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Based on symbolic dynamics, the paper provides a satisfactory and necessary condition of
existence for consecutive periodic orbits of the Lorenz maps. In addition, a new algorithm with
computer assistance based on symbolic dynamics is proposed to find all periodic orbits up to a
certain number with little computer time. Examples for consecutive periods of orbits are raised for
the Lorenz maps. With a little variation, the theorems and algorithm can be applied to some other
dynamic systems.

1. Introduction

The Lorenz system of (1.1) introduced by Lorenz in [1] is one of the chaotic dynamic systems
discussed early. It is a deterministic chaos:

ẋ = σ
(
y − x

)
, ẏ = rx − y − xz, ż = xy − bz. (1.1)

On the Poincaré section, some geometrical structure of the Lorenz flow may be
reduced to a one-dimensional Lorenz map (1.2) [2, 3]:

f
(
x, μL, μR

)
=

⎧
⎨

⎩

fL(x) = 1 − μL|x|ξ + h.o.t., x < 0,

fR(x) = −1 + μR(x)|x|ξ + h.o.t., x > 0,
(1.2)
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Figure 1: (a) Lorenz map (1.3); (b) Lorenz map (1.4); (c) Lorenz map (1.5).

where ξ is a constant greater than 1. Generally, a Lorenz map with a discontinuity point is as
follows (1.3):

f(x, b) =

⎧
⎨

⎩

fL(x), x < b,

fR(x), x > b,
(1.3)

where f is piecewise increasing but undefined at x = b, the point (b, limx→ b+f(x)) is a
discontinuity point and denoted by C, x ∈ I = [c, b)

⋃
(b, d], and f is a map from [c, d] into

[c, d]. Furthermore, limx→ b+f(x) and limx→ b−f(x) are denoted by C+ and C−, respectively.
To simplify this, we suppose that C+ = 0, C− = 1. Thus, I = [0, b)

⋃
(b, 1]. In this paper, our

main discussion is focused on the Lorenz map (1.3). The next two equations (1.4) and (1.5)
are among the examples discussed in our paper. Equations (1.4) and (1.5) are two particular
cases of (1.3). Figures of (1.3)∼(1.5) are shown in Figure 1:

S : [0, 1] −→ [0, 1] (0 < a < 1), S(x) =

⎧
⎪⎨

⎪⎩

x + a, x ∈ [0, 1 − a),
(x + a − 1)

a
, x ∈ (1 − a, 1],

(1.4)

S : [0, 1] −→ [0, 1] (0 < a < 1), S(x) =

⎧
⎨

⎩

x + a, x ∈ [0, 1 − a),

h(x + a − 1), x ∈ (1 − a, 1],
(1.5)

where 1 < h ≤ 1/a. The main goal of symbolic dynamics is to determine all of the possible
motions of a system under study. In practice, all of the allowed short periodic sequences up
to a certain period are very important [3].

In this paper a periodic sequence means its nonrepeating sequence.
In principle, one can enumerate all possible sequences and then check their

admissibility. But it is too time consuming and sometimes impossible. In a study on the
Lorenz system (1.3), Procaccia et al. in [3] tried to derive some propositions which were
intended to make the work easier. By some propositions and yet with much work, he finally
generated admissible periodic sequences up to period 6. In practice, by his method, to find
out all admissible periodic sequences up to a greater period will be more time consuming
and the method is not easy to be applied to other systems.
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Symbolic dynamics is a powerful tool in studying the Lorenz maps and sometimes
computer-assisted proof is used [4–12]. In [5–7], with computer assistance the authors used
symbolic dynamics and obtained some dynamic properties of the Lorenz maps but existence
of periodic points was not proved. With computer assistance, Galias and Zgliczyński [8]
were able to present that the Lorenz system with “classical” (most popular) parameter values
(σ, b, r) = (10, 28, 8/3) has infinitely many qualitatively distinct periodic trajectories [8]. But
the procedure is still very time consuming and consecutive periods cannot be proved by a
computer program itself. And because no symbolic dynamics is used, the method cannot
be extended to other systems. The methods used in [9, 10] were complex and very time-
consuming because of no computer assistance.

To study chaos of a system we care not only the lengths of periodic orbits but also all
the possible periods.

In 1964, Sharkovsky [13] and Štefan [14] proposed a theorem about periods for
continuous maps. And the conclusion that period 3 implies chaos [15] is just a particular
case in Sarkovskii’s theorem. But Sarkovskii’s conclusion holds on condition that the map
is continuous and cannot easily be applied to discontinuous maps such the Lorenz maps
(1.3).

