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We present a generation theorem of n-times integrated C-regularized semigroups and clarify the
relation between differentiable (n + 1)-times integrated C-regularized semigroups and singular
n-times integrated C-regularized semigroups.

1. Introduction and Preliminaries

In 1987, Arendt [1] studied the n-times integrated semigroups, which are more general than
C0 semigroups (there exist many operators that generate n-times integrated semigroups but
not C0 semigroups).

In recent years, the n-times integrated C-regularized semigroups have received much
attention because they can be used to deal with ill-posed abstract Cauchy problems and
characterize the “weak” well-posedness of many important differential equations (cf., e.g.,
[2–18]).

Stimulated by the works in [2, 5–7, 9, 12–18], in this paper, we present a generation
theorem of the n-times integrated C-regularized semigroups for the case that the domain
of generator and the range of regularizing operator C are not necessarily dense, and prove
that the subgenerator of an exponentially bounded, differentiable (n + 1)-times integrated C-
regularized semigroup is also a subgenerator of a singular n-times integrated C-regularized
semigroup.

Throughout this paper, X is a Banach space; X∗ denotes the dual space of X; L(X,X)
denotes the space of all linear and bounded operators from X to X, it will be abbreviated
to L(X); L(X)∗ denotes the dual space of L(X). By C1((0,+∞), X) we denote the space of all
continuously differentiable X-valued functions on (0,+∞). C((0,+∞), X) is the space of all
continuous X-valued functions on (0,+∞).



2 Advances in Difference Equations

All operators are linear. For a closed linear operator A, we writeD(A), R(A), ρ(A) for
the domain, the range, the resolvent set of A in a Banach space X, respectively.

We denote by A0 = A|D(A) the part of A in D(A), that is,

D(A0) :=
{
x ∈ D(A);Ax ∈ D(A)

}
, A0x = Ax, for x ∈ D(A0). (1.1)

The C-resolvent set of A is defined as:

ρC(A) =
{
λ ≥ 0; (λ −A) is injective, R(C) ⊂ R(λ −A) and (λ −A)−1C ∈ L(X)

}
. (1.2)

We abbreviate n-times integrated C-regularized semigroup to n-times integrated
C-semigroup.

Definition 1.1. Let n be a nonnegative integer. Then A is the subgenerator of an exponentially
bounded n-times integrated C-semigroup {S(t)}t≥0 if (ω,∞) ⊂ ρC(A) for some ω ≥ 0 and
there exists a strongly continuous family S(·) : [0,∞) → L(X) with ‖S(t)‖ ≤ Meω t for some
M > 0 such that

(λ −A)−1Cx = λn
∫∞

0
e−λtS(t)xdt (λ > ω, x ∈ X). (1.3)

In this case, {S(t)}t≥0 is called the exponentially bounded n-times integrated
C-semigroup generated by Ã := C−1AC.

IfC = I (resp., n = 0), thenA is called a generator of an exponentially bounded n-times
integrated semigroup (resp., C-semigroup).

We recall some properties of n-times integrated C-semigroup.

Lemma 1.2 (see [10, Lemma 3.2]). Assume that A is a subgenerator of an n-times integrated
C-semigroup {S(t)}t≥0. Then

(i) S(t)C = CS(t) (t ≥ 0),

(ii) S(t)x ∈ D(A), and AS(t)x = S(t)Ax (t ≥ 0, x ∈ D(A)),

(iii) S(t)x = (tn/n!)Cx +A
∫ t
0 S(s)x ds (t ≥ 0, x ∈ X).

In particular, S(0) = 0.

Definition 1.3. Let ω ≥ 0. If (ω,∞) ⊂ ρC(A) and there exists {S(t)}t≥0 ⊂ L(X) such that

(i) S(0) = 0 and S(·) : (0,∞) → L(X) is strongly continuous,

(ii) for λ > ω,
∫∞
0 e−λt‖S(t)‖dt <∞,

(iii) (λ −A)−1Cx = λn
∫∞
0 e−λtS(t)x dt, λ > ω, x ∈ X,

then we say that {S(t)}t≥0 is a singular n-times integrated C-semigroup with subgeneratorA.

