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The stability of n-dimensional linear fractional differential systems with commensurate order 1 <
α < 2 and the corresponding perturbed systems is investigated. By using the Laplace transform, the
asymptotic expansion of the Mittag-Leffler function, and the Gronwall inequality, some conditions
on stability and asymptotic stability are given.

1. Introduction

Fractional calculus has a long history with more than three hundred years [1–3]. Up to
now, it has been proved that fractional calculus is very useful. Many mathematical models
of real problems arising in various fields of science and engineering were established with
the help of fractional calculus, such as viscoelastic systems, dielectric polarization, electrode-
electrolyte polarization, and electromagnetic waves [4–7].

Recently, the stability theory of fractional differential equations (FDEs) is of main
interest in physical systems. Moreover, some stability results have been found [8–17]. These
stability results are almost about the linear fractional differential systems with commensurate
order (i.e., the fractional derivative order has to be an integer multiple of minimal fractional
order [18]). For example, a necessary and sufficient condition on asymptotic stability of linear
fractional differential systemwith order 0 < α ≤ 1was first given in [9]. Then, some literatures
on the stability of linear fractional differential systems with order 0 < α < 1 have been
appeared [11–15]. However, not all the fractional differential systems have fractional orders
in (0, 1). There exist fractionalmodels which have fractional orders lying in (1, 2), for example,
super-diffusion [19]. Hence, the stability of linear fractional differential systems with order
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1 < α < 2 has also been considered by using the conversion methods and transfer function
[8, 10]. Almost all of the above literatures dealt with the fractional differential systems with
Caputo derivative. Recently, Qian et al. [16] have investigated the stability of fractional
differential systems with Riemann-Liouville derivative whose order α lies in (0, 1) in details.
It is worth mentioning that not all of the stability conditions are parallel to the corresponding
classical integer-order differential equations because of nonlocality and weak singularities
of fractional calculus. For example, the solution to an autonomous fractional differential
equation cannot define a dynamical system in the sense of semigroup [20]. Of course, some of
the mathematical tools for the integer-order differential equation can be applied to fractional
kinetics. In [20], the authors first define the Lyapunov exponents for fractional differential
system then determine their bounds, where the basic ideas and techniques are borrowed
from [21, 22].

In this paper, we study the stability of autonomous linear fractional differential sys-
tems, nonautonomous linear fractional differential systems, and the corresponding perturbed
systems with order 1 < α < 2 by using the properties of Mittag-Leffler functions and the
Gronwall inequality.

The paper is organized as follows. In Section 2, we first recall some definitions and
lemmas used throughout the paper. In Section 3, the stability analysis is presented for
autonomous linear fractional differential systems with order 1 < α < 2. The stability
of nonautonomous linear fractional differential systems and the corresponding perturbed
systems are studied in Sections 4 and 5, respectively. Conclusions and comments are included
in Section 6.

2. Preliminaries

Let us denote by � the set of real numbers, denote by �+ the set of positive real numbers,
denote by�+ the set of positive integer numbers, and denote by � the set of complex numbers.

In this section, we recall the most commonly used definitions and properties of
fractional derivatives, Mittag-Leffler functions, and their asymptotic expansions.

Definition 2.1. The Riemann-Liouville derivative with order α of function x(t) is defined as
follows:

RLD
α
t0,t
x(t) =

1
Γ(m − α)

dm

dtm

∫ t

t0

(t − τ)m−α−1x(τ)dτ, (2.1)

where m − 1 ≤ α < m ∈ �+, Γ(·) is the Gamma function.

Definition 2.2. The Caputo derivative with order α of function x(t) is defined as follows:

CD
α
t0,t
x(t) =

1
Γ(m − α)

∫ t

t0

(t − τ)m−α−1x(m)(τ)dτ, (2.2)

where m − 1 < α < m ∈ �+.
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Their Laplace transforms for t0 = 0 are given as follows [23]:

L
{

RL
Dα

0,t x(t); s
}
= sαL{x(t)} −

m−1∑
k=0

sk
[
RL
Dα−k−1

0,t x(t)
]
t=0

(m − 1 ≤ α < m), (2.3)

L
{

C
Dα

0,t x(t); s
}
= sαL{x(t)} −

m−1∑
k=0

sα−k−1x(k)(0) (m − 1 < α ≤ m). (2.4)

Definition 2.3. The Mittag-Leffler function is defined by

Eα(z) =
∞∑
k=0

zk

Γ(kα + 1)
, (2.5)

where the real part of α, that is, �α > 0, z ∈ � . The two-parameter Mittag-Leffler function is
defined by

Eα,β(z) =
∞∑
k=0

zk

Γ
(
kα + β

) , (2.6)

where �α > 0 and β ∈ � , z ∈ � .