In this paper, new concepts are put forward to reduce the complexity in finding
out periodic orbits. By number theorems and symbolic dynamics the Lorenz map (1.3) is
discussed and some necessary and satisfactory conditions for the existence of consecutive
periods are given. Based on a new algorithm, a program is designed and the time to find out
periodic orbits is shortened remarkably.

2. Symbolic Dynamics for the Lorenz Map and Consecutive Periods

2.1. Description for the Lorenz Map with Symbolic Dynamics

In symbolic dynamics, a one-dimensional point is always expressed by a symbolic sequence.
Contrary to unimodal continuous map such as the Logistic map, there exists a discontinuity
point in the Lorenz map (1.3) which makes dynamic behaviours more complex than those
of the unimodal continuous map. In our paper we study the Lorenz systems of (1.3)–(1.5),
where the two piecewise functions are increasing. To apply symbolic dynamics, we divide
the interval I in (1.3) into two subintervals I0 = [0, b) and I1 = (b, 1] and symbols “0” and
“1” represent the points in I0 and I1, respectively. Starting from any point x0 ∈ I, by finite
iterations we obtain a sequence of 0,1 and C and denote the sequence by S(x0) = s0s1 · · ·C;
or by infinite iterations we obtain a sequence of 0 and 1 and denote the sequence by
S(x0) = s0s1 · · · . We denote the sequence beginning with m 0’s and then followed by n 1’s by
0m1n.

A kneading pair (K+, K−) is the pair of symbolic sequences starting from initial points
(f(C+), f(C−)).

A superstable kneading pair is the kneading pair with C contained.
Furthermore, σ is the shift operator; for example, σ(s1s2 · · · ) = s2s3 · · · . If S(x) is a

periodic sequence, then σ(S(x)) is also a periodic sequence.
In symbolic dynamics, an allowed word, or simply word, is a sequence can be obtained

by iterations; otherwise, the sequences will be called forbidden words. If a sequence S(x1) =
s1s2 · · · is an allowed word, then σ(s1s2 · · · ) is also an allowed one.
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For the Lorenz map (1.3), the ordering rule for any allowed word is very simple. The
ordering rule is [3, 4]

Σ0 · · · < ΣC < Σ1 · · · , (2.1)

where Σ is the common beginning sequence. Inequality (2.1) is called the ordering rule of the
Lorenz map (1.3).

Any sequence S(x) must satisfy the following condition:

A(x) ≤ K−, B(x) ≥ K+, (2.2)

where A(x) mean the subsequences following 0 in the sequence S(x) while B(x) mean the
subsequences following 1 in the sequence S(x). Any kneading sequence (K+, K−) itself must
also satisfy condition (2.2), too. But if K+ (or K−) is superstable, then the inequality sign in
inequality (2.2) will change from “≥” to “>” and “≤” (or “<”) because a superstable sequence
corresponds to only one point but not an interval. For example, if K− is superstable but K+ is
not, any sequence S(x) satisfies A(x) < K− and B(x) ≥ K+ [3, 4].

Consider the case that S(x) is periodic. Though x = b is not defined, it will do when
we define S(b) as 01∞ (or 10∞), which is something like 1 = 1.00 · · · = 0.99 · · · . For a given
kneading pair (K+, K−), whether it is superstable or not, we will determine all admissible
periodic sequences according to ordering rules (2.3) and admissibility conditions (2.4):

Σ0 · · · < Σ1 · · · , (2.3)

A(x) < K−, B(x) > K+. (2.4)

In this paper we denote the greatest common divisor of two integers a and b by [a, b],
while the least common multiple is denoted by (a, b) if not confused with intervals. For
simplicity of notation, when we say a periodic sequence we mean its nonrepeating symbols.
The length of a word W is denoted by |W |.

Theorem 2.1. Given the kneading pair as

(K+, K−) =
(

0m1 1n1 0m2 1n2 · · · 0mi1ni · · · , 1l1 0r1 1l2 0r2 · · · 0lj1rj · · ·
)
, (2.5)

then it follows that max(l1, l2, . . . , n1, n2, . . .) = l1 and max(m1, m2, . . . , r1, r2, . . .) = m1.

Proof. By the condition that A(x) ≤ K− we hold that max(l1, l2, . . . , n1, n2, . . .) = l1, and by the
condition that B(x) ≥ K+ we hold that max(m1, m2, . . . , r1, r2, . . .) = m1; thus, Theorem 2.1
follows.

