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This paper is concerned with the problem of μ-stability of impulsive neural systems with
unbounded time-varying delays and continuously distributed delays. Some μ-stability criteria are
derived by using the Lyapunov-Krasovskii functional method. Those criteria are expressed in the
form of linear matrix inequalities (LMIs), and they can easily be checked. A numerical example is
provided to demonstrate the effectiveness of the obtained results.

1. Introduction

In recent years, the dynamics of neural networks have been extensively studied because
of their application in many areas, such as associative memory, pattern recognition, and
optimization [1–4]. Many researchers have a lot of contributions to these subjects. Stability is
a basic knowledge for dynamical systems and is useful to the real-life systems. The time
delays happen frequently in various engineering, biological, and economical systems, and
they may cause instability and poor performance of practical systems. Therefore, the stability
analysis for neural networks with time-delay has attracted a large amount of research
interest, and many sufficient conditions have been proposed to guarantee the stability of
neural networks with various type of time delays, see for example [5–20] and the references
therein. However, most of the results are obtained based on the assumption that the time
delay is bounded. As we know, time delays occur and vary frequently and irregularly in
many engineering systems, and sometimes they depend on the histories heavily and may
be unbounded [21, 22]. In such case, those existing results in [5–20] are all invalid.
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How to guarantee the desirable stability if the time delays are unbounded? Recently,
Chen et al. [23, 24] proposed a new concept of μ-stability and established some sufficient
conditions to guarantee the global μ-stability of delayed neural networks with or without
uncertainties via different approaches. Those results can be applied to neural networks with
unbounded time-varying delays. Moreover, few results have been reported in the literature
concerning the problem of μ-stability of impulsive neural networks with unbounded time-
varying delays and continuously distributed delays. As we know, the impulse phenomenon
as well as time delays are ubiquitous in the real world [25–27]. The systems with impulses
and time delays can describe the real world well and truly. This inspire our interests.

In this paper, we investigate the problem of μ-stability for a class of impulsive
neural networks with unbounded time-varying delays and continuously distributed delays.
Based on Lyapunov-Krasovskii functional and some analysis techniques, several sufficient
conditions that ensure the μ-stability of the addressed systems are derived in terms of LMIs,
which can easily be checked by resorting to available software packages. The organization
of this paper is as follows. The problems investigated in the paper are formulated, and some
preliminaries are presented, in Section 2. In Section 3, we state and prove our main results.
Then, a numerical example is given to demonstrate the effectiveness of the obtained results
in Section 4. Finally, concluding remarks are made in Section 5.

2. Preliminaries

Notations

Let R denote the set of real numbers, Z+ denote the set of positive integers, and R
n denote

the n-dimensional real spaces equipped with the Euclidean norm | · |. Let A ≥ 0 or A ≤ 0
denote that the matrix A is a symmetric and positive semidefinite or negative semidefinite
matrix. The notations AT and A−1 mean the transpose of A and the inverse of a square
matrix. λmax(A) or λmin(A) denote the maximum eigenvalue or the minimum eigenvalue
of matrixA. I denotes the identity matrix with appropriate dimensions and Λ = {1, 2, . . . , n}.
In addition, the notation � always denotes the symmetric block in one symmetric matrix.

Consider the following impulsive neural networks with time delays:

ẋ(t) = −Cx(t) +Af(x(t)) + Bf(x(t − τ(t)))

+W

∫∞

0
h(s)f(x(t − s))ds + J, t /= tk, t > 0,

Δx(tk) = x(tk) − x
(
t−k
)
= Jk
(
x
(
t−k
))
, k ∈ Z+,

(2.1)

where the impulse times tk satisfy 0 = t0 < t1 < · · · < tk < · · · , limk→∞tk = +∞; x(t) =
(x1(t), . . . , xn(t))

T is the neuron state vector of the neural network; C = diag(c1, . . . , cn) is
a diagonal matrix with ci > 0, i = 1, . . . , n; A,B,W are the connection weight matrix,
the delayed weight matrix, and the distributively delayed connection weight matrix,
respectively; J is an input constant vector; τ(t) is the transmission delay of the neural
networks; f(x(·)) = (f1(x1(·)), . . . , fn(xn(·)))T represents the neuron activation function;
h(·) = diag(h1(·), . . . , hn(·)) is the delay kernel function and Jk is the impulsive function.
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Throughout this paper, the following assumptions are needed.

