].(t)(j =1, r) is continuous with |S:.’;.(t)| <c¢,¢>0,foralltel=10,T].

(3.11)

(3.12)
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In order to define the solution of (3.4)—(3.6), we will consider the space Q; = {x;: ] —
EN : (xi)x € CUk, EY), Jk = (ti, tiea], k = 0,1,...,m, and there exist (x;)(t;) and (x;)(t}) (k =
1,2,...,m), with (x;)(t,) = (xi)(t)}, i=1,2,...,n
Let Q' =T1" Q) Q =Q;NC([0,T]:EY), i=12,...,n

Lemma 3.2. If x is an integral solution of (3.4)—(3.6) (u =0), then x is given by

x(t) = S(t) (xo — g(x)) +J‘ (t- s)f(s x(s), I q(s,T,x(T))dT>

(3.13)
+ D0 S(t-ti)Ik(x(t)), forte].
O<ty<t
Proof. Let x be a solution of (3.4)—(3.6). Define w(s) = S(t — s)x(s). Then we have that
dw(s) _ dS(t-s) B dx(s)
e s X(s)+5(t-s)
=-A [S(t - s)x(s) + ft G(t - S)S(s)x(s)ds] +S(t- s)M (3.14)
0 ds
=S(t- s)f(s,x(s),J‘0 q(s, T,x(T))dT>.
Consider t, < t,k =1,2,...,m. Then integrating the previous equation, we have
dw(s)
——=ds=| S(t- , ,T, d 3.15
[[ 4 4o~ {" st op7 (5,305, | o, xtenar s @15
Fork =1,
t s
—w(0) =] S(t- , , , T, dr )d 3.16
() =) = [ 8(t=9)7(sx(s), | qts7x(ear )as (316)
or

t s
x(t) = S(t)(xo — g(x)) + Jo S(t- s)f(s,x(s), -[0 q(s, T,X(T))dT> ds. (3.17)
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Now for k =2,...,m, we have that

b to t
'[ duw(s) ds + f duw(s) ds+---+ f dw(s)ds
g ds iy, ds n ds

= JZ S(t- s)f(s,x(s), Jj q(s, T,x(T))dT> ds.

Then
w(t]) —w0) +w(ty) —w(t]) +--- —w(ty) + w(t)

= J‘; S(t- s)f(s,x(s), Jj q(s, T,x(T))dT> ds

if and only if

(3.18)

(3.19)

t s
w(t) = w(0) + fo S(t- s)f(s,x(s),f0 q(s, T,x(T))dT>ds + Z [w(ty) —w(t)].  (3.20)

O<ti<t

Hence

t s
x(t) = S(t)(xo — g(x)) + fo S(t- s)f<s,x(s),f0 q(s, T,x(T))dT>ds + Z S(t = te) Ik (x(t)),

O<ty<t

which proves the lemma.

Assume the following;:

(H2) there exists d > 0 such that

di ([ (x (B [T (y (£)]7) < dde([x(]°, [y (O]),

where x(t), y(t) € Q';

(H3)

C[T{h(l+c) +cd+k1<1+ %) +k2MT<12+ %)} + (h+4d)

(3.21)

(3.22)

<1 (3.23)
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Theorem 3.3. Let T > 0. If hypotheses (H1)—(H3) are hold, then, for every xo € (E,)", (3.13) has a
unique fuzzy solution x € Q.

Proof. For each x(t) € Q' and t € [0,T], define (Gox)(t) € Q' by

(Gox)(t) = S(t) (x0 — g(x)) + Jo S(t- s)f(s,x(s),J‘O q(s, T,x(T))dT> ds
(3.24)

+ D0 St ) Ik (x(ty)).

