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This paper studies a boundary value problem of nonlinear fractional differential equations of order
q ∈ (1, 2] with three-point integral boundary conditions. Some new existence and uniqueness
results are obtained by using standard fixed point theorems and Leray-Schauder degree theory.
Our results are new in the sense that the nonlocal parameter in three-point integral boundary
conditions appears in the integral part of the conditions in contrast to the available literature
on three-point boundary value problems which deals with the three-point boundary conditions
restrictions on the solution or gradient of the solution of the problem. Some illustrative examples
are also discussed.

1. Introduction

In recent years, boundary value problems for nonlinear fractional differential equations
have been addressed by several researchers. Fractional derivatives provide an excellent
tool for the description of memory and hereditary properties of various materials and
processes; see [1]. These characteristics of the fractional derivatives make the fractional-
order models more realistic and practical than the classical integer-order models. As a
matter of fact, fractional differential equations arise in many engineering and scientific
disciplines such as physics, chemistry, biology, economics, control theory, signal and image
processing, biophysics, blood flow phenomena, aerodynamics, and fitting of experimental
data, [1–4]. For some recent development on the topic, see [5–21] and the references
therein.
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We discuss the existence and uniqueness of solutions for a boundary value problem
of nonlinear fractional differential equations of order q ∈ (1, 2] with three-point integral
boundary conditions given by

cDqx(t) = f(t, x(t)), 0 < t < 1, 1 < q ≤ 2,

x(0) = 0, x(1) = α

∫η

0
x(s)ds, 0 < η < 1,

(1.1)

where cDq denotes the Caputo fractional derivative of order q, f : [0, 1] × X → X is
continuous, and α ∈ R is such that α/= 2/η2. Here, (X, ‖ · ‖) is a Banach space and C =
C([0, 1], X) denotes the Banach space of all continuous functions from [0, 1] → X endowed
with a topology of uniform convergence with the norm denoted by ‖ · ‖.

Note that the three-point boundary condition in (1.1) corresponds to the area under
the curve of solutions x(t) from t = 0 to t = η.

2. Preliminaries

Let us recall some basic definitions of fractional calculus [2, 4].

Definition 2.1. For a continuous function g : [0,∞) → R, the Caputo derivative of fractional
order q is defined as

cDqg(t) =
1

Γ
(
n − q

)
∫ t

0
(t − s)n−q−1g(n)(s)ds, n − 1 < q < n, n =

[
q
]
+ 1, (2.1)

where [q] denotes the integer part of the real number q.

Definition 2.2. The Riemann-Liouville fractional integral of order q is defined as

Iqg(t) =
1

Γ
(
q
)
∫ t

0

g(s)

(t − s)1−q
ds, q > 0, (2.2)

provided the integral exists.

Definition 2.3. The Riemann-Liouville fractional derivative of order q for a continuous
function g(t) is defined by

Dqg(t) =
1

Γ
(
n − q

)
(

d

dt

)n ∫ t

0

g(s)

(t − s)q−n+1
ds, n =

[
q
]
+ 1, (2.3)

provided the right-hand side is pointwise defined on (0,∞).



Advances in Difference Equations 3

Lemma 2.4 (see [2]). For q > 0, the general solution of the fractional differential equation cDqx(t) =
0 is given by

x(t) = c0 + c1t + c2t
2 + · · · + cn−1tn−1, (2.4)

where ci ∈ R, i = 0, 1, 2, . . . , n − 1 (n = [q] + 1).

In view of Lemma 2.4, it follows that

Iq cDqx(t) = x(t) + c0 + c1t + c2t
2 + · · · + cn−1tn−1, (2.5)

for some ci ∈ R, i = 0, 1, 2, . . . , n − 1 (n = [q] + 1).

Lemma 2.5. A unique solution of the boundary value problem (1.1) is given by

x(t) =
1

Γ
(
q
)
∫ t

0
(t − s)q−1f(s, x(s))ds

− 2t(
2 − αη2

)
Γ
(
q
)
∫1

0
(1 − s)q−1f(s, x(s))ds

+
2αt(

2 − αη2
)
Γ
(
q
)
∫η

0

(∫s

0
(s −m)q−1f(m,x(m))dm

)
ds.