(H1) The neuron activation functions fj(·), j ∈ Λ, are bounded and satisfy

δ−
j ≤ fj(u) − fj(v)

u − v
≤ δ+

j , j ∈ Λ, (2.2)

for any u, v ∈ R, u/=v. Moreover, we define

Σ1 = diag
(
δ−
1δ

+
1 , . . . , δ

−
nδ

+
n

)
, Σ2 = diag

(
δ−
1 + δ+

1

2
, . . . ,

δ−
n + δ+

n

2

)
, (2.3)

where δ−
j , δ

+
j , j ∈ Λ are some real constants and they may be positive, zero, or

negative.

(H2) The delay kernels hj , j ∈ Λ, are some real value nonnegative continuous functions
defined in [0,∞) and satisfy

∫∞

0
hj(s)ds = 1. (2.4)

(H3) τ(t) is a nonnegative and continuously differentiable time-varying delay and
satisfies τ̇(t) ≤ ρ < 1, where ρ is a positive constant.

If the function fj satisfies the hypotheses (H1) above, there exists an equilibrium point
for system (2.1), see [28]. Assume that x∗ = (x∗

1, . . . , x
∗
n)

T is an equilibrium of system (2.1) and
the impulsive function in system (2.1) characterized by Jk(x(t−k)) = −Dk(x(t−k)−x∗), whereDk

is a real matrix. Then, one can derive from (2.1) that the transformation y = x−x∗ transforms
system (2.1) into the following system:

ẏ(t) = −Cy(t) +Ag
(
y(t)
)
+ Bg

(
y(t − τ(t))

)

+W

∫∞

0
h(s)g

(
y(t − s)

)
ds, t /= tk, t > 0,

Δy(tk) = y(tk) − y
(
t−k
)
= −Dky

(
t−k
)
, k ∈ Z+,

(2.5)

where g(y(·)) = f(y(·) + x∗) − f(x∗).
Obviously, the μ-stability analysis of the equilibrium point x∗ of system (2.1) can

be transformed to the μ-stability analysis of the trivial solution y = 0 of system (2.5). For
completeness, we first give the following definition and lemmas.

Definition 2.1 (see [23]). Suppose that μ(t) is a nonnegative continuous function and satisfies
μ(t) → ∞ as t → ∞. If there exists a scalar M > 0 such that

‖x‖ ≤ M

μ(t)
, t ≥ 0, (2.6)

then the system (2.1) is said to be μ-stable.
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Obviously, the definition of μ-stable includes the global asymptotical and the global
exponential stability.

Lemma 2.2 (see [29]). For a given matrix

S =

(
S11 S12

S21 S22

)
> 0, (2.7)

where ST
11 = S11, S

T
22 = S22, is equivalent to any one of the following conditions:

(1) S22 > 0, S11 − S12S
−1
22S

T
12 > 0;

(2) S11 > 0, S22 − ST
12S

−1
11S12 > 0.

3. Main Results

Theorem 3.1. Assume that assumptions (H1), (H2), and (H3) hold. Then, the zero solution of system
(2.5) is μ-stable if there exist some constants β1 ≥ 0, β2 > 0, β3 > 0, two n×nmatrices P > 0, Q > 0,
two diagonal positive definite n × n matrices M = diag(m1, . . . , mn), U, a nonnegative continuous
differential function μ(t) defined on [0,∞), and a constant T > 0 such that, for t ≥ T

μ̇(t)
μ(t)

≤ β1,
μ(t − τ(t))

μ(t)
≥ β2,

∫∞
0 hj(s)μ(s + t)ds

μ(t)
≤ β3, j ∈ Λ, (3.1)

and the following LMIs hold:

⎡
⎢⎢⎢⎢⎢⎣

Σ PA +UΣ2 PB PW

� Q +N −U 0 0

� � −β2Q
(
1 − ρ

)
0

� � � −M

⎤
⎥⎥⎥⎥⎥⎦

≤ 0,

[
P (I −Dk)P

� P

]
≥ 0,

(3.2)

where Σ = β1P − PC − CP −UΣ1, N = diag(m1β3, . . . , mnβ3).