Remark 1.4. Clearly, an exponentially bounded n-times integrated C-semigroup is a singular
n-times integrated C-semigroup. But the converse is not true.
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2. The Main Results

Theorem 2.1. Let M > 0, ω ≥ 0 be constants, and let A be a closed operator satisfying (ω,∞) ⊂
ρC(A). Assume thatϕ(t) is the nonnegative measurable function on [0,∞). A necessary and sufficient
condition for A is the subgenerator of an (n + 1)-times integrated C-semigroup {S(t)}t≥0 satisfying

(A1) lim supλ→∞‖λn+2
∫∞
0 e−λtS(t)dt‖ ≤M,

(A2) ‖S(t) − S(s)‖ ≤ ∫s
t ϕ(u)e

ωudu, 0 ≤ t ≤ s, is that for λ > ω,

(i) lim supλ→∞‖λ(λ −A)−1C‖ ≤ M,

(ii) ‖[(λ −A)−1C/λn]
(m)‖ ≤ ∫∞

0 e−(λ−ω)ttmϕ(t)dt,m = 1, 2, . . ..

Proof. Sufficiency. Let ψ(t) = eωtϕ(t). Set

f(λ) =
∫∞

0
e−λtψ(t)dt =

∫∞

0
e−(λ−ω)tϕ(t)dt, λ > ω. (2.1)

For x∗ ∈ X∗, we have

∣∣∣∣∣∣

〈[
(λ −A)−1C

λn
x

](m)

, x∗
〉∣∣∣∣∣∣

≤ ‖x‖ · ‖x∗‖
∫∞

0
e−λttmϕ(t)dt

≤
∣∣∣(‖x‖ · ‖x∗‖ · f(λ))(m)

∣∣∣, m = 1, 2, . . . .

(2.2)

Using this fact together with Widder’s classical theorem, it is not difficult to see that
the existence of a measurable function h(·, x, x∗) with |h(t, x, x∗)| ≤ ‖x∗‖‖x‖ψ(t), a.e., (t ≥ 0)
such that

〈
(λ −A)−1C

λn
x, x∗

〉
=
∫∞

0
e−λth(t, x, x∗)dt, λ > ω. (2.3)

LetH(t, x, x∗) =
∫ t
0 h(s, x, x

∗)ds, t ≥ 0, x∗ ∈ X∗. In view of the convolution theorem for
Laplace transforms and from (2.3), we have

〈
(λ −A)−1C

λn
x, x∗

〉
= λ

∫∞

0
e−λtH(t, x, x∗)dt, λ > ω, x∗ ∈ X∗. (2.4)

Using the uniqueness of Laplace transforms and the linearity of h(·, x, x∗) for each
x∗ ∈ X∗, x ∈ X, we can see that for each t ≥ 0,H(t, x, x∗) is linear and

|H(t + h, x, x∗) −H(t, x, x∗)| ≤
∫ t+h

t

|h(s, x, x∗)|ds ≤ ‖x‖ · ‖x∗‖
∫ t+h

t

ψ(s)ds. (2.5)
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Hence for all t ≥ 0, there exists S(t) ∈ L(X)∗∗ such that

H(t, x, x∗) = 〈S(t)x, x∗〉, x ∈ X, x∗ ∈ X∗, (2.6)

‖S(t + h) − S(t)‖ ≤
∫ t+h

t

ψ(s)ds, t ≥ 0, h ≥ 0, (2.7)

(λ −A)−1C
λn

= λ
∫∞

0
e−λtS(t)dt. (2.8)

Denote by q : L(x)∗∗ → L(x)∗∗/L(X) the quotient mapping. Since (λ −A)−1C ∈ L(X),
we deduce

0 = q

(
(λ −A)−1C

λn

)
= λ

∫∞

0
e−λtq(S(t))dt. (2.9)

It follows from the uniqueness theorem for Laplace transforms that q(S(t)) = 0, that is, S(t) ∈
L(X).

Combining (2.7) and (2.8) yields that S(t) : [0,∞) → L(X) is strongly continuous and

∫∞

0
e−λt‖S(t)‖dt ≤

∫∞

0
e−λt

∫ t

0
ψ(s)ds dt =

1
λ

∫∞

0
e−λtψ(t)dt < ∞. (2.10)

Now, we conclude that {S(t)}t≥0 is an (n + 1)-times integrated C-semigroup satisfying
(A2). Assertion (A1) is immediate, by (2.8) and (i).

Necessity. Let ψ(t) = eωtϕ(t). Since {S(t)}t≥0 is an (n + 1)-times integrated C-semigroup on X,
we have

(λ −A)−1C = λn+1
∫∞

0
e−λtS(t)dt (2.11)

for λ > ω. Noting that ‖S(t + h) − S(t)‖ ≤ ∫ t+h
t ψ(s)ds (h ≥ 0) and S(0) = 0, we find

‖S(t)‖ ≤
∫ t

0
ψ(s)ds. (2.12)

Then for any y∗ ∈ L(X)∗ and λ > ω, we obtain

〈
(λ −A)−1C

λn
, y∗

〉
=
〈
λ

∫∞

0
e−λtS(t)dt, y∗

〉

≤ λ
∫∞

0
e−λt‖S(t)‖ · ∥∥y∗∥∥dt ≤ ∥∥y∗∥∥

∫∞

0
e−λtψ(t)dt.