(2.6)

Proof. For some constants c0, c1 ∈ X, we have

x(t) = Iqf(t, x(t)) − c0 − c1t =
∫ t

0

(t − s)q−1

Γ
(
q
) f(s, x(s))ds − c0 − c1t. (2.7)

From x(0) = 0, we have c0 = 0. Applying the second boundary condition for (1.1), we find
that

α

∫η

0
x(s)ds = α

∫η

0

(∫s

0

(s −m)q−1

Γ
(
q
) f(m,x(m))dm − c1s

)
ds

= α

∫η

0

(∫s

0

(s −m)q−1

Γ
(
q
) f(m,x(m))dm

)
ds − αc1

η2

2
,

x(1) =
∫1

0

(1 − s)q−1

Γ
(
q
) f(s, x(s))ds − c1,

(2.8)
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which imply that

c1 =
2

2 − αη2

[∫1

0

(1 − s)q−1

Γ
(
q
) f(s, x(s))ds − α

∫η

0

(∫ s

0

(s −m)q−1

Γ
(
q
) f(m,x(m))dm

)
ds

]
. (2.9)

Substituting the values of c0 and c1 in (2.7), we obtain the solution (2.6).

In view of Lemma 2.5, we define an operator F : C → C by

(Fx)(t) =
1

Γ
(
q
)
∫ t

0
(t − s)q−1f(s, x(s))ds

− 2t(
2 − αη2

)
Γ
(
q
)
∫1

0
(1 − s)q−1f(s, x(s))ds

+
2αt(

2 − αη2
)
Γ
(
q
)
∫η

0

(∫ s

0
(s −m)q−1f(m,x(m))dm

)
ds, t ∈ [0, 1].

(2.10)

To prove the main results, we need the following assumptions:

(A1) ‖f(t, x) − f(t, y)‖ ≤ L‖x − y‖, for all t ∈ [0, 1], L > 0, x, y ∈ X;

(A2) ‖f(t, x)‖ ≤ μ(t), for all (t, x) ∈ [0, 1] ×X, and μ ∈ L1([0, 1], R+).

For convenience, let us set

Λ =
1

Γ
(
q + 1

)
(
1 +

2
[(
q + 1

)
+ |α|ηq+1]∣∣2 − αη2
∣∣(q + 1

)
)
. (2.11)

3. Existence Results in a Banach Space

Theorem 3.1. Assume that f : [0, 1] × X → X is a jointly continuous function and satisfies the
assumption (A1) with L < 1/Λ, where Λ is given by (2.11). Then the boundary value problem (1.1)
has a unique solution.
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Proof. Setting supt∈[0,1]|f(t, 0)| = M and choosing r ≥ ΛM/(1 − LΛ), we show that FBr ⊂ Br ,
where Br = {x ∈ C : ‖x‖ ≤ r}. For x ∈ Br , we have

‖(Fx)(t)‖ ≤ 1
Γ
(
q
)
∫ t

0
(t − s)q−1

∥∥f(s, x(s))∥∥ds

+

∣∣∣∣∣
2t(

2 − αη2
)
Γ
(
q
)
∣∣∣∣∣
∫1

0
(1 − s)q−1

∥∥f(s, x(s))∥∥ds

+

∣∣∣∣∣
2αt(

2 − αη2
)
Γ
(
q
)
∣∣∣∣∣
∫η

0

(∫s

0
(s −m)q−1

∥∥f(m,x(m))
∥∥dm

)
ds

≤ 1
Γ
(
q
)
∫ t

0
(t − s)q−1

(∥∥f(s, x(s)) − f(s, 0)
∥∥ +

∥∥f(s, 0)∥∥)ds

+

∣∣∣∣∣
2t(

2 − αη2
)
Γ
(
q
)
∣∣∣∣∣
∫1

0
(1 − s)q−1

(∥∥f(s, x(s)) − f(s, 0)
∥∥ +

∥∥f(s, 0)∥∥)ds

+

∣∣∣∣∣
2αt(

2−αη2
)
Γ
(
q
)
∣∣∣∣∣
∫η

0

(∫s

0
(s−m)q−1

(∥∥f(m,x(m))−f(m, 0)
∥∥+∥∥f(m, 0)