Proof. Consider the Lyapunov-Krasovskii functional:

V (t) = μ(t)yT (t)Py(t) +
∫ t

t−τ(t)
μ(s)gT(y(s))Qg

(
y(s)

)
ds

+
n∑
j=1

mj

∫∞

0
hj(σ)

∫ t

t−σ
μ(s + σ)g2

j

(
yj(s)

)
dsdσ.

(3.3)
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The time derivative of V along the trajectories of system (2.5) can be derived as

D+V = μ̇(t)yT (t)Py(t) + 2μ(t)yT (t)Pẏ(t) + μ(t)gT(y(t))Qg
(
y(t)
)

− μ(t − τ(t))gT(y(t − τ(t))
)
Qg
(
y(t − τ(t))

)
[1 − τ̇(t)]

+
n∑
j=1

mjg
2
j

(
yj(t)

) ∫∞

0
μ(σ + t)hj(σ)dσ

− μ(t)
∞∑
j=1

mj

∫∞

0
hj(σ)g2

j

(
yj(t − σ)

)
dσ ≤ μ̇(t)yT (t)Py(t) + 2μ(t)yT (t)P

×
[
−Cy(t) +Ag

(
y(t)
)
+ Bg

(
y(t − τ(t))

)
+W

∫∞

0
h(s)g

(
y(t − s)

)
ds

]

+ μ(t)gT(y(t))Qg
(
y(t)
)

− μ(t − τ(t))gT(y(t − τ(t))
)
Qg
(
y(t − τ(t))

)[
1 − ρ

]

+ μ(t)
n∑
j=1

mjg
2
j

(
yj(t)

)∫∞0 μ(σ + t)hj(σ)dσ
μ(t)

− μ(t)
n∑
j=1

mj

∫∞

0
hj(σ)g2

j

(
yj(t − σ)

)
dσ.

(3.4)

It follows from the assumption (3.1) that

n∑
j=1

mjg
2
j

(
yj(t)

)∫∞0 μ(σ + t)hj(σ)dσ
μ(t)

≤
n∑
j=1

mjβ3g
2
j

(
yj(t)

)
= gT(y(t))Ng

(
y(t)
)
. (3.5)

We use the assumption (H2) and Cauchy’s inequality (
∫
p(s)q(s))2 ≤ (

∫
p2(s)ds)(

∫
q2(s)ds)

and get

n∑
j=1

mj

∫∞

0
hj(σ)g2

j

(
yj(t − σ)

)
dσ =

n∑
j=1

mj

∫∞

0
hj(σ)dσ

∫∞

0
hj(σ)g2

j

(
yj(t − σ)

)
dσ

≥
n∑
j=1

mj

[∫∞

0
hj(σ)gj

(
yj(t − σ)

)
dσ

]2

=
[∫∞

0
h(σ)g

(
y(t − σ)

)
dσ

]T

×M

[∫∞

0
h(σ)g

(
y(t − σ)

)
dσ

]
.

(3.6)
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Note that, for any n × n diagonal matrix U > 0 it follows that

μ(t)

(
y(t)

g
(
y(t)
)
)T(−UΣ1 UΣ2

� −U

)(
y(t)

g
(
y(t)
)
)

≥ 0. (3.7)

Substituting (3.5), (3.6) and (3.7), to (3.4), we get, for t ≥ T ,

D+V ≤ μ(t)yT (t)
[
μ̇(t)
μ(t)

P − PC − CP −UΣ1

]
y(t)

+ 2μ(t)yT (t)[PA +UΣ2]g
(
y(t)
)
+ 2μ(t)yT (t)PBg

(
y(t − τ(t))

)

+ 2μ(t)yT (t)PW
∫∞

0
h(σ)g

(
y(t − σ)

)
dσ

− μ(t − τ(t))gT(y(t − τ(t))
)
Qg
(
y(t − τ(t))

)[
1 − ρ

]

+ μ(t)gT(y(t))[N +Q −U]g
(
y(t)
)

− μ(t)
[∫∞

0
h(σ)g(y(t − σ))dσ

]T
M

[∫∞

0
h(σ)g

(
y(t − σ)

)
dσ

]

= μ(t) ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

y(t)

g
(
y(t)
)

g
(
y(t − τ(t))

)
∫∞

0
h(s)g

(
y(t − s)

)
ds

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T

Ξ

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

y(t)

g
(
y(t)
)

g
(
y(t − τ(t))