O<ty<t

Thus, Gox : [0,T] — Q' is continuous, so Gy is a mapping from Q' into itself. By Definitions
2.3 and 2.4, some properties of d;, and inequalities (3.7), (3.8), and (3.9), we have the following
inequalities. For x, y € &',

dL([(Gox)()]% [(Goy) (H]")

t s @
<dp < [S(t) (x0—g(x)) + fo S(t - s)f(s,x(s),jO q(s, T,x(T))dT) ds] ,

[S(t) (xo-g(y)) + J: S(t- s)f(s,y(s)r I: q(s, T,y(T))dT> ds]a>

+dL<[Z (t- tk)Ik(x(tk))] [Zs(t tk)Ik(y(tk))]>

O<tr<t O<tr<t

<di ([SHg()]", [SHg()]%)

" f; 4 ( [S(t - S)f(s,x(S)r E q(s, T,X(T))dT>] u, (3.25)

[S(t - s)f(s, y(s), J‘: q(s, T,y(T))dT)] a)ds

dL<[ > S(t—tk)Ik(x(tk))]a, [ > S(t—tk)Ik(y(tk))]u>

O<tr<t O<tr<t

< chdy ([x(-)]%, [y()])

+ cfo(kldd[an“, ()] + koM fo iy (Lx(n))", [y(n)] Yar ) ds

+cddp ([x()]% [y(H)]").
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Therefore

D ((Gox)(t), (Goy) (1))

= supd; ([(Gox)()]% [(Goy) (H]")

O0<a<l

< chsupdr([x()]% [v()]%)

O<a<l

cf0<k1sude([x(s) [y (6)]) + koM Ssude([X(T) y(0)] )dT>

O<a<l 0 O<a<1

+edsupd ([x(1)]% [y(H)]F)

O<a<l

< chDr(x(-),y())

t s
+ cf <k1DL(x(s),y(s)) + koM . DL(x(T),y(T))dT>dS +cdDyp(x(t), y(t)).
0
(3.26)

Hence

Hi(Gox, Goy) = sup D ((Gox)(t), (Goy) (1))
<t<

< chsup Dr(x(-), y(-))

0<t<T

t s
+csup . <k1DL(x(s),y(s)) + koM fo Dy (x(T),y(T))dT> ds (3.27)

0<t<T

+cdsup Dy (x(t), y(t))

0<t<T

c<h +d+ <k1 + k2M§>T>H1(x,y).

By hypothesis (H3), Gy is a contraction mapping. Using the Banach fixed point theorem,
(3.13) has a unique fixed point x € Q'. O

4. Nonlocal Controllability

In this section, we show the nonlocal controllability for the control system (1.1).
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The control system (1.1) is related to the following fuzzy integral system:

t s
x(t) = S(t)(x0 — g(x)) + .[0 S(t- s)f<s,x(s),’[0 q(s, T,x(T))dT>ds
t (4.1)
+f S(t—syu(s)ds+ D, S(t—ti) I (x(t;)).
0

O<tr<t

Definition 4.1. Equations (1.1)—(3) are nonlocal controllable. Then there exists u(t) such that
the fuzzy solution x(t) for (4.1) as x(T) = x' - g(x)(i.e., [x(T)]* = [x' — g(x)]%), where x! €
(EL,)", is target set.

Define the fuzzy mapping ﬁ : 13(R”) — (Ejv)" by

T
~ j SYT -s)v(s)ds, vcTl,,
p*(v)=1Jo (4.2)
0, otherwise,
where T, is closed support of u. Then there exists
fi: P(R) — EL,  (i=1,2,...,n) (4.3)
such that
T —
~ SHT - s)vi(s)ds, wvi(s) CTy,
pi(vi) = jo (4.4)
0, otherwise.
Then there exists ﬁ;’; (j =1,r) such that
B T
Bi(vi) = J SA(T - s)vu(s)ds, vy(s) € [ug(s),u}],
’ (4.5)

T
Bron) = [ SyT-90n(ds, vr(s) € [ulu )]

0

We assume that BI”‘, Ni“r are bijective mappings.
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We can introduce a-level set of u(s) of (4.1):

n n

[u(s)]* = [ [[ui(s)]* = | [ [uf(s), uz(s)]

[<:~,>1<<<xl>;—g;;<xs>>—sm)(xsﬂ—gm»

T s
—f SH(T —s) fl’<s,xf;(s),j qf;(s,T,xf;(T))dT>ds
0 0

N

i=1

3 s <T—tk>fz,<xd<tk>>> we)

O<te<T

()" (((<); - s600) - 550 (s, - 602)
T s
- fo ST -s)ff <s, x%(s), J‘o g (s, T, x% (T))dT>>ds

-3 s <xlr<tk>>>]