∥∥)dm
)
ds

≤ (Lr +M)

[
1

Γ
(
q
)
∫ t

0
(t − s)q−1ds +

∣∣∣∣∣
2t(

2 − αη2
)
Γ
(
q
)
∣∣∣∣∣
∫1

0
(1 − s)q−1ds

+

∣∣∣∣∣
2αt(

2 − αη2
)
Γ
(
q
)
∣∣∣∣∣
∫η

0

(∫s

0
(s −m)q−1dm

)
ds

]

≤ (Lr +M)
Γ
(
q + 1

)
(
1 +

2
[(
q + 1

)
+ |α|ηq+1]∣∣2 − αη2
∣∣(q + 1

)
)

= (Lr +M)Λ ≤ r.

(3.1)

Now, for x, y ∈ C and for each t ∈ [0, 1], we obtain

∥∥(Fx)(t) − (
Fy

)
(t)

∥∥ ≤ 1
Γ
(
q
)
∫ t

0
(t − s)q−1

∥∥f(s, x(s)) − f
(
s, y(s)

)∥∥ds

+

∣∣∣∣∣
2t(

2 − αη2
)
Γ
(
q
)
∣∣∣∣∣
∫1

0
(1 − s)q−1

∥∥f(s, x(s)) − f
(
s, y(s)

)∥∥ds

+

∣∣∣∣∣
2αt(

2−αη2
)
Γ
(
q
)
∣∣∣∣∣
∫η

0

(∫s

0
(s−m)q−1

∥∥f(m,x(m))−f(m,y(m)
)∥∥dm

)
ds
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≤ L
∥∥x − y

∥∥
[

1
Γ
(
q
)
∫ t

0
(t − s)q−1ds +

∣∣∣∣∣
2t(

2 − αη2
)
Γ
(
q
)
∣∣∣∣∣
∫1

0
(1 − s)q−1ds

+

∣∣∣∣∣
2αt(

2 − αη2
)
Γ
(
q
)
∣∣∣∣∣
∫η

0

(∫ s

0
(s −m)q−1dm

)
ds

]

≤ L

Γ
(
q + 1

)
(
1 +

2
[(
q + 1

)
+ |α|ηq+1]∣∣2 − αη2
∣∣(q + 1

)
)∥∥x − y

∥∥ = LΛ
∥∥x − y

∥∥,

(3.2)

where Λ is given by (2.11). Observe that Λ depends only on the parameters involved in the
problem. As L < 1/Λ, therefore F is a contraction. Thus, the conclusion of the theorem follows
by the contraction mapping principle (Banach fixed point theorem).

Now, we prove the existence of solutions of (1.1) by applying Krasnoselskii’s fixed
point theorem [22].

Theorem 3.2 (Krasnoselskii’s fixed point theorem). Let M be a closed convex and nonempty
subset of a Banach space X. LetA,B be the operators such that (i)Ax+By ∈ M whenever x, y ∈ M;
(ii) A is compact and continuous; (iii) B is a contraction mapping. Then there exists z ∈ M such that
z = Az + Bz.

Theorem 3.3. Let f : [0, 1] ×X → X be a jointly continuous function mapping bounded subsets of
[0, 1] ×X into relatively compact subsets of X, and the assumptions (A1) and (A2) hold with

L

Γ
(
q + 1

)
(

2
[(
q + 1

)
+ |α|ηq+1]∣∣2 − αη2
∣∣(q + 1

)
)

< 1. (3.3)

Then the boundary value problem (1.1) has at least one solution on [0, 1].