One can see Eα(z) = Eα,1(z) from the above equations. By analogy with (2.6), for A ∈
� n×n , we introduce a matrix Mittag-Leffler function defined by [24]

Eα,β(A) =
∞∑
k=0

Ak

Γ
(
kα + β

) . (2.7)

The following definitions of stability are introduced.

Definition 2.4. The constant xeq is an equilibrium of fractional differential system �
α
t0,t
x(t) =

f(t, x) if and only if f(t, xeq) = �α
t0,t
x(t)|x(t)=xeq

for all t > t0, where the operator �t0,t denotes
either RLD

α
t0,t

or CD
α
t0,t
.

Without loss of generality, let the equilibrium be xeq = 0, we introduce the following
definition.

Definition 2.5. The zero solution of �α
t0,t
x(t) = f(t, x(t)) with order 1 < α < 2 is said to be

stable if, for any initial values xk (k = 0, 1), there exists ε > 0 such that ‖x(t)‖ ≤ ε for all t > t0.
The zero solution is said to be asymptotically stable if, in addition to being stable, ‖x(t)‖ → 0
as t → +∞.

It is useful to recall the following asymptotic formulas for our developments in the
sequel.
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Lemma 2.6. If 0 < α < 2, β is an arbitrary complex number and μ is an arbitrary real number such
that

πα

2
< μ < min{π, πα}, (2.8)

then for an arbitrary integer p ≥ 1, the following expansions hold:

Eα,β(z) =
1
α
z(1−β)/α exp

(
z1/α

)
−

p∑
k=1

z−k

Γ
(
β − αk

) +O
(
|z|−p−1

)
, (2.9)

with |z| → ∞, | arg(z)| ≤ μ and

Eα,β(z) = −
p∑

k=1

z−k

Γ
(
β − αk

) +O
(
|z|−p−1

)
, (2.10)

with |z| → ∞, μ ≤ | arg(z)| ≤ π .

Proof. These results were proved in [23].

Especially, taking into account the Lemma 2.6 and derivatives of the Mittag-Leffler
function, we obtain

tαj+β−1E(j)
α,β(λt

α) ∼
(

∂

∂λ

)j[ 1
α
λ(1−β)/α exp

(
λ1/αt

) ]
, (2.11)

with t → +∞, | arg(λ)| ≤ μ and

tαj+β−1E(j)
α,β(λt

α) ∼ (−1)j+1
[

j!λ−j−1

Γ
(
β − α

) tβ−α−1 +
(
j + 1

)
!λ−j−2

Γ
(
β − 2α

) tβ−2α−1
]
, (2.12)

with t → +∞, μ ≤ | arg(z)| ≤ π , j = 0, 1, 2, . . . .

Lemma 2.7 (see [25]). If A ∈ � n×n and 0 < α < 2, β is an arbitrary real number, μ satisfies
πα/2 < μ < min{π, πα}, and C > 0 is a real constant, then

‖Eα,β(A)‖ ≤ C

1 + ‖A‖ , (2.13)

where μ ≤ | arg(spec(A))| ≤ π , spec(A) denotes the eigenvalues of matrix A and ‖ · ‖ denotes the
l2-norm.

Lemma 2.8 (Jordan Decomposition [26]). Let A be a square complex matrix, then there exists an
invertible matrix P such that

P−1AP = J1 ⊕ · · · ⊕ Js, (2.14)



Advances in Difference Equations 5

where the Jl are the Jordan blocks of A with the eigenvalues of A on the diagonal. The Jordan blocks
are uniquely determined by A.

Lemma 2.9 (see [27]). If

x(t) ≤ h(t) +
∫ t

t0

k(s)x(s)ds, t ∈ [t0, T), (2.15)

where all the functions involved are continuous on [t0, T), T ≤ +∞, and k(t) ≥ 0, then x(t) satisfies

x(t) ≤ h(t) +
∫ t

t0

k(s)h(s) exp

[∫ t

s

k(u)du

]
ds, t ∈ [t0, T). (2.16)

If, in addition, h(t) is nondecreasing, then

x(t) ≤ h(t) exp

(∫ t

t0

k(s)ds

)
, t ∈ [t0, T). (2.17)

3. Stability of Autonomous Linear Fractional Differential Systems

3.1. The Riemann-Liouville Derivative Case

In this subsection, we consider the following system of fractional differential equations:

RL
Dα

t0,t
x(t) = Ax(t), t > t0, (3.1)

with the initial conditions

RL
Dα−k

t0,t
x(t)|t=t0 = xk−1 (k = 1, 2), (3.2)

where x ∈ �n , matrix A ∈ �n×n , and 1 < α < 2. Then, by analyzing the solutions of the above
initial value problem (3.1)-(3.2), one can find the following result.