O<ty<T

Then substituting this expression into (4.1) yields a-level of x(T).
Foreachi=1,2,...,n,

T
s = 850 (s, 55 0p) + ) 37

x ﬁ(s,xﬁ(s),fo qg(s,r,xﬁ(r))dr>d5+ Z ST - tk)If(’I(xll(tk))

O<tx<T
f SHT -5)(P (((xl)Z—gf;(xﬁ)) - 53T (x5, - &5 (x1))
- LT SH(T - s) 5‘(5, x(s), :qg(s, T, xﬁ(’r))d’r) ds

-3 s tk>1z‘,<xd<tk>>>

0<tx<T
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T s
S2(T) <x8‘h - g5 (xl”‘r)) + Jo Si(T - s) x 3(51 xf‘r(s),fo q5(s, T, xﬁ(‘r))d‘r)ds
+ 0 ST =t (x(8)

O<t<T

o[ sra-a ()
(((); - 0)) - s, - 20)
[ su oo [ st m g onan)as
- S ST (50) )

O<tx<T

= [ -5), (¢ -5), | = [(+! - s) |-

4.7)
Therefore
(D] =] [I(m)1° H[(x -5)]" = [ - g(0)]" (48)
i=1
We now set
t t
Dx(t) = S(t) (20 — g(x)) +J S(t - s)f<s,x(s),’[ q(s,T,x(T))dT>ds
0 0
+ DL St -t (x(t))
O<ti<t
t ~
+ fo S(t-s)p™ <x1 - 8(x) = S(T) (x0 — g(x)) (4.9)

- LT S(T - s)f<s,x(s), Jj q(s, T,x(T))dT> ds

- D S(T- tk)Ik(x(t;))>ds,

0<t<T

where the fuzzy mapping ﬁ’l satisfies the previous statements.
Notice that ®x(T) = x! — g(x), which means that the control u(t) steers (4.9) from the
origin to x! — g(x) in time T provided we can obtain a fixed point of the operator ®.

(H4) Assume that the linear system of (4.9) (f = 0) is controllable.
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Theorem 4.2. Suppose that hypotheses (H1)-(H4) are satisfied. Then (4.9) is nonlocal controllable.

Proof. We can easily check that @ is continuous function from ' to itself. By Definitions 2.3
and 2.4, some properties of dr, and inequalities (3.7), (3.8), and (3.9), we have following
inequalities. For any x,y € Q/,

di ([@x()]%, [Dy(1)]")

t s
=d; < [S(t) (x0—g(x)) + fo S(t- s)f(s,x(s),f0 q(s, T,x(T))dT>ds
+ DSt - t) I (x(t))

O<tr<t

t ~
+ fo S(t-s)p! <x1 - g(x) = 5(T) (x0 — g(x))
- J.OT S(T - s)f(s,x(s), Jj q(s, T, x(T))dT) ds

— Z S(T - tk)Ik(x(t;))>ds:| a,

O<tr<T

[S(t)(xo -g(y)) + .[0 S(t - s)f<s,y(s),’[: q(s, T,y(T))dT) ds
+ D, St=t)Ie(y (k)

O<ti<t
+ JO St-s)p™ <x1 -8(y) =S (x0 - g(v))
T s
- jo S(T - s)f(s,y(s),j0 q(s, T,y(T))dT> ds
) S<T—tk>1k<y<t;>>>ds] )
O<te<T
< chdr([x()1% [v(O)]%)
+ cf (kldL([x(s)]“, [y(s)]") + k2Mf dr([x(1)]%, [y(T)]“)dT)ds
0 0
+ CddL([x(t)]“, [y(t)]a)
" Cfo{hdm[x(-)]“, [yO)]) +chdr([x()1% [y()]%)
T s
+ cf (kldL([x(s)]", [y(s)]") + kzMI dr([x(1)]7, [y(T)]a)dT>dS
0 0

+eddr ([x(1)]%, [y®]F) }ds.