2.2. Some Preparations on Number Theory

At first we present a lemma about number theory. The proof is trivial and thus omitted.
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Lemma 2.2. Let a and b be any two positive coprime integers. There exist two nonnegative integers
m and n such that a ·m + b · n = c holds, where c is any integer not less than a · b. In this paper the
expression a ·m + b · n is called nonnegative linear combination of a and b.

Remark 2.3. By Lemma 2.2 a set such as A = {c, c + 1, . . .} exists, where A is generated by
nonnegative linear combinations of a and b. It does not necessarily follow that a · b = c and
there is sometimes the case that a · b > c. For example, let a = 2 and b = 3; thus, we can get
A = {2, 3, . . .} though 2 · 3 = 6. If we want to find the least integer c, we have to do a further
analysis but it is easy work and does not affect our discussion in this paper.

Remark 2.4. Suppose that a and b are two positive integers such that [a, b] = d > 1, then a set
A = {ab, ab + d, ab + 2d, . . .} exists, where A is a set with elements generated by nonnegative
linear combinations of a and b.

2.3. The Lorenz Maps with Simple Kneading Pairs

A Superstable Kneading pair always means quick and easy conclusions about existence of
consecutive periods. If a kneading pair (K+, K−) for the Lorenz system (1.3) is superstable,
by Theorem 2.1 and Lemma 2.2 we will soon have the following results.

Corollary 2.5. Given the kneading pair (K+, K−) for the Lorenz system (1.3), by the allowed
condition (2.4) and Lemma 2.2, one has the following.

(1) If (K+, K−) = (0m1 1m2 0m3C, 1∞), where m1 ≥ m3 + 1, m2, m3 ≥ 0, then W = 01k (k =
1, 2, . . .) are allowed periodic orbits if m1 ≥ 2 and W = (01k+m2)∞ (k = 1, 2, . . .) are
allowed periodic orbits ifm1 = 1, which means that consecutive periods exist.

(2) If (K+, K−) = (0C, 1C), then the system only has periodic orbits such as [(01)k]∞ (k =
1, 2, . . .) and [(10)k]∞ (k = 1, 2, . . .) and thus no consecutive periods exist.

(3) If (K+, K−) = (0C, 1kC), where k ≥ 2, then W1 = (01)∞ and W2 = (011)∞ are two
periodic sequences, which by Theorem 2.1 means that there exist consecutive periods.

(4) If (K+, K−) = (0mC, 1nC) (m ≥ 2, n ≥ 2), or (K+, K−) = (0mC, 1∞) (m ≥ 1), then
W1 = (01)∞ and W2 = (001)∞ are two periodic sequences, which by Theorem 2.1 means
that there exist periods with lengths no less than 2.

Corollary 2.6. There exist consecutive periods in the Lorenz map (1.4). The set of periods is A =
{1, m + 1, m + 2, . . .}, where m is the minimal value of positive integers satisfying am < 1 − a or
(m + 1)a ≥ 1 − a, which means consecutive periods exist for the system.

Proof. We discuss the problem in 4 cases as follows.

(1) If a > 1 − a, then am > 1 − a and am+1 < 1 − a (m ≥ 1) imply that a > 1 − a, a2 >
1 − a, . . . , am > 1 − a, and am+1 < 1 − a (m ≥ 1). If x0 = 0, then, by iteration, we have
(x0, x1, . . . , xm, xm+1, . . .) = (0, a, (a + a − 1)/a, . . . , (am + a − 1)/am, (am + a − 1)/am +
a, . . .). (K+, K−) = (01m0 · · · , 1∞) (m ≥ 1).

(2) If a > 1 − a, then am = 1 − a (m ≥ 2) implies that a > 1 − a, a2 > 1 − a, . . . , am−1 >
1 − a, am = 1 − a, and am+1 < 1 − a (m ≥ 2). If x0 = 0, then, by iteration, we have
(x0, x1, . . . , xm, xm+1, . . .) = (0, a, (a+a− 1)/a, . . . , (am−2 +a− 1)/am−2, C). (K+, K−) =
(01m−1C, 1∞) (m ≥ 2).
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(3) If a < 1 − a, then ma < 1 − a and (m + 1)a > 1 − a (m ≥ 1) imply that a < 1 − a, 2a <
1 − a, . . . ,ma < 1 − a, (m + 1)a > 1 − a (m ≥ 1). If x0 = 0, then, by iteration, we have
(x0, x1, . . . , xm, xm+1, . . .) = (0, a, 2a, . . . ,ma, (ma + a − 1)/a, . . .) (m ≥ 1). (K+, K−) =
(0m1 · · · , 1∞) (m ≥ 2).