(2.13)
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Therefore, there exists a measurable function η(t) on [0,∞) with |η(t)| ≤ ψ(t) (a.e.)
such that

∥∥∥∥∥
(λ −A)−1C

λn

∥∥∥∥∥ =
∫∞

0
e−λtη(t)dt. (2.14)

Furthermore, by calculation, we have

∥∥∥∥∥∥

[
(λ −A)−1C

λn

](m)
∥∥∥∥∥∥
≤
∫∞

0
e−λttmψ(t)dt =

∫∞

0
e−(λ−ω)ttmϕ(t)dt, m = 1, 2, . . . . (2.15)

Assertion (i) is an immediate consequence of (2.11) and (A1).

Remark 2.2. If n = 0 and C = I, then {S(t)}t≥0 is an integrated semigroup in the sense of
Bobrowski [2].

Theorem 2.3. Let M > 0, ω ≥ 0 be constants, and let A be a closed operator satisfying (ω,∞) ⊂
ρ(A). Assume that A is a subgenerator of an (n + 1)-times integrated C-semigroup {S(t)}t≥0 and
satisfies (ii) of Theorem 2.1 and lim supλ→∞‖λ(λ −A)−1‖ ≤ M. If A0 = A|D(A) is a subgenerator of

an n-times integrated C-semigroup {S0(t)}t≥0 onD(A), then for μ ∈ ρ(A), x ∈ X,

S(t)x =
(
μ −A0

) ∫ t

0
S0(s)

(
μ −A)−1

x ds, (2.16)

S(t)x = lim
μ→∞

μ

∫ t

0
S0(s)

(
μ −A)−1

x ds. (2.17)

Proof. For μ ∈ ρ(A), x ∈ X, set {Ŝ(t)}t≥0 as follows:

Ŝ(t)x = μ
∫ t

0
S0(s)

(
μ −A)−1

x ds − S0(t)
(
μ −A)−1

x +
tn

n!
(
μ −A)−1

Cx. (2.18)

Since S0(t) is strongly continuous on D(A), Ŝ(t) is strongly continuous on X.
Fixing λ > ω, we have

λn+1
∫∞

0
e−λtŜ(t)xdt = λn

(
μ − λ)

∫∞

0
e−λtS0(t)

(
μ −A)−1

xdt +
(
μ −A)−1

Cx

=
(
μ − λ)(λ −A)−1C

(
μ −A)−1

x +
(
μ −A)−1

Cx

= (λ −A)−1Cx.

(2.19)

It follows from the uniqueness of Laplace transforms that S(t)x = Ŝ(t)x, x ∈ X. So we get
(2.16). By the hypothesis lim supλ→∞‖λ(λ −A)−1‖ ≤ M, we see
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S(t)x = lim
μ→∞

(
μ

∫ t

0
S0(s)

(
μ −A)−1

x ds − S0(t)
(
μ −A)−1

x +
tn

n!
(
μ −A)−1

Cx

)

= lim
μ→∞

μ

∫ t

0
S0(s)

(
μ −A)−1

Cx ds,

(2.20)

and the proof is completed.

Now, we study the relation between differentiable (n + 1)-times integrated C-
semigroups and singular n-times integrated C-semigroups.

Theorem 2.4. Let ω ≥ 0, and let A be a closed operator satisfying (ω,∞) ⊂ ρC(A). Assume that
ϕ(t) is the nonnegative measurable function on [0,∞). The following two assertions are equivalent:

(1) A is the subgenerator of a singular n-times integrated C-semigroup {U(t)}t≥0 satisfying
‖U(t)‖ ≤ ϕ(t)eωt.

(2) A is the subgenerator of an exponentially bounded (n + 1)-times integrated C-semigroup
{S(t)}t≥0 satisfying

‖S(t) − S(s)‖ ≤
∫ s

t

ϕ(τ)eωτdτ, 0 ≤ t ≤ s,

S(t)x ∈ C1((0,+∞), X), for x ∈ X.
(2.21)

Proof. (1)⇒(2): we set

S(t)x :=
∫ t

0
U(s)x ds, t ≥ 0. (2.22)

Since U(t)x is locally integrable on [0,+∞), S(t)x is well-defined for any x ∈ X. It is easy to
check that S(t)x belongs to C1((0,+∞), X).