(4.10)
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Therefore

Dy (®x(t), Dy(t)) = supd([®x(1)]*, [Py (t)]")

O<a<l
< chosu}zldL([x(-)]“, [y()]®) + cdosugdL([x(t)]“, [y®)]")

t
+c J;) <k1 supdy ([x(s)]% [y()]")

O<a<l

+koM ; 0supldL([x(T)]"‘, [y(T)]“)dT) ds

+ cfo{h(l +c)supdp ([x()]%, [y(’)]a>

O<a<1

T
p fo <k1 sup dp ([x(s)]%, [y(s)])

O<a<l

+koM ) supdyp ([x(7)]%, [y(T)]u)dT>dS

0 O<a<1

+cdosupldL ([x(s)1% [v(s)]) } ds

< chDr(x(),y () +cdDy (x(t), y (1))

t s
+ Cfo <k1DL(x(s),y(s)) + koM Jo Dy (x(T),y(T))dT> ds
t
+cf0{h(1 +¢)Dr(x(-), ("))
T s
k ; k , dr )d
+C,[0< 1D (x(s),y(s)) + 2Mf0 Dy (x(1),y(7)) T) S

+cdDL(x(s),y(s))}ds. (4.11)

Hence

H; (®x, ®y) = sup Dy (Dx(t), Dy(t))

0<t<T
<chsup Dy (x(-),y(:)) + cdsup Dr(x(t), y(t))
0<t<T 0<t<T

t s
+csup O<k1DL (x(),y()) + koM Io DL(x(T),y(T))dT>ds

0<t<T
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t

+csup {h(1 +0)Dr(x(), y())

0<t<T /0

T s
+c fo (leL (x(s),y(s)) + koM fo Dy (x(T),y(T))dT> ds

+cdDyp (x(s),y(s)) }ds
T
0

< chHi(x,y) + cdHi(x,y) + cf <k1H1 (x,y) + ksz Hi (x, y)dT) ds
0

T
+ cf {h(l +c)Hi(x,y)

0
T s

+cf <k1H1 (x,y) + ksz H; (x,y)dr) ds + cdHi (x,y) }ds
0 0

Hi(x,y).
(4.12)

:C[T{h(1+c)+cd+k1<1+%>+k2MT<%+%>}+(h+d)

By hypothesis (H3), @ is a contraction mapping. Using the Banach fixed point theorem, (4.9)
has a unique fixed point x € Q'. O

5. Example

Consider the two semilinear one-dimensional heat equations on a connected domain (0, 1)
for material with memory on EY;,i = 1,2, boundary condition

x;(t,0)=x;(,,1)=0, i=1,2 (5.1)
and with initial conditions
4
xi(0,zi) + D (cx)ixi(ti, zi) = x0,(z1), (5.2)
k=1
where x,(z;) € EY,
4
> (ek)ixilte, zi) = gi(x), i=1,2. (5.3)
k=1

Let x;(t, z;),i = 1,2 be the internal energy and

filt, xi(t, zi)) f; gi(t,s, xi(s, z;))ds = 2tx;(t, z;)* + f;(t —8)xi(s,zi)ds, i=1,2 (5.4)
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be the external heat with memory.

Axi(t, zi) = xi (1, zi) — xi (£, i) (5.5)
is impulsive effectat t =t (k =1,2,..., m).
Let
~ 0% ~ 0%
A=(A,A)=(2—,2— ),

t
f<t/x(t)/f ‘I(f/ S/x(s))d5>
0
t t
= <f1 <t,x1(t),f ql(t,s,x1(s))ds>,fz <t,x2(t),f qz(t,s,xz(s))ds>>
0 0

= <§tx1(t, z1)? + f t(t — 8)x1(s, z1)ds, 2txa (t, z0)% + ft(t —8)xa(s, z2)d5>,
0 0

14 14
g(x) = (g1(x1), &2(x2)) = (Z(Ckhxl(fk/ z1), D (ck)oxa (t, Zz)>, (5.6)
k=1 P}

x(0) + g(x) = (31(0) + £1(x), %2(0) + &%), %0 = (x0,, %) = (0,0),
Ax(t) = (Axy (), Axa(tr)), t#tk, k=1,2,...,m,
Tie(x (i) = (T (x1 (£)), T (x2 (k)
= (x1(t) = x1(t), 22 (k) — x2(t;))
= (%1t z1) =21 (b, 1), %2t 22) — Xa(b, 22)),

t#te, k=1,2,...,m,
G(t-s) = <e*(t*5), e*(t*5)>
then the balance equations become

% = A[x(t) + JZ G(t - s)x(s)ds]

t . \2
+ f(t,x(t),f0 q(t, ax(s))ds) +u(t) on (Ey), (5.7)

x(0) + g(x) =xp € <E§V>2,

Ax(ty) = I(x(tx)), t#tx, k=1,2,...,m, i=1,2.
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The a-level sets of fuzzy numbers are the following
[0] = [a-1,1-a], [2]* = [a+ 1,3 - a] for all « € [0,1]. Then a-level set of
ft,x(t), [y q(t,s,x(s))ds) is