(4) If a < 1 − a, then ma = 1 − a implies that a < 1 − a, 2a < 1 − a, . . . , (m −
1)a < 1 − a, and ma = 1 − a (m = 2, 3, . . .). If x0 = 0, then, by iteration,
we have (x0, x1, . . . , xm, xm+1, . . .) = (0, a, 2a, . . . , (m − 1)a,C) (m ≥ 2). (K+, K−) =
(0mC, 1∞) (m ≥ 2).

In cases of (1) and (2), by (2.1) and (2.2), (01m+k)∞ (k = 1, 2, . . .) are admissible periodic
orbits; in cases of (3) and (4), by Corollary 2.5 and (2.3) and (2.4), (01m−11k)∞ (k = 2, 3, . . .)
are admissible periodic orbits. In addition, 1∞ is an admissible periodic orbit in all of the four
cases. Thus, Corollary 2.6 is complete.

Remark 2.7. The conclusions above also hold if the Lorenz system (1.3) is not piecewise linear
but just possesses the same kneading pair as that in Corollary 2.6. So the results can be
extended to other systems.

2.4. The Lorenz Systems with Complex Kneading Pairs [7–10]

To consider the periods for the Lorenz map (1.3) with kneading pairs more complex than
those in Corollaries 2.5 and 2.6, we make the following definitions.

Definition 2.8. Suppose that (K+, K−) = (1m1 0n1 1m2 0n2 · · · , 0r1 1l1 0r2 1l2 · · · ). A string such as
1m0r (m1 ≥ m ≥ 1, r1 ≥ r ≥ 1) is called a basic 1-string and all of the basic 1-strings form
a set denoted by Φ, while 0r(m11m is called a basic 0-string. All of the basic 0-strings form a
set denoted by Ψ. Both basic 1-strings and basic 0-strings are called basic strings. If two basic
strings W1,W2 ∈ Φ (or W1,W2 ∈ Ψ) such that W1 ≤ W2, then the combined string W1W2 is
called an increasing string and is otherwise called a decreasing string.

An increasing string or a decreasing string can be extended to the sequences composed
of more basic strings.

By conditions (2.2) and (2.4) for any kneading pair ((K+, K−)), K− is composed of
basic 1-strings and K+ is composed of basic 0-strings.

Definition 2.9. If the Lorenz system (1.3) contains a periodic sequence W and |W | = P , by
shift map σ we get another periodic sequence of the same period P . Denote the P periodic
sequences generated by the shift map onW by Sσ(W). Denote the subset of Sσ(W) beginning
with 1 by S1

σ(W) and the subset of Sσ(W) beginning with 0 by S0
σ(W). If a periodic sequence

W begins with 1m0 (m ≥ 1), we shift 1m to the end of W and get another period which is
denoted by σ1(W). If a period W begins with 0m1 (m ≥ 1), we shift 0m to the end of W and
get another period which is denoted by σ0(W).

Definition 2.10. Let A1, A2, . . . , Am+1 be the beginning m + 1 (m ≥ 1) basic 1-strings for a
sequence of the Lorenz system. A1A2 · · ·Am is called the first decreasing string if A1 ≥ A2 ≥
· · · ≥ Am < Am+1 and is denoted by D1. Let B1, B2, . . . , Bn+1 be the beginning n+1 (n ≥ 1) basic
0-strings for a sequence of the Lorenz map (1.3). B1B2 · · ·Bn is called the first increasing string
if B1 ≤ B2 ≤ · · · ≤ Bn > Bn+1 and is denoted by C1. Similarly, we can get D2, C2, D3, C3, . . . .
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Example 2.11. To generate a kneading pair for analysis, we let a = 0.3 and h = 3.2 in the Lorenz
map (1.5) and get the kneading pair as follows:

K− = (11101000110101001001010010001101011010110010100 · · · ),

K+ = (00010110010011010101101000111001001011001011001 · · · ),

Φ = {(10), (100), (1000), (110), (1100), (11000), (1110), (11100), (111000)},

Ψ = {(01), (001), (0001), (011), (0011), (00011), (0111), (00111), (000111)},

D1 = {(11101000)}

(2.6)

because (1110) > (1000) < A3 = (110). C1 = {(0001011)} because (0001) < (011) > B3 = (001).
Similarly, we have D2 = {(11010100100)}, D3 = {(101001000)}, C2 = {(0010011)}, and C3 =
{(0101011)}.