Theorem 3.1. The autonomous fractional differential system (3.1)with Riemann-Liouville derivative
and the initial conditions (3.2) is asymptotically stable iff | arg(spec(A))| > απ/2. In this case, the
components of the state decay towards 0 like t−α−1. Moreover, the system (3.1) is stable iff either it
is asymptotically stable, or those critical eigenvalues which satisfy | arg(spec(A))| = απ/2 have the
same algebraic and geometric multiplicities.

Proof. Applying the Laplace transform, we can get the solution of (3.1)-(3.2),

x(t) = (t − t0)α−1Eα,α

(
A(t − t0)α

)
x0 + (t − t0)α−2Eα,α−1

(
A(t − t0)α

)
x1

�

1∑
k=0

(t − t0)α−k−1Eα,α−k
(
A(t − t0)α

)
xk.

(3.3)



6 Advances in Difference Equations

Firstly, we study the properties of the elements of matrixes (t−t0)α−k−1·Eα,α−k(A(t−t0)α),
k = 0, 1. With regard to matrix A, there exists an invertible matrix P , such that

A = PJP−1 = P diag(J1, J2, . . . , Js)P−1, (3.4)

from Lemma 2.8, where the Jordan block

Jl =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λl 1

λl 1

. . . . . .

λl 1

λl

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

nl×nl

, (3.5)

l = 1, 2, . . . , s, λl ∈ � is the eigenvalue of matrix A and
∑s

l=1 nl = n. Substituting (3.4) into
(t − t0)

α−k−1Eα,α−k(A(t − t0)
α), we yield

(t − t0)α−k−1Eα,α−k
(
A(t − t0)α

)

= (t − t0)α−k−1P
∞∑

m=0

diag
(
Jm1 , Jm2 , . . . , Jms

)
(t − t0)αm

Γ(αm + α − k)
P−1

= (t − t0)α−k−1P

⎛
⎜⎜⎜⎝

Eα,α−k
(
J1(t − t0)α

)
. . .

Eα,α−k
(
Js(t − t0)α

)

⎞
⎟⎟⎟⎠P−1,

(3.6)

where k = 0, 1. Thematrix (t−t0)α−k−1Eα,α−k(Jl(t−t0)α) can be written as follows by computing

T
(
Eα,α−k

(
λ(t − t0)α

))|λ=λl , (3.7)

where the operator T is given as follows:

T = (t − t0)α−k−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
∂

∂λ

1
2!

(
∂

∂λ

)2

· · · 1
(nl − 1)!

(
∂

∂λ

)nl−1

1
∂

∂λ
· · · 1

(nl − 2)!

(
∂

∂λ

)nl−2

. . . . . .
...

1
∂

∂λ

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.8)
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The nonzero elements of (t − t0)α−k−1Eα,α−k(Jl(t − t0)α) can be described uniformly as

(t − t0)α−k−1
1(

j − 1
)
!

{(
∂

∂λ

)j−1
Eα,α−k

(
λ(t − t0)α

)}∣∣∣∣∣
λ=λl

(
j = 1, 2, . . . , nl

)
. (3.9)

(i) If λl = 0, then

(t − t0)α−k−1
1(

j − 1
)
!

{(
∂

∂λ

)j−1
Eα,α−k

(
λ(t − t0)α

)}∣∣∣∣∣
λ=λl=0

=
(t − t0)jα−k−1

Γ
(
jα − k

) . (3.10)

It is obvious that (t − t0)jα−k−1/Γ(jα − k) → ∞ (t → +∞) for k = 0 and j ≥ 1. Thus, ‖x(t)‖ →
∞ (t → +∞).

(ii) If λl /= 0, three cases will be considered separately.

Case 1 (| arg(spec(A))| = | arg(λl)| > απ/2). If | arg(λl)| > απ/2 and t → +∞, then

(t − t0)α−k−1
1(

j − 1
)
!