Proof. Letting supt∈[0,1]|μ(t)| = ‖μ‖, we fix

r ≥
∥∥μ∥∥

Γ
(
q + 1

)
(
1 +

2
[(
q + 1

)
+ |α|ηq+1]∣∣2 − αη2
∣∣(q + 1

)
)
, (3.4)

and consider Br = {x ∈ C : ‖x‖ ≤ r}. We define the operators P and Q on Br as

(Px)(t) =
∫ t

0

(t − s)q−1

Γ
(
q
) f(s, u(s))ds,

(Qx)(t) = − 2t(
2 − αη2

)
Γ
(
q
)
∫1

0
(1 − s)q−1f(s, x(s))ds

+
2αt(

2 − αη2
)
Γ
(
q
)
∫η

0

(∫s

0
(s −m)q−1f(m,x(m))dm

)
ds.

(3.5)
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For x, y ∈ Br , we find that

∥∥Px +Qy
∥∥ ≤

∥∥μ∥∥
Γ
(
q + 1

)
(
1 +

2
[(
q + 1

)
+ |α|ηq+1]∣∣2 − αη2
∣∣(q + 1

)
)

≤ r. (3.6)

Thus, Px + Qy ∈ Br . It follows from the assumption (A1) together with (3.3) that Q is a
contraction mapping. Continuity of f implies that the operator P is continuous. Also, P is
uniformly bounded on Br as

‖Px‖ ≤
∥∥μ∥∥

Γ
(
q + 1

) . (3.7)

Now we prove the compactness of the operator P.
In view of (A1), we define sup(t,x)∈[0,1]×Br

|f(t, x)| = f , and consequently we have

‖(Px)(t1) − (Px)(t2)‖

=

∥∥∥∥∥
1

Γ
(
q
)
∫ t1

0

[
(t2 − s)q−1 − (t1 − s)q−1

]
f(s, x(s))ds +

∫ t2

t1

(t2 − s)q−1f(s, x(s))ds

∥∥∥∥∥

≤ f

Γ
(
q + 1

)∣∣∣2(t2 − t1)q + t
q

1 − t
q

2

∣∣∣,

(3.8)

which is independent of x. Thus, P is equicontinuous. Using the fact that f maps bounded
subsets into relatively compact subsets, we have that P(A)(t) is relatively compact in X for
every t, where A is a bounded subset of C. So P is relatively compact on Br . Hence, by the
Arzelá-Ascoli Theorem, P is compact on Br . Thus all the assumptions of Theorem 3.2 are
satisfied. So the conclusion of Theorem 3.2 implies that the boundary value problem (1.1) has
at least one solution on [0, 1].

4. Existence of Solution via Leray-Schauder Degree Theory

Theorem 4.1. Let f : [0, 1] × R → R. Assume that there exist constants 0 ≤ κ < 1/Λ, where Λ is
given by (2.11) and M > 0 such that |f(t, x)| ≤ κ|x| + M for all t ∈ [0, 1], x ∈ C[0, 1]. Then the
boundary value problem (1.1) has at least one solution.

Proof. Let us define an operator � : C[0, 1] → C[0, 1] as

x = �x, (4.1)
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where

(�x)(t) =
1

Γ
(
q
)
∫ t

0
(t − s)q−1f(s, x(s))ds

− 2t(
2 − αη2

)
Γ
(
q
)
∫1

0
(1 − s)q−1f(s, x(s))ds

+
2αt(

2 − αη2
)
Γ
(
q
)
∫η

0

(∫ s

0
(s −m)q−1f(m,x(m))dm

)
ds.

(4.2)

In view of the fixed point problem (4.1), we just need to prove the existence of at least one
solution x ∈ C[0, 1] satisfying (4.1). Define a suitable ball BR ⊂ C[0, 1] with radius R > 0 as

BR =
{
x ∈ C[0, 1] : max

t∈[0,1]
|x(t)| < R

}
, (4.3)

where R will be fixed later. Then, it is sufficient to show that � : BR → C[0, 1] satisfies

x /=λ�x, ∀x ∈ ∂BR, ∀λ ∈ [0, 1]. (4.4)

Let us set

H(λ, x) = λ�x, x ∈ C(R), λ ∈ [0, 1]. (4.5)

Then, by the Arzelá-Ascoli Theorem, hλ(x) = x−H(λ, x) = x−λ�x is completely continuous.
If (4.4) is true, then the following Leray-Schauder degrees are well defined and by the
homotopy invariance of topological degree, it follows that

deg(hλ, BR, 0) = deg(I − λ�, BR, 0) = deg(h1, BR, 0)