For every λ > ω, since

‖S(t)x‖ =

∥∥∥∥∥
∫ t

0
e−λseλsU(s)x ds

∥∥∥∥∥ ≤ eλt
∫ t

0
e−λs‖U(s)x‖ds ≤Meλt‖x‖, (2.23)

we deduce that S(t) is exponentially bounded.
Moreover, for λ > ω, we have

(λ −A)−1Cx = λn
∫∞

0
e−λtU(t)xdt = λn+1

∫∞

0
e−λtS(t)xdt,

‖S(t) − S(s)‖ =
∥∥∥∥
∫ s

t

U(τ)dτ
∥∥∥∥ ≤

∫ s

t

ϕ(τ)eωτdτ, 0 ≤ t ≤ s.
(2.24)

Thus {S(t)}t≥0 is the desired semigroup in (2).
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(2)⇒(1): for any x ∈ X, we set

U(t)x :=
d

dt
S(t)x, for t > 0,

U(0)x := 0, for t = 0.
(2.25)

Then U(t)x ∈ C((0,+∞), X) andU(0) = 0.
Noting that

‖S(t + h) − S(t)‖ ≤
∫ t+h

t

ϕ(s)eωsds, (2.26)

we find

∥∥∥∥
S(t + h) − S(t)

h

∥∥∥∥ ≤ 1
h

∫ t+h

t

ϕ(s)eωsds. (2.27)

Since S(t)x is continuously differentiable for t > 0, we get

‖U(t)‖ ≤ ϕ(t)eωt (a.e.). (2.28)

Moreover, for λ > ω, we have

∫∞

0
e−λt‖U(t)‖dt ≤

∫∞

0
e−(λ−ω)tϕ(t)dt <∞,

(λ −A)−1Cx = λn+1
∫∞

0
e−λtS(t)x dt = λn

∫∞

0
e−λtU(t)xdt.

(2.29)

Thus, {U(t)}t≥0 is a singular n-times integrated C-semigroup with subgeneratorA.

Theorem 2.5. Let M > 0, ω ≥ 0 be constants, and let A be a closed operator satisfying (ω,∞) ⊂
ρ(A). Let ϕ(t) be the function in Theorem 2.4. IfA is the subgenerator of a singular n-times integrated
C-semigroup {U(t)}t≥0, satisfying ‖U(t)‖ ≤ ϕ(t)eωt, and satisfies

lim sup
λ→∞

∥∥∥λ(λ −A)−1
∥∥∥ ≤M (λ > ω), (2.30)

then

(1) for λ > ω, x ∈ X,U(t)x = (λ −A0)S0(t)(λ −A)−1x,

(2) for x ∈ D(A), limt→ 0+U(t)x = 0,

(3) for λ > ω, x ∈ X,U(t)x = limλ→∞λS0(t)(λ −A)−1x,

(4) for λ > ω, x ∈ D(A) if and only if limλ→∞λn+1
∫∞
0 e−λtU(t)x dt = Cx,

where A0 and S0(t) are the symbols mentioned in Theorem 2.3.
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Proof. It follows from Theorems 2.3 and 2.4 that A subgenerates an (n + 1)-times integrated
C-semigroup {S(t)}t≥0, which is continuously differentiable for t > 0 and satisfies (2.16) and
(2.17).

Differentiating (2.16) with respect to t, we obtain

U(t)x =
d

dt
S(t)x = (λ −A0)S0(t)(λ −A)−1x, x ∈ X, λ > ω. (2.31)

This completes the proof of (1).
To show (2), for x ∈ D(A), we have

U(t)x = (λ −A0)S0(t)(λ −A)−1x = S0(t)x. (2.32)

Letting t → 0+, we get

lim
t→ 0+

U(t)x = 0, x ∈ D(A). (2.33)

To show (3), for x ∈ X, since S(t)x ∈ C1((0,+∞), X), it follows from (2.17) that
limλ→∞λS0(t)(λ −A)−1x is continuous for t > 0, thus, we have

U(t)x =
d

dt
S(t)x = lim

λ→∞
λS0(t)(λ −A)−1x, t > 0. (2.34)

Obviously, the equality above is true for t = 0.
Noting that

lim sup
λ→∞

∥∥∥λ(λ −A)−1
∥∥∥ ≤M (λ > ω), (2.35)

we can deduce that x ∈ D(A) implies limλ→∞λ(λ −A)−1Cx = Cx, and from

(λ −A)−1Cx = λn
∫∞

0
e−λtU(t)xdt, (2.36)

assertion (4) is immediate if we note that limλ→∞λ(λ −A)−1Cx = Cx implies x ∈ D(A).
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