{(
∂

∂λ

)j−1
Eα,α−k

(
λ(t − t0)α

)}∣∣∣∣∣
λ=λl

∼ (−1)j
⎡
⎣λ

−j
l (t − t0)−k−1

Γ(−k) +
jλ

−j−1
l (t − t0)−k−α−1

Γ(−k − α)

⎤
⎦.

(3.11)

That is to say, (t − t0)α−k−1(1/(j − 1)!){(∂/∂λ)j−1Eα,α−k(λ(t − t0)α)}|λ=λl → 0 (t → +∞) from
the asymptotic expansion (2.12) and ‖x(t)‖ → 0 (t → +∞). Moreover, the components of
the state decay towards 0 like t−α−1. Taking into account the entire function Eα,α−k(λ(t − t0)

α),
we also get the boundedness of ((t − t0)α−k−1/(j − 1)!){(∂/∂λ)j−1Eα,α−k(λ(t − t0)α)}|λ=λl (j =
1, 2, . . . , nl; l = 1, 2, . . . , s).

Case 2 (| arg(spec(A))| = | arg(λl)| < απ/2). If | arg(spec(A))| = | arg(λl)| < απ/2 and t →
+∞, from the asymptotic expansion (2.11), we have

(t − t0)α−k−1
1(

j − 1
)
!

{(
∂

∂λ

)j−1
Eα,α−k

(
λ(t − t0)α

)}∣∣∣∣∣
λ=λl

=
(t − t0)jα−k−1(

j − 1
)
!

E
(j−1)
α,α−k

(
λ(t − t0)α

)∣∣∣
λ=λl

∼ 1(
j − 1

)
!

{(
∂

∂λ

)j−1[ 1
α
λ(1−α+k)/αeλ

1/α(t−t0)
]}∣∣∣∣∣

λ=λl
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=
1(

j − 1
)
!

{
(1 + k − α)(1 + k − 2α) · · · (1 + k − (j − 1

)
α
)

αj
λ
1+k−jα/α
l

+ · · ·

+
j
(
j − 1

)
/2 − (j − 1

)
(α − k) − (j − 1

)(
j − 2

)
/2α

αj

×λ
(j(1−α)+k−1)/α
l (t − t0)j−2 +

1
αj

λ
(j(1−α)+k)/α
l (t − t0)j−1

}
exp

(
λ1/α
l (t − t0)

)
,

(3.12)

then

∣∣∣∣∣(t − t0)α−k−1
1(

j − 1
)
!

{(
∂

∂λ

)j−1
Eα,α−k

(
λ(t − t0)α

)}∣∣∣∣∣
λ=λl

∣∣∣∣∣

∼ 1(
j − 1

)
!

∣∣∣∣∣
(1 + k − α)(1 + k − 2α) · · · (1 + k − (j − 1

)
α
)

αj
λ
(1+k−jα)/α
l

+ · · ·

+
j
(
j − 1

)
/2 − (j − 1

)
(α − k) − ((j − 1

)(
j − 2

)
/2
)
α

αj
λ
(j(1−α)+k−1)/α
l (t − t0)j−2

+
1
αj

λ
(j(1−α)+k)/α
l (t − t0)j−1

∣∣∣∣∣ exp
{
|λl |1/α cos

(
arg(λl)

α

)
(t − t0)

}

−→ +∞ as t −→ +∞, j = 1, 2, . . . , nl,

(3.13)

because of |(arg(λl))/α| < π/2, that is, cos((arg(λ l))/α) > 0.

So, ‖x(t)‖ = ‖∑1
k=0(t − t0)α−k−1Eα,α−k(A(t − t0)α)xk‖ → +∞ (t → +∞).

Case 3 (| arg(spec(A))| = | arg(λl)| = απ/2). Let λl = r(cos(απ/2) + i sin(απ/2)), where r is
the modulus of λl and i2 = −1.

Firstly, suppose that the critical eigenvalue λl has the same algebraic and geometric
multiplicities, that is, the matrix Jl is a diagonal matrix, then, according to (3.7), we have

(t − t0)α−k−1Eα,α−k
(
Jl(t − t0)α

)
= (t − t0)α−k−1Eα,α−k

(
λl(t − t0)α

)
diag(1, . . . , 1). (3.14)

If | arg(λl)| = απ/2, we have the diagonal elements of matrix (3.14) |(t − t0)α−k−1Eα,α−k(λl(t −
t0)

α)|(∼ 1/α)r(1+k−α)/α (t → +∞) from the asymptotic expansion (2.11). So, the solution of
(3.1) is stable in this case.