= deg(h0, BR, 0) = deg(I, BR, 0) = 1/= 0, 0 ∈ Br,

(4.6)

where I denotes the unit operator. By the nonzero property of Leray-Schauder degree, h1(t) =
x − λ�x = 0 for at least one x ∈ BR. In order to prove (4.4), we assume that x = λ�x for some
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λ ∈ [0, 1] and for all t ∈ [0, 1] so that

|x(t)| = |λ(�x)(t)|

≤ 1
Γ
(
q
)
∫ t

0
(t − s)q−1

∥∥f(s, x(s))∥∥ds

+

∣∣∣∣∣
2t(

2 − αη2
)
Γ
(
q
)
∣∣∣∣∣
∫1

0
(1 − s)q−1

∥∥f(s, x(s))∥∥ds

+

∣∣∣∣∣
2αt(

2 − αη2
)
Γ
(
q
)
∣∣∣∣∣
∫η

0

(∫s

0
(s −m)q−1

∥∥f(m,x(m))
∥∥dm

)
ds

≤ (κ|x| +M)

[
1

Γ
(
q
)
∫ t

0
(t − s)q−1ds +

∣∣∣∣∣
2t(

2 − αη2
)
Γ
(
q
)
∣∣∣∣∣
∫1

0
(1 − s)q−1ds

+

∣∣∣∣∣
2αt(

2 − αη2
)
Γ
(
q
)
∣∣∣∣∣
∫η

0

(∫ s

0
(s −m)q−1dm

)
ds

]

≤ κ|x| +M

Γ
(
q + 1

)
(
1 +

2
[(
q + 1

)
+ |α|ηq+1]∣∣2 − αη2
∣∣(q + 1

)
)

= (κ|x| +M)Λ,

(4.7)

which, on taking norm (supt∈[0,1]|x(t)| = ‖x‖) and solving for ‖x‖, yields

‖x‖ ≤ MΛ
1 − κΛ

. (4.8)

Letting R = MΛ/(1 − κΛ) + 1, (4.4) holds. This completes the proof.

5. Examples

Example 5.1. Consider the following three-point integral fractional boundary value problem:

cD3/2x(t) =
1

(t + 9)2
‖x‖

1 + ‖x‖ , t ∈ [0, 1],

x(0) = 0, x(1) =
∫3/4

0
x(s)ds.

(5.1)
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Here, q = 3/2, α = 1, η = 3/4, and f(t, x) = (1/(t + 9)2)(‖x‖/(1 + ‖x‖)). As ‖f(t, x) −
f(t, y)‖ ≤ (1/81)‖x − y‖, therefore, (A1) is satisfied with L1 = 1/81. Further,

LΛ = LΛ =
L

Γ
(
q + 1

)
(
1 +

2
[(
q + 1

)
+ |α|ηq+1]∣∣2 − αη2
∣∣(q + 1

)
)

=
4

27945
√
π

(
275 + 18

√
3
)
< 1. (5.2)

Thus, by the conclusion of Theorem 3.1, the boundary value problem (5.1) has a unique
solution on [0, 1].

Example 5.2. Consider the following boundary value problem:

cD3/2x(t) =
1

(4π)
sin(2πx) +

|x|
1 + |x| , t ∈ [0, 1], 1 < q ≤ 2,

x(0) = 0, x(1) =
∫1/2

0
x(s)ds.

(5.3)

Here, q = 3/2, α = 1, η = 1/2, and

∣∣f(t, x)∣∣ =
∣∣∣∣ 1
(4π)

sin(2πx) +
|x|

1 + |x|
∣∣∣∣ ≤ 1

2
|x| + 1. (5.4)

Clearly M = 1 and

κ =
1
2
<

1
Λ

=
105

√
2π

4
(
75
√
2 + 4

) = 0.5978138748. (5.5)

Thus, all the conditions of Theorem 4.1 are satisfied and consequently the problem (5.3) has
at least one solution.
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