Both the first decreasing strings and the first increasing strings of the kneading pair
are very important because by Theorem 2.1 and conditions (2.2) and (2.4) all basic strings are
subjected to limitation of the First Decreasing Strings and the First Increasing Strings.

Obviously, by inequalities (2.1)∼(2.4) we hold that D1 ≥ D2 ≥ D3 ≥ · · · and C1 ≤ C2 ≤
C3 ≤ · · · . Thus, we have Theorem 2.12 as follows.

Theorem 2.12. For a Lorenz map, suppose thatW1 andW2 are the two sequences composed of basic
1-strings and V1 and V2 are the two sequences composed of basic 0-strings, where W2 ≤ W1 < D1

and C1 < V1 ≤ V2, and {σ1(W1), σ1(W2)} = {V1, V2} or {σ0(V1), σ0(V2)} = {W1,W2}. Then the
sequences composed of V ′1s and V ′2s are periodic sequences of the Lorenz map (1.3) and there exist
consecutive periods if [|V1|, |V2|] = 1.

Corollary 2.13. A satisfactory and necessary condition for the existence of consecutive periods for the
Lorenz map (1.3) is that two coprime periods W1 and W2 satisfying the conditions in Theorem 2.12
exist for the Lorenz map (1.3).

3. Finding Out Periodic Sequences Quickly with Computer Assistance

3.1. Designing an Algorithm and Steps

Theorem 2.12 and Corollary 2.13 provide not only a satisfactory and necessary condition for
the existence of consecutive periods for the Lorenz map (1.3) but also an algorithm to find
consecutive periods. Yet there may be some short periods less than the periods of orbits
generated by Theorem 2.12. In practice without an efficient method, to find all of the periodic
sequences up to certain period may be very time consuming [3–6, 10, 13]. In this section we
provide a method used to design a program to solve the problem quickly.

To avoid accounting the same period more than once, we consider as only one periodic
sequence the set of periodic sequences in which the other is just the shift map of another one;
that is, we think of Sσ(W) as only one periodic sequence.
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Table 1: Consecutive periodic sequences for the Lorenz map (1.3).

(K+, K−) Periodic sequences with
coprime periods

The least number of
consecutive periods

(0001010011 · · · , 11001010010 · · · ) 01, 001 2

(0m1 10m2 1n2 · · · , 1l1 0r1 1l2 · · · ), m1 ≥ 3, l1 ≥ 2 01, 001 2

(015016017016 · · · , 170170170150 · · · ) 016017, 016 105

(((015)6((016)2015 · · · , (160)3(150)2160 · · · ) 015016, 015016016 247

((001)n01001 · · · , 10(100)m10 · · · ), n −m ≥ 3 10(100)m+1, 10(100)m+2 (3m + 5)(3m + 8)

((001)n01001 · · · , 1010(100)m10 · · · ), n −m ≥ 2 10(100)m, 10(100)m+1 (3m + 2)(3m + 5)

Basic steps for the program are as follows.

Step 1. Let P be the period considered. Generate the kneading pair (K+, K−) with length long
enough (generally about 3 times of P) for a given Lorenz map. If (K+, K−) is a superstable
kneading pair, then we substitute C with 01∞ or 10∞. Find all of the basic 1-strings.

Step 2. Find out all of the possible periodic sequences with period P composed of the basic
1-strings.

Step 3. Check against the ordering rule (inequality (2.3)) and condition (2.4) and find out all
of the true periodic sequences with period P .

Step 4. Find out the set of periodic sequences in which no one is the shift map of any other
one.

Step 5. Change P and turn to Step 2 to get periodic sequences with different periods.

Let us call the above program Program 1.
To compare with the enumeration algorithm mentioned in the papers in [3–6], we now

give the program used in the papers in [3–6] which can be obtained just by replacing Step 2
in Program 1 with Step 2’.
Step 2’. Generate P -dimension data arrays with every element being 0 or 1 and we get 2P

arrays in which some are the shift maps for other ones. Give the order to the arrays. Let us
call the program Program 2.

By the steps we have a computer program in Matlab 7.0 (see the appendix).

3.2. Results

3.2.1. Examples of Coprime Periods for the Lorenz Map (1.3)

For most Lorenz maps by Theorem 2.12 and Corollary 2.13 we can find the consecutive
periods if the Lorenz maps have ones (see Table 1).