Next, suppose that the algebraic multiplicity of critical eigenvalue λl is not equal
to the geometric multiplicity, that is, the matrix Jl is a Jordan block matrix, and matrix
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(t − t0)α−k−1Eα,α−k(Jl(t − t0)α) is the same as (3.7), then the nondiagonal elements of (t −
t0)

α−k−1Eα,α−k(Jl(t − t0)
α) can be evaluated from (3.12) as follows:

(t − t0)α−k−1
1(

j − 1
)
!

{(
∂

∂λ

)j−1
Eα,α−k

(
λ(t − t0)α

)}∣∣∣∣∣
λ=λl

∼ 1(
j − 1

)
!

{
(1 + k − α)(1 + k − 2α) · · · (1 + k − (j − 1

)
α
)

αj
λ
(1+k−jα)/α
l

+ · · ·

+

j
(
j − 1

)
2

− (j − 1
)
(α − k) − ((j − 1

)(
j − 2

)
/2
)
α

αj
λ
(j(1−α)+k−1)/α
l (t − t0)j−2

+
1
αj

λ
(j(1−α)+k)/α
l (t − t0)j−1

}
exp

{
ir1/α(t − t0)

}
, j = 2, . . . , nl.

(3.15)

So,

∣∣∣∣∣ (t − t0)α−k−1
1(

j − 1
)
!

{(
∂

∂λ

)j−1
Eα,α−k

(
λ(t − t0)α

)}∣∣∣∣∣
λ=λl

∣∣∣∣∣

∼ 1(
j − 1

)
!

∣∣∣∣∣
(1 + k − α)(1 + k − 2α) · · · (1 + k − (j − 1

)
α
)

αj
λ
(1+k−jα)/α
l + · · ·

+
j
(
j − 1

)
/2 − (j − 1

)
(α − k) − ((j − 1

)(
j − 2

)
/2
)
α

αj
λ
(j(1−α)+k−1)/α
l (t − t0)j−2

+
1
αj

λ
(j(1−α)+k)/α
l (t − t0)j−1

∣∣∣∣
−→ +∞ as t −→ +∞, j = 2, . . . , nl,

(3.16)

that is, ‖x(t)‖ → +∞ as t → +∞.
According to the above discussions, the proof is completed.

Remark 3.2. (1) If | arg(spec(A))| < απ/2, then system (3.1) is not stable.
(2) If A has zero eigenvalue, system (3.1) is not stable.
(3) If A has critical eigenvalue(s) λc, that is, | arg(λc)| = απ/2, and the arguments of

the rest eigenvalues in absolute values are greater than απ/2, then system (3.1) is not stable
provided that λc has different geometric and algebraic multiplicities.
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3.2. The Caputo Derivative Case

Now, we consider the fractional differential system with Caputo derivative

C
Dα

t0,t
x(t) = Ax(t), t > t0, (3.17)

under the initial conditions

x(k)(t0) = xk (k = 0, 1), (3.18)

where x, A, and α are as in Section 3.1. Then, one can get the following theorem.

Theorem 3.3. The autonomous fractional differential system (3.17) with Caputo derivative and
initial conditions (3.18) is asymptotically stable iff | arg(spec(A))| > απ/2. In this case, the
components of the state decay towards 0 like t−α+1. Moreover, the system (3.17) is stable iff either
it is asymptotically stable, or those critical eigenvalues which satisfy | arg(spec(A))| = απ/2 have
the same algebraic and geometric multiplicities.

Proof. This theorem can be proved in the same manner as that in the proof of Theorem 3.1, so
it is omitted here.

4. Stability of Nonautonomous Linear Fractional Differential Systems

4.1. The Riemann-Liouville Derivative Case

We will consider a nonautonomous fractional differential system with Riemann-Liouville
derivative

RLD
α
t0,t
x(t) = Ax(t) + B(t)x(t), t > t0, (4.1)

under the initial conditions

RLD
α−k
t0,t

x(t)
∣∣∣
t=t0

= xk−1 (k = 1, 2), (4.2)

where x ∈ �
n , matrix A ∈ �

n×n , B(t) : [t0,∞) → �
n×n is a continuous matrix, and 1 < α < 2.

The main results of this subsection are derived as follows.