)
∫∞

0
h(s)g

(
y(t − s)

)
ds

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

(3.8)

where

Ξ =

⎡
⎢⎢⎢⎢⎢⎣

Σ PA +UΣ2 PB PW

� Q +N −U 0 0

� � −β2Q
(
1 − ρ

)
0

� � � −M

⎤
⎥⎥⎥⎥⎥⎦
. (3.9)

So, by assumption (3.2) and (3.8), we have

D+V ≤ 0 for t ∈ [tk−1, tk) ∩ [T,∞), k ∈ Z+. (3.10)
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In addition, we note that

[
P (I −Dk)P

� P

]
≥ 0

⇐⇒
[
I 0

0 P−1

] [
P (I −Dk)P

� P

] [
I 0

0 P−1

]
≥ 0

⇐⇒
[
P (I −Dk)

� P−1

]
≥ 0,

(3.11)

which, together with assumption (3.2) and Lemma 2.2, implies that

P − (I −Dk)TP(I −Dk) ≥ 0. (3.12)

Thus, it yields

V (tk) = μ(tk)yT (tk)Py(tk) +
∫ tk

tk−τ(tk)
μ(s)gT(y(s))Qg

(
y(s)

)
ds

+
n∑
j=1

mj

∫∞

0
hj(σ)

∫ tk

tk−σ
μ(s + σ)g2

j

(
yj(s)

)
dsdσ

= μ
(
t−k
)
yT(t−k)(I −Dk)TP(I −Dk)y

(
t−k
)

+
∫ t−

k

t−
k
−τ(t−

k
)
μ(s)gT(y(s))Qg

(
y(s)

)
ds

+
n∑
j=1

mj

∫∞

0
hj(σ)

∫ t−
k

t−
k
−σ

μ(s + σ)g2
j

(
yj(s)

)
dsdσ

≤ μ
(
t−k
)
yT(t−k)Py(t−k) +

∫ t−
k

t−
k
−τ(t−

k
)
μ(s)gT(y(s))Qg

(
y(s)

)
ds

+
n∑
j=1

mj

∫∞

0
hj(σ)

∫ t−
k

t−
k
−σ

μ(s + σ)g2
j

(
yj(s)

)
dsdσ

≤ V
(
t−k
)
.

(3.13)



8 Advances in Difference Equations

Hence, we can deduce that

V (tk) ≤ V
(
t−k
)
, k ∈ Z+. (3.14)

By (3.10) and (3.14), we know that V is monotonically nonincreasing for t ∈ [T,∞), which
implies that

V (t) ≤ V (T), t ≥ T. (3.15)

It follows from the definition of V that

μ(t)λmin(P)
∥∥y(t)∥∥2 ≤ μ(t)yT (t)Py(t) ≤ V (t) ≤ V0 < ∞, t ≥ 0, (3.16)

where V0 = max0≤s≤TV (s).

It implies that

∥∥y(t)∥∥2 ≤ V0

μ(t)λmin(P)
, t ≥ 0. (3.17)

This completes the proof of Theorem 3.1.

Remark 3.2. Theorem 3.1 provides a μ-stability criterion for an impulsive differential system
(2.5). It should be noted that the conditions in the theorem are dependent on the
upper bound of the derivative of time-varying delay and the delay kernels hj , j ∈
Λ, and independent of the range of time-varying delay. Thus, it can be applied to
impulsive neural networks with unbounded time-varying and continuously distributed
delays.

Remark 3.3. In [23, 24], the authors have studied μ-stability for neural networks with
unbounded time-varying delays and continuously distributed delays via different ap-
proaches. However, the impulsive effect is not taken into account. Hence, our developed
result in this paper complements and improves those reported in [23, 24]. In particular, if we
take Dk = diag(d(k)

1 , . . . , d
(k)
n ), d(k)

i ∈ [0, 2],i ∈ Λ, k ∈ Z+, then the following result can be
obtained.