The middle column in Table 1 can be easily obtained by the ordering rule (inequality
(2.1)) and the concepts of basic strings. By the method of Successive Division we can
determine whether two numbers are coprime or not. For the kneading pair (K+, K−) =
((001)m+k01001 · · · , 101010(100)m10 · · · ), m ≥ 1, k ≥ 0, since the lengths of basic strings of
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K− are 3n1 + 2n2 (m ≤ n1 ≤ m + k, 1 ≤ n ≤ 3) and [3n1 + 2n2, 3n′1 + 2n′2] ≥ 2 (m ≤ n1, n
′
1 ≤

m + k, 1 ≤ n2, n
′
2 ≤ 3), we hold that there exist no consecutive periods for the corresponding

Lorenz map but there exist doubled consecutive periods no less than (3m + 2)(3m + 4)
by Remark 2.4. In the Lorenz map (1.5), if we set the coefficients as h = 2.7, a = 0.3
and h = 1.12, a = 0.802 we get the kneading pairs as (015016017016 · · · , 170170170150 · · · )
and ((015)6((01)6)2015 · · · , (160)3(150)2160 · · · ), respectively, and the Lyapunov exponents for
them are 0.3991 and 0.095, respectively.

3.2.2. Examples of Periodic Sequences for the Lorenz Systems

By Program 1 we can find all the periodic sequences up to a certain period without any being
lost. Combining Program 1 and Theorems 2.1 and 2.12, we can determine the short periods
and whether they have consecutive periods, which is one of the important characteristics of
chaos in the sense of Devaney’s concept of chaos.

Example 3.1. Still we take (K+, K−) mentioned in Section 2.4 as an example:

K− = [11101000110101001001010010001101011010110010100 · · · ],

K+ = [00010110010011010101101000111001001011001011001 · · · ].
(3.1)

The set of basic 1-strings is W = {10, 100, 1000, 110, 1100, 11000, 1110, 11100, 111000}.

When P = 6, we get 6 periodic sequences as follows (without considering shift map of
the sequences. The same below.):

101010, 100100, 110100, 110110, 110010, 111000.

When P = 9, we get 17 periodic sequences as follows:

100101010, 100100100, 110101010, 110100100, 110110100, 110110110, 100010110,
100011010, 110010100, 110010110, 110010010, 110011010, 110001100, 111001010,
111001000, 111001100, 111000110

3.2.3. Comparison of Different Programs Based on the Two Algorithms

Example 3.2. Suppose that a kneading pair for the Lorenz map (1.3) is as follows:

K− = [11101000110101001001010010001101011010110010100 · · · ],

K+ = [00010110010011010101101000111001001011001011001 · · · ].
(3.2)

By Program 2 we find no periods in no less than 20 within 2 hours of computation
time of the computer. Based on Theorem 2.12 and Corollary 2.13, Program 1 can reduce the
computation time substantially on the same computer. The results are shown in Table 2.
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Table 2: Comparison of different algorithms.

Periods N Periods N A1 T1 (seconds) A2 T2 (seconds)

2 1 9 17 512 5.17 45 0.39

3 2 10 28 1024 9.89 80 0.97

4 2 11 40 2048 24.11 139 2.39

5 4 12 67 4096 75.86 242 7.07

6 6 13 102 8192 274.83 420 18.96

7 6 14 169 16384 979.75 733 59.29

8 12 15 272 32768 3788.41 1273 164.68

clear
n1=1000;a=0.3;s=0;k=3.2;b=(a-1)∗k;
x(1)=1-a,%to generate F(C)
%x(1)=1,%to generate F(D)
for n=1:n1

x(n+1)=(x(n)+a).∗(x(n)>=0&x(n)<(1-a))+(k.∗(x(n))+b).∗(x(n)>=(1-a)&x(n)<=1);
y(n)=log(abs(1.∗(x(n)>0&x(n)<1-a)+k.∗((x(n)>=1-a)&x(n)<=1)));

n=n+1;
hold on;
plot(n,x(n))

end
LE0=sum([y(3:n1)])/(n1-2)
xx=0:0.001:1;z=(xx+a).∗(xx>=0&xx<(1-a))+(k.∗xx+b).∗(xx>=(1-a)&xx<=1);
plot(z)
w=[x(2:50)]>1-a,S=sum(w);

Algorithm 1

In Table 2, the meanings of variables are as follows:

N: number of periodic orbits,

Ai (i = 1, 2): number of arrays from which periodic sequences are chosen by
enumeration algorithm (Program i(i=2,1)),

Ti (i = 1, 2): time spending on finding out periods from 9 to 15 by enumeration
algorithm (Program i(i=2,1)) on the same computer.