[f <t,x(t), jo q(t, s, x(s))ds)]
t

- I:Etxl(t)z + JZ(t - s)xl(s)ds] ' x I:Etxz(t)Z + JO
- <[§]” : t[xl(t)z]u + f;(t —5) [xl(s)]“ds>
x <[§] : t[xz(t)z]“ + J‘;(t —s) [xz(s)]“ds>

t
= <[a +1,3-a] - t[(xi‘l(t)){ (xi‘,(t))Z] + fo(t - s)[(x5,(s)), (xfr(s))]ds>

(t- s)xz(s)ds:I

(5.8)

t
X <[a +1,3-a] - t[(xgl(t))Zl (x;’r(t))z] + fo(t -5)[(x5(s)), (xgr(s))]ds>
2 ! 2 !
= [(a + D)t (xf (1) + fo(t - s)x{i(s)ds, (3 — a)t(x{.(t))" + Jl)(t - s)xi‘r(s)ds:I

t ¢
x [(a + 1)t(x;‘l(t))2 + L(t - s)x5,(s)ds, (3 - ct)t(xg‘r(t‘))2 + Jl)(t - s)xgr(s)ds:I.

Further, we have

dL< [f <t,x(t),J‘0 q(t, s,x(s))ds>] , [f<t,y(t),f0 q(t, s,y(s))ds)] >

= dL<[(a+1)t(xg(t))2 +ft(t—s)x3(s)ds, (3—a)t(x;;(t))2 +It(t—s)xg(s)ds],
0 0

t t
(a+ DE(ya(H) + L(t - 5)yi(s)ds, 3 - a)t(ya(1)’ + fo(t - s)yg(s)dsD
= tmax{ (a+ 1| (x(0)” - (Wi ®)°], G- )| (x5 (1) - (1)}

t
[ = 9max(x4(6) -y |55 6) - v ()]s
0 i<
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<T@ - aymax{[xj() -y O] x50 + yi ], [x5.(0) -y O[5 + v ()]}
TZ
+ max{|xi ) -y (O] [x; 0 -y O}
2
<3T[x () + i (O] (Lx(@]", [y(0]) + 5 du (O, [y (O])

=kidr ([x(D]% [y(1)]) + kadr ([x()]7, [y(H)]),

dr([g(x(N]% [g(y(N)]") = dL<[iCk(x(tk))] , I:ick(y(tk))] >

Z(Ck) (x5(t)) = Z(Ck) (vi(te) |,

P
Ck)i(xfr(fk)) - > ()i (i (b))
P}

}

= maXx
1<i<2 1

max{ |xj (t) ~ vt |, | x5, (b) = i, (B0 |} =

dr ([x(t)]%, [y(t)] %)

max dp ([x ()] [y(t0)]®) = hdL ([x()1%, [v()]%),

(5.9)

where ki, k», and h satisfy inequalities (3.7), (3.8), and (3.9), respectively. Choose T such that
T < (1-c(h+d))/c. Then all conditions stated in Theorem 3.3 are satisfied, so the problem
(5.7) has a unique fuzzy solution. B

Let target set be x! = (x!,x}) = (2,3). The a-level set of fuzzy numbersis 3[3]* =
[a+2,4-a].