Theorem 4.1. If the matrix A such that |spec(A)|/= 0, | arg(spec(A))| ≥ απ/2, the critical eigen-
values which satisfy | arg(spec(A))| = απ/2 have the same algebraic and geometric multiplicities,
and

∫∞
t0
‖B(t)‖dt is bounded, then the zero solution of (4.1) is stable.
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Proof. Applying the Laplace transform, we can get the solution of (4.1)-(4.2),

x(t) = (t − t0)α−1Eα,α

(
A(t − t0)α

)
x0 + (t − t0)α−2Eα,α−1

(
A(t − t0)α

)
x1

+
∫ t

t0

(t − τ)α−1Eα,α

(
A(t − τ)α

)
B(τ)x(τ)dτ

�

1∑
k=0

(t − t0)α−k−1Eα,α−k
(
A(t − t0)α

)
xk +

∫ t

t0

(t − τ)α−1Eα,α

(
A(t − τ)α

)
B(τ)x(τ)dτ.

(4.3)

From the proof of Theorem 3.1, the matrix (t−t0)α−k−1Eα,α−k(A(t−t0)α) is bounded for k = 0, 1.
Therefore, there exist positive numbers Mk, such that ‖(t − t0)α−k−1Eα,α−k(A(t − t0)α)‖ ≤ Mk

(k = 0, 1). Now, we can get the estimate of solution x(t)

‖x(t)‖ ≤ M0‖x0‖ +M1‖x1‖ +
∫ t

t0

M0‖B(τ)‖ · ‖x(τ)‖dτ. (4.4)

Applying the Gronwall inequality (2.17) leads to

‖x(t)‖ ≤ (M0‖x0‖ +M1‖x1‖) exp
(
M0

∫ t

t0

‖B(τ)‖dτ
)
. (4.5)

Thus, we derive that ‖x(t)‖ is bounded according to the condition
∫∞
t0
‖B(t)‖dt < ∞,

that is, the zero solution of (4.1) is stable. The proof is completed.

Similarly, we can derive the following conclusion.

Theorem 4.2. If the matrix A such that |spec(A)|/= 0, | arg(spec(A))| > απ/2, and ‖B(t)‖ =
O(t − t0)

γ (−1 < γ < 1 − α, t0 > 0) for t ≥ t0, then the zero solution of (4.1) is asymptotically stable.

Proof. From the proof of Theorem 3.1, the following expression is valid:

‖x(t)‖ ≤ (t − t0)α−2L1‖x0‖ + (t − t0)α−2L2‖x1‖ + L1

∫ t

t0

(t − τ)α−2‖B(τ)‖ · ‖x(τ)‖dτ, (4.6)

where L1, L2 > 0 such that ‖(t−t0)Eα,α(A(t−t0)α)‖ < L1 and ‖Eα,α−1(A(t−t0)α)‖ < L2. Moreover,
from (4.4) and (2.17), one has

‖x(t)‖ ≤ M0‖x0‖ +M1‖x1‖ + L1

∫ t

t0

(t − τ)α−2‖B(τ)‖ · ‖x(τ)‖dτ

≤ (M0‖x0‖ +M1‖x1‖) exp
(
L1

∫ t

t0

(t − τ)α−2‖B(τ)‖dτ
)
.

(4.7)
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Substituting (4.7) into (4.6), we have

‖x(t)‖ ≤ (t − t0)α−2(L1‖x0‖ + L2‖x1‖) +M01

∫ t

t0

(t − τ)α−2‖B(τ)‖eL1
∫τ
t0
(τ−η)α−2‖B(η)‖dη

dτ, (4.8)

whereM01 = L1(M0‖x0‖+M1‖x1‖). It follows from the condition ‖B(t)‖ = O(t−t0)γ (−1 < γ <

1 − α, t0 > 0) for t ≥ t0 that there exists a constant M > 0, such that
∫ t
t0
(t − τ)α−2‖B(τ)‖dτ < M

and

‖x(t)‖ ≤ (t − t0)α−2(L1‖x0‖ + L2‖x1‖) +M01e
L1M

∫ t

t0

(t − τ)α−2O(τ − t0)γdτ

= (t − t0)α−2(L1‖x0‖ + L2‖x1‖) +M01e
L1M

Γ(α − 1)Γ
(
1 + γ

)
Γ
(
α + γ

) O(t − t0)γ+α−1.

(4.9)

So, the zero solution of (4.1) is asymptotically stable.