4. Conclusions

Based on symbolic dynamics and computer assistance, a satisfactory and necessary condition
for existence of consecutive periods is studied in the paper. Computer programs and way of
designing program are provided to find short periodic sequences. With some variation of the
method, the algorithm can be applied to other dynamic systems with different ordering rules
or admissibility conditions of symbolic sequences such as the Logistic map and the Metric
map.
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clear
tic
P=11;% P must corresponds to Lines from 34 to 41.
A{1}=[1 0];A{2}=[1 0 0];A{3}=[1 1 0];A{4}=[1 0 0 0];A{5}=[1 1 0 0];
A{6}=[1 1 1 0];A{7}=[1 1 0 0 0];A{8}=[1 1 1 0 0];A{9}=[1 1 1 0 0 0];
n1=9;
for n=1:n1

NN(n)=size(A{n},2);
end
s1=1;
for i1=1:n1

if NN(i1)==P
m1{s1}=[A{i1}];s1=1+s1;

elseif NN(i1)>P
break

end
for i2=1:n1

if NN(i1)+NN(i2)==P
m1{s1}=[A{i1} A{i2}];s1=1+s1;

elseif NN(i1)+NN(i2)>P
break

end
for i3=1:n1

if NN(i1)+NN(i2)+NN(i3)==P
m1{s1}=[A{i1} A{i2} A{i3}];s1=1+s1;
elseif NN(i1)+NN(i2)+NN(i3)>P
break

end
for i4=1:n1

if NN(i1)+NN(i2)+NN(i3)+NN(i4)==P
m1{s1}=[A{i1} A{i2} A{i3} A{i4}];s1=1+s1;

elseif NN(i1)+NN(i2)+NN(i3)+NN(i4)>P
break

end
for i5=1:n1

if NN(i1)+NN(i2)+NN(i3)+NN(i4)+NN(i5)==P
m1{s1}=[A{i1} A{i2} A{i3} A{i4} A{i5}];s1=1+s1;

elseif NN(i1)+NN(i2)+NN(i3)+NN(i4)+NN(i5)>P
break

end
for i6=1:n1

if NN(i1)+NN(i2)+NN(i3)+NN(i4)+NN(i5)+NN(i6)==P
m1{s1}=[A{i1} A{i2} A{i3} A{i4} A{i5} A{i6}];s1=1+s1;

elseif NN(i1)+NN(i2)+NN(i3)+NN(i4)+NN(i5)+NN(i6)>P
break

end
for i7=1:n1

if NN(i1)+NN(i2)+NN(i3)+NN(i4)+NN(i5)+NN(i6)+NN(i7)==P
m1{s1}=[A{i1} A{i2} A{i3} A{i4} A{i5} A{i6} A{i7}];s1=1+s1;

elseif NN(i1)+NN(i2)+NN(i3)+NN(i4)+NN(i5)+NN(i6)+NN(i7)>P
break

end
for i8=1:n1

if NN(i1)+NN(i2)+NN(i3)+NN(i4)+NN(i5)+NN(i6)+NN(i7)+NN(i8)==P
m1{s1}=[A{i1} A{i2} A{i3} A{i4} A{i5} A{i6} A{i7} A{i8}];s1=1+s1;
elseif NN(i1)+NN(i2)+NN(i3)+NN(i4)+NN(i5)+NN(i6)+NN(i7)+NN(i8)>P
break

end
for i9=1:n1

if NN(i1)+NN(i2)+NN(i3)+NN(i4)+NN(i5)+NN(i6)+NN(i7)+NN(i8)+NN(i9)==P
m1{s1}=[A{i1} A{i2} A{i3} A{i4} A{i5} A{i6} A{i7} A{i8} A{i9}];s1=1+s1;

elseif
NN(i1)+NN(i2)+NN(i3)+NN(i4)+NN(i5)+NN(i6)+NN(i7)+NN(i8)+NN(i9)>P

break
end

end
end
end

end
end
end

end
end

end
for n=1:size(m1,2)

M1{n}=m1{n};
M{n}=[M1{n}M1{n}M1{n}M1{n}M1{n}M1{n}M1{n}M1{n}];

end
K−=[1 1 1 0 1 0 0 0 1 1 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 1 0 1 0 1 1 0 1 0 1 1 0 0 1 0 1 0 0];
K+=[0 0 0 1 0 1 1 0 0 1 0 0 1 1 0 1 0 1 0 1 1 0 1 0 0 0 1 1 1 0 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1];