Corollary 3.4. Assume that assumptions (H1), (H2) and (H3) hold. Then, the zero solution of system
(2.5) is μ-stable if there exist some constants β1 ≥ 0, β2 > 0, β3 > 0, j ∈ Λ, two n × n
matrices P > 0, Q > 0, two diagonal positive definite n × n matrices M = diag(m1, . . . , mn), U,
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a nonnegative continuous differential function μ(t) defined on [0,∞), and a constant T > 0 such that,
for t ≥ T

μ̇(t)
μ(t)

≤ β1,
μ(t − τ(t))

μ(t)
≥ β2,

∫∞
0 hj(s)μ(s + t)ds

μ(t)
≤ β3, j ∈ Λ, (3.18)

and the following LMIs hold:

⎡
⎢⎢⎢⎢⎢⎣

Σ PA +UΣ2 PB PW

� Q +N −U 0 0

� � −β2Q
(
1 − ρ

)
0

� � � −M

⎤
⎥⎥⎥⎥⎥⎦

≤ 0, (3.19)

where Σ = β1P − PC − CP −UΣ1,N = diag(m1β3, . . . , mnβ3).

If we take μ(t) = μ (μ denotes a constant), then the following global bounded result
can be obtained.

Corollary 3.5. Assume that assumptions (H1), (H2), and (H3) hold. Then, the all solutions of system
(2.5) have global boundedness if there exist two n × n matrices P > 0, Q > 0, two diagonal positive
definite n × n matricesM = diag(m1, . . . , mn),U, such that, the following LMIs hold:

⎡
⎢⎢⎢⎢⎢⎣

Σ PA +UΣ2 PB PW

� Q +M −U 0 0

� � −Q(1 − ρ
)

0

� � � −M

⎤
⎥⎥⎥⎥⎥⎦

≤ 0,

[
P (I −Dk)P

� P

]
≥ 0,

(3.20)

where Σ = −PC − CP −U.

Remark 3.6. Notice that β1 = 0, β2 = 1, β3 = 1, j ∈ Λ, and using the similar proof of
Theorem 3.1, we can obtain the result easily.

4. A Numerical Example

In the following, we give an example to illustrate the validity of our method.
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Example 4.1. Consider a two-dimensional impulsive neural network with unbounded time-
varying delays and continuously distributed delays:

(
ẏ1(t)

ẏ2(t)

)
= −
(
3 0

0 3

)(
y1(t)

y2(t)

)
+

(
0.1 0.1

0.1 0.1

)(
tanh

(
y1(t)

)
tanh

(
y2(t)

)
)

+

(
0.1 0.1

0.5 −0.1

)(
tanh

(
y1(t − 0.5t)

)
tanh

(
y2(t − 0.5t)

)
)

+

(
0.5 0.5

0.5 −0.5

)
⎛
⎜⎜⎜⎝

∫∞

0
e−s tanh

(
y1(t − s)

)
ds

∫∞

0
e−s tanh

(
y2(t − s)

)
ds

⎞
⎟⎟⎟⎠, t /= tk, t > 0,

(
Δy1(tk)

Δy2(tk)

)
= −
(
1.5 0

0 1.5

)(
y1
(
t−
k

)
y2
(
t−
k

)
)
, tk = k, k ∈ Z+.

(4.1)

Then, τ(t) = 0.5t, hj(s) = e−s, Σ1 = diag(0, 0), Σ2 = diag(0.5, 0.5), and ρ = 0.5. It is
obvious that (0, 0)T is an equilibrium point of system (4.1). Let μ(t) = t and choose β1 = 0.1,
β2 = 0.5, β3 = 1.2, then the LMIs in Theorem 3.1 have the following feasible solution via
MATLAB LMI toolbox:

P =

(
4.4469 −0.0230
−0.0230 4.3377

)
, Q =

(
5.6557 −0.2109
−0.2109 5.5839

)
,

M =

(
5.5189 0

0 5.5189

)
, U =

(
20.5095 0

0 20.5095

)
.

(4.2)

The above results shows that all the conditions stated in Theorem 3.1 have been
satisfied and hence system (4.1) with unbounded time-varying delay and continuously
distributed delay is μ-stable. The numerical simulations are shown in Figure 1.

5. Conclusion

In this paper, some sufficient conditions for μ-stability of impulsive neural networks with
unbounded time-varying delays and continuously distributed delays are derived. The results
are described in terms of LMIs, which can be easily checked by resorting to available software
packages. A numerical example has been given to demonstrate the effectiveness of the results
obtained.
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Figure 1: (a) State trajectories of system (4.1) without impulsive effects. (b) State trajectories of system
(4.1) under impulsive effects.
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