4.2. The Caputo Derivative Case

In this subsection, we consider a nonautonomous fractional differential system with Caputo
derivative

CD
α
t0,t
x(t) = Ax(t) + B(t)x(t), t > t0, (4.10)

under the initial conditions

x(k)(t0) = xk (k = 0, 1), (4.11)

where x, A, and α are as in Section 4.1, B(t) : [t0,∞) → �n×n is a continuously differentiable
matrix. We can get the solution of (4.10)-(4.11) by using the Laplace transform and Laplace
inverse transform

x(t) = Eα

(
A(t − t0)α

)
x0 + (t − t0)Eα,2

(
A(t − t0)α

)
x1

+
∫ t

t0

(t − τ)α−1Eα,α

(
A(t − τ)α

)
B(τ)x(τ)dτ.

(4.12)

The main stability results of this subsection are derived as follows.

Theorem 4.3. If the matrix A such that |spec(A)|/= 0, | arg(spec(A))| ≥ απ/2, the critical eigen-
values which satisfy | arg(spec(A))| = απ/2 have the same algebraic and geometric multiplicities,
and

∫∞
t0
‖B(t)‖dt is bounded, then the zero solution of (4.10) is stable.

Proof. The proof line is similar to that of Theorem 4.1.
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Theorem 4.4. If the matrix A such that |spec(A)|/= 0, | arg(spec(A))| > απ/2, and ‖B(t)‖ =
O(t − t0)γ (−1 < γ < 1 − α, t0 > 0) for t ≥ t0, then the zero solution of (4.10) is asymptotically stable.

Proof. From the solution (4.12) and Lemma 2.7, we can directly get

‖x(t)‖ ≤ C0‖x0‖
1 + ‖A‖(t − t0)α

+
C1(t − t0)‖x1‖
1 + ‖A‖(t − t0)α

+ L1

∫ t

t0

(t − τ)α−2‖B(τ)‖ · ‖x(τ)‖dτ, (4.13)

where C0, C1 > 0 and L1 > 0, such that ‖(t− t0)Eα,α(A(t− t0)α)‖ < L1. Furthermore, there exists
a constant M0 > 0 such that

C0‖x0‖
1 + ‖A‖(t − t0)α

+
C1(t − t0)‖x1‖
1 + ‖A‖(t − t0)α

≤ M0, (4.14)

that is,

‖x(t)‖ ≤ M0 + L1

∫ t

t0

(t − τ)α−2‖B(τ)‖ · ‖x(τ)‖dτ

≤ M0 exp

(
L1

∫ t

t0

(t − τ)α−2‖B(τ)‖dτ
)
.

(4.15)

Substituting (4.15) into (4.13) gives

‖x(t)‖ ≤ C0‖x0‖
1 + ‖A‖(t − t0)α

+
C1(t − t0)‖x1‖
1 + ‖A‖(t − t0)α

+ L1M0

∫ t

t0

(t − τ)α−2‖B(τ)‖eL1
∫τ
t0
(τ−η)α−2‖B(η)‖dη

dτ.

(4.16)

It follows from the condition ‖B(t)‖ = O(t − t0)γ (−1 < γ < 1 − α, t0 > 0) for t ≥ t0 that there
exists a constant M > 0, such that

∫ t
t0
(t − τ)α−2‖B(τ)‖dτ < M and

‖x(t)‖ ≤ C0‖x0‖
1 + ‖A‖(t − t0)α

+
C1(t − t0)‖x1‖
1 + ‖A‖(t − t0)α

+ L1M0e
L1M

∫ t

t0

(t − τ)α−2O(τ − t0)γdτ

=
C0‖x0‖

1 + ‖A‖(t − t0)α
+

C1(t − t0)‖x1‖
1 + ‖A‖(t − t0)α

+ L1M0e
L1M

Γ(α − 1)Γ
(
1 + γ

)
Γ
(
α + γ

) O(t − t0)γ+α−1.

(4.17)

So, the zero solution of (4.10) is asymptotically stable.
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5. Stability of the Perturbed Systems

In this section, we only study the perturbed system of a linear fractional differential system
with Riemann-Liouville derivative

RLD
α
t0,t
x(t) = Ax(t) + f(t, x(t)), t > t0, (5.1)

under the initial conditions

RLD
α−k
t0,t

x(t)
∣∣∣
t=t0

= xk−1 (k = 1, 2), (5.2)

where x ∈ �n , matrix A ∈ �n×n , and 1 < α < 2. f(t, x) : [t0,∞) × �n → �n is a continuous
function in which f(t, 0) = 0; moreover, f(t, x) fulfils the Lipschitz condition with respect to
x. Then, the unique solution of (5.1)-(5.2) can be written as

x(t) = (t − t0)α−1Eα,α

(
A(t − t0)α

)
x0 + (t − t0)α−2Eα,α−1

(
A(t − t0)α

)
x1

+
∫ t

t0

(t − τ)α−1Eα,α

(
A(t − τ)α

)
f(τ, x(τ))dτ.