Algorithm 2
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FD=FD0(1:2∗P);FC=FC0(1:2∗P);
n1=1;
n3=size(m1,2);n4=2∗P;
D{1}=1:n4;
for n=1:n3

s{n}=0;
end
for i=1:n4-1

D{i+1}=D{i}+1;
end
for n=1:n3

for m=1:n4
N0{n,m}=M{n}(D{m});
N1{n,m}=M{n}(D{m}(1));
N2{n,m}=N{n,m}(1);
F0{n,m}=find(N{n,m}<FD);
F1{n,m}=find(N{n,m}>FC);

if (size(F0{n,m},2)∼=0&N1{n,m}==0&((N2{n,m}<FD(1))|((N2{n,m}==FD(1))&......
all(N{n,m}(1:F0{n,m}(1)-1)==FD(1:F0{n,m}(1)-1)==1))))......

|((size(F1{n,m},2)∼=0)&N1{n,m}==1&((N2{n,m}>FC(1))|((N2{n,m}==FC(1))&......
all(N{n,m}(1:F1{n,m}(1)-1)==FC(1:F1{n,m}(1)-1)==1))))
k{n,m}=1;s{n}=s{n}+1;

else
k{n,m}=0;

end
end

if s{n}==n4
B{n1}=M1{n};

n1=n1+1;
end
end

Algorithm 3

Appendix

Program 1(a)

Generate the kneading pair (K+, K−) for a given Lorenz map (1.3). Find all of the basic 1-
strings; (see Algorithm 1).

Program 1(b)

Let P be the period. Find out all of the possible periodic sequences with period of P composed
of the basic 1-strings; (see Algorithm 2).

Program 1(c)

Check against the ordering rule of (2.1) and the condition of (2.2) and find out all of the true
periodic sequences with the period of P ; (see Algorithm 3).
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n6=1;
for n=1:size(B,2)-1

s{n}=0;
end
for n=1:size(B,2)-1

BD=[B{n} B{n}];
for n1=n+1:size(B,2)

if
(all(BD(2:P+1)==B{n1})==1)|(all(BD(3:P+2)==B{n1})==1)|(all(BD(4:P+3)==B{n1})==1)|(all(B
D(5:P+4)==B{n1})==1)|......
(all(BD(6:P+5)==B{n1})==1)|(all(BD(7:P+6)==B{n1})==1)|(all(BD(8:P+7)==B{n1})==1)|(all(B
D(9:P+8)==B{n1})==1)|......
(all(BD(10:P+9)==B{n1})==1)|(all(BD(11:P+10)==B{n1})==1)%|(all(BD(12:P+11)==B{n1})==
1)|(all(BD(13:P+12)==B{n1})==1)|......
% (all(BD(14:P+13)==B{n1})==1)|(all(BD(15:P+14)==B{n1})==1)

s{n}=s{n}+1; % Lines from 34 to 41 must corresponds to P in Line 3.
end

end
if s{n}==0

BB{n6}=B{n};n6=n6+1;
end

end
%celldisp(B);
sizeBB=size(BB,2);BB{sizeBB+1}=B{size(B,2)};
%celldisp(BB)
sizeB=size(B,2),sizeBB=size(BB,2)
toc

Algorithm 4

Program 1(d)

Find out the set of periodic sequences in which no one is the shift map of any other one; (see
Algorithm 4).

Program 2(a)

Generate P -dimension data arrays with every element being 0 or 1 and we get 2P arrays
in which some are the shift maps for other ones. Give the order to the arrays; (see
Algorithm 5).

Program 2(b)

Check against the ordering rule of (2.1) and the condition of (2.2) and find out all of the true
periodic sequences with the period of P .

This is similar to Program 1(c).

Program 2(c)

Find out the set of periodic sequences in which no one is the shift map of any other one.
This is similar to Program 1(d).
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clear
tic
A=[0 1];P=11; n=1;d=15;
for i1=1:2,for i2=1:2,for i3=1:2,for i4=1:2,for i5=1:2,for i6=1:2,for i7=1:2,......

for i8=1:2,for i9=1:2,for i10=1:2,for i11=1:2,for i12=1:2,for i13=1:2,for i14=1:2,for i15=1:2
m1{n}=[A(i1),A(i2),A(i3),A(i4),A(i5),A(i6),A(i7),A(i8),A(i9),A(i10),A(i11),A(i12),A(i13),A(i14
),A(i15)];

n=n+1;
end, end, end, end, end, end, end, end, end, end, end, end, end, end, end

for n=1:2.∧P
M1{n}=m1{n}(d-P+1:d); M{n}=[M1{n}M1{n}M1{n}M1{n}M1{n}M1{n}M1{n}

M1{n}];
End

Algorithm 5
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