From the definition of fuzzy solution,

p
x;(t) = S5(t) <(xo)3 - kZ(ck)i(xlf';(tk))>
=1
t S
[ spte=9)((@ 0s(x50)" + [ s mxgar ) s

f Si(t—s)ufj(s)ds + >, Si(t—t) I (x(£)),

O<ty<t
P
x;, () = S5 (1) <(x0)?r - Z(Ck)i(xi“r(tk))>
k=1
t s
Sa(t-s)((3- “(s))° “dr)d
+’[ (t s)(( a)s(xi(s)) +I0 x5 T> s

f St(t—s)ul(s)ds+ > Si(t—t)I7, (x(£)),

O<ti<t

(5.10)

wherei=1,2.
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Thus the a-levels of u(s)

~ \ -1 P
usy(s) = (B <<a+1> - 2 (0 (xjt)
=1
P
- I:S?z(T) ((0‘ -1)- Z(Ckh(xfl(tk)))
k=1

T ) s
—I (a+1)5’i‘l(T—s)<s(x{‘l(s)) +I (s—r)xl"‘l(r)dr>ds]
0 0

- Z Su(T - tk)Il?ll(xllll(tk))>'

O<te<T
P

() = (B1)” <<3 — ) = X (e (k)

k=1

P
- [S?r(T) <(1 -a) - Z(Ck)l(xi‘r(tk))>
k=1
T s
_ IO (B-a)S{.(T -5s) (s (x{‘r(s))2 + fo (s —T)xf, (T)dT> ds]

-y S%AT—tk)Izn(x;z(tk))),

O<ty<T

-1 p
uy(s) = (ﬂ%) <(“ +2) - kZ(Ck)z(xZ(tk))
-1
P
- [ng(T) ((“ -1)- Z(Ck)z(xgz(fk))>
k=1
- Jj (a+1)S5(T - s) <s(x;‘ls)2 + Jj(s - T)x5 (T)dT> ds]

- Z Syu(T = t) I, (x%(t;)))/

0<t<T
p

s, (s) = (Bs,) <<4 — ) = Y (e (X (1)

k=1
p
- [Sgr(T) <(1 —a) - Z(Ck)z(xgr(tk))>
k=1
- J:(:’; -a)S5 (T —s) (s (xg‘r(s))2 + Jj(s - T)x5, (T)dT) ds]

-y S;‘AT—tkﬂzzr(xsr(t;))).

0<tx<T
(5.11)
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Then a-level of x(T) = (x1(T), x2(T)) is
1 (T)]* = [xf(T), 1, (T)]

P
= [STI(T) <(t¥ -1) = D (e (xlal(tk))>
k=1
T s
+ fo (a+1)ST(T - s) <s(x‘1"l(s))2 + fo (s —7)x]) (T)dT> ds
~ s -1 P
+ B (Py) ((a #1) = 3 (e (¥ (8)
k=1
4
- {S{fl(T) <(“ -1)- Z(Ck)1(x?l(tk))>
k=1
T s
+ .[0 (a+1)ST(T - s) (s(x?l(s))2 + Jo (s— T)x‘l"l(’r)d7'> ds

. 55'1<T—tk>rzal<x;z<t;>>}>

O<tx<T

P
+ 2 SH(T — ) Iy (¥ (£)), ST,(T) <(1 —a) - kz(ck)l (Xi’r(tk))>
=1

O<tx<T

+ J'OT(3 —@)S% (T -s) <s(x;;(s))2 + f:(s - 7)x, (T)dT) ds
P

+ B, (5%)4 <(3 =) = > (c) (¥, (1))

k=1

P
- {S’TT(T) <(1 -a) - Z(Ck)l(xi‘r(tk))>

k=1

T s
+ fo (B -a)S: (T -s) <s(xg;(s))2 + fo (s - T)x%, (T)dT> ds

- S%AT—tkuzlr(xﬁ(t;))})

O<tx<T

> saa<T—tk>I;:1,<x;n<t;>>]

O<t<T

14 14
_ [m £1) = (0 (¥ (1), B— ) - z<ck>1<x;;<tk>>]
k=1 k=1

= [2— Z(ck)l(xl(fk))] .
k=1
(5.12)
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Similarly,
[x2(D)]" = [x5(T), x5,(T)] = [5— gwk)z(xz(tk»]a. (5.13)

Hence
x(T) = (x1(T), x2(T)) = (5 - gwkn(xl(tk))é - é;(ck)z(xz(tk))) =x'-g(x). (5.14)

Then all the conditions stated in Theorem 4.2 are satisfied, so the system (5.7) is nonlocal
controllable on [0, T].
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