(5.3)

The following theorem can be proved by the same argument used in the proof of
Theorem 4.1.

Theorem 5.1. If the matrix A such that |spec(A)|/= 0, | arg(spec(A))| ≥ απ/2, the critical eigen-
values which satisfy | arg(spec(A))| = απ/2 have the same algebraic and geometric multiplicities.
Moreover, suppose that there exists a positive function γ(t) which satisfies the following conditions:

(i)
∫∞
t0
γ(t)dt is bounded,

(ii) ‖f(t, x)‖ ≤ γ(t)‖x(t)‖,

then the zero solution of (5.1) is stable.

Theorem 5.2. If the matrix A such that |spec(A)|/= 0, | arg(spec(A))| > απ/2, α + 1/‖A‖ < 2,
and suppose that the function f(t, x) satisfies uniformly

lim
x→ 0

‖f(t, x)‖
‖x‖ = 0, t ∈ [t0,∞), (5.4)

then the zero solution of (5.1) is asymptotically stable.

Proof. According to the proof of Theorem 3.1 and Lemma 2.7, we have

‖x(t)‖ ≤ (t − t0)α−2L1‖x0‖ + (t − t0)α−2L2‖x1‖ +
∫ t

t0

C1(t − τ)α−1

1 + ‖A‖(t − τ)α
‖f(τ, x(τ))‖dτ, (5.5)
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where C1, L1, L2 > 0 such that ‖(t − t0)Eα,α(A(t − t0)α)‖ < L1 and ‖Eα,α−1(A(t − t0)α)‖ < L2.
Taking into account the condition (5.4), there exists a constant δ > 0, such that

‖f(t, x(t))‖ <
1
C1

‖x(t)‖ as ‖x(t)‖ < δ. (5.6)

Then,

‖x(t)‖ ≤ M(t − t0)α−2 +
∫ t

t0

(t − τ)α−1

1 + ‖A‖(t − τ)α
‖x(τ)‖dτ, (5.7)

where M = L1‖x0‖ + L2‖x1‖. Applying the Gronwall inequality (2.16) to (5.7) yields

‖x(t)‖ ≤ M(t − t0)α−2 +M

∫ t

t0

(t − τ)α−1(τ − t0)α−2

1 + ‖A‖(t − τ)α
e
∫ t
τ ((t−s)α−1/(1+‖A‖(t−s)α))dsdτ

= M(t − t0)α−2 +M

∫ t

t0

(t − τ)α−1(τ − t0)α−2(
1 + ‖A‖(t − τ)α

)1−1/(α‖A‖) dτ

≤ M(t − t0)α−2 +M‖A‖1/α‖A‖−1
∫ t

t0

(t − τ)1/‖A‖−1(τ − t0)α−2dτ

= M(t − t0)α−2 +
M‖A‖1/α‖A‖−1Γ(1/‖A‖)Γ(α − 1)

Γ(α + 1/‖A‖ − 1)
(t − t0)1/‖A‖+α−2.

(5.8)

So, the zero solution of (5.1) is asymptotically stable due to α + 1/‖A‖ − 2 < 0. The
proof is thus finished.

6. Conclusion

It is well know that many physical phenomena having memory and genetic characteristics
can be described by using the fractional differential systems. Especially, the fractional
differential systems with order 1 < α < 2 have recently gained an increasing attention
[23, 28–31]. It should be noted that [29, 30] are earlier and interesting work on fractional
interval systems. Motivated by the above research activities, in this paper, we have studied
the stability of linear fractional differential systems and the corresponding perturbed systems
with Rimann-Liouville derivative and Caputo derivative for the commensurate order 1 <
α < 2. The main analytic tools used in this paper are the Mittag-Leffler function and the
Gronwall inequality. For the autonomous linear fractional differential systems with order
1 < α < 2, the necessary and sufficient conditions on stability and asymptotic stability are
given, which are almost the same as those with the fractional derivative order α ∈ (0, 1).
But the components of the state decay towards 0 like t−α+1, which is different from the case
with Caputo derivative order α ∈ (0, 1). For the nonautonomous linear fractional differential
systems, we have derived some sufficient conditions on stability and asymptotic stability.
We have further given the asymptotic stability results of the perturbed systems with order
1 < α < 2.
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