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We discuss the existence of minimal and maximal positive solutions for fractional differential
equations with multipoint boundary value conditions, and new results are given. An example
is also given to illustrate the abstract results.

1. Introduction

Recently, [1] discussed the existence of positive solutions for the following boundary value
problem of fractional order differential equation

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1,
u(0) = 0, D

β

0+u(1) = aD
β

0+u(ξ),
(1.1)

where Dα
0+ is the standard Riemann-Liouville fractional derivative of order 1 < α ≤ 2, 0 ≤

β ≤ 1, 0 ≤ a ≤ 1, ξ ∈ (0, 1), aξα−β−2 ≤ 1 − β, 0 ≤ α − β − 1 and f : [0, 1] × [0,∞) → [0,∞)
satisfies Carathéodory-type conditions. Moreover, [2] considered the following nonlinear m-
point boundary value problem of fractional type:

Dαx(t) + q(t)f(t, x(t)) = 0, a.e. on [0, 1], α ∈ (n − 1, n], n ≥ 2,

x(0) = x′(0) = x′′(0) = · · · = x(n−2)(0) = 0, x(1) =
m−2∑

i=1
ζix
(
ηi
)
,

(1.2)
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where x takes values in a reflexive Banach space E,

0 < η1 < η2 < · · · < ηm−2 < 1, (1.3)

ζi > 0 with
∑m−2

i=1 ζiη
α−1
i < 1 and x(k) denotes the kth Pseudo-derivative of x, Dα denotes the

Pseudo fractional differential operator of order α, q(·) is a continuous real-valued function on
[0, 1], and f is a vector-valued Pettis-integrable function.

In this paper, we consider the existence of minimal and maximal positive solutions for
the following multiple-point boundary value problem:

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = 0, D
β

0+u(1) =
m−2∑

i=1
ξiD

β

0+u
(
ηi
)
,

(1.4)

where Dα
0+ is the standard Riemann-Liouville fractional derivative,

Dα
0+u(t) =

1
Γ(n − α)

(
d

dt

)n ∫ t

0
(t − s)n−α−1u(s)ds, (1.5)

n = [α] + 1, f : [0, 1] × [0,∞) → [0,∞) is continuous, 1 < α ≤ 2, 0 ≤ β ≤ 1, 0 ≤ α − β − 1,
0 < ξi, ηi < 1, i = 1, 2, . . . , m − 2, and

m−2∑

i=1

ξiη
α−β−1
i < 1. (1.6)

New results on the problem will be obtained.
Recall the following well-known definition and lemma (for more details on cone

theory, see [3]).

Definition 1.1. Let E be a real Banach space. Then,
(a) a nonempty convex closed set P ⊂ E is called a cone if it satisfied the following two

conditions:

(i) x ∈ P, λ ≥ 0 implies λx ∈ P ,

(ii) x ∈ P, −x ∈ P implies x = θ, where θ denotes the zero element of E.

(b) a cone P is said to be normal if there exists a constant N > 0 such that θ ≤ x ≤ y
implies ‖x‖ ≤ N‖y‖.

Lemma 1.2. Assume that u ∈ C(0, 1)∩L(0, 1)with a fractional derivative of order α > 0 that belongs
to C(0, 1) ∩ L(0, 1). Then,

Iα0+D
α
0+u(t) = u(t) + C1t

α−1 + C2t
α−2 + · · · + CNtα−N, for some Ci ∈ R, i = 1, 2, . . . ,N, (1.7)

whereN is the smallest integer greater than or equal to α.
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2. Main Results

Let E = C[0, 1] and P = {u ∈ E : u(t) ≥ 0, t ∈ [0, 1]}. Then, E is the Banach space endowed
with the norm ‖u‖ = sup0≤t≤1|u(t)| and P is normal cone.

We list the following assumptions to be used in this paper.

(H1) there exist two nonnegative real-valued functions p, q ∈ L[0, 1], such that

f(s, x(s)) ≤ p(s) + q(s)x(s), s ∈ [0, 1], x(s) ∈ [0,∞). (2.1)

(H2) for s ∈ [0, 1], 0 ≤ v1 ≤ v2 implies f(s, v1) ≤ f(s, v2).

In the following, we will prove our main results.

Lemma 2.1. Let y ∈ C[0, 1]. Then, the fractional differential equation

Dα
0+u(t) + y(t) = 0, 0 < t < 1, 1 < α ≤ 2,

u(0) = 0, D
β

0+u(1) =
m−2∑

i=1
ξiD

β

0+u
(
ηi
)
,

(2.2)

has a unique solution which is given by

u(t) =
∫1

0
G(t, s)y(s)ds, (2.3)

where

G(t, s) = G1(t, s) +G2(t, s), (2.4)

in which

G1(t, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

tα−1(1 − s)α−β−1 − (t − s)α−1

Γ(α)
, 0 ≤ s ≤ t ≤ 1,

tα−1(1 − s)α−β−1

Γ(α)
, 0 ≤ t ≤ s ≤ 1,

G2(t, s) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
AΓ(α)

⎡

⎣
∑

0≤s≤ηi

(
ξiηi

α−β−1tα−1(1 − s)α−β−1 − ξit
α−1(ηi − s

)α−β−1)
⎤

⎦, t ∈ [0, 1],

1
AΓ(α)

⎛

⎝
∑

ηi≤s≤1
ξiηi

α−β−1tα−1(1 − s)α−β−1
⎞

⎠, t ∈ [0, 1],

(2.5)
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where

A = 1 −
m−2∑

i=1

ξiη
α−β−1
i . (2.6)

Proof. Using Lemma 1.2, we have

u(t) = −Iα0+y(t) + C1t
α−1 + C2t

α−2. (2.7)

It follows from the condition u(0) = 0 that C2 = 0.
Thus,

u(t) = −Iα0+y(t) + C1t
α−1. (2.8)

This, together with the relation Dα
0+t

γ = (Γ(γ + 1)/Γ(γ − α + 1))tγ−α, yields

D
β

0+u(t) = −Iα−β0+ y(t) + C1
Γ(α)

Γ
(
α − β

) tα−β−1

= − 1
Γ
(
α − β

)

∫ t

0
(t − s)α−β−1y(s)ds + C1

Γ(α)
Γ
(
α − β

) tα−β−1.

(2.9)

From the boundary value condition D
β

0+u(1) =
∑m−2

i=1 ξiD
β

0+u(ηi), we deduce that

C1 =
1

AΓ(α)

(∫1

0
(1 − s)α−β−1y(s)ds −

m−2∑

i=1

ξi

∫ηi

0

(
ηi − s

)α−β−1
y(s)ds

)

=
1

Γ(α)

∫1

0
(1 − s)α−β−1y(s)ds +

1
AΓ(α)

m−2∑

i=1

ξiη
α−β−1
i

∫1

0
(1 − s)α−β−1y(s)ds

− 1
AΓ(α)

m−2∑

i=1

ξi

∫ηi

0

(
ηi − s

)α−β−1
y(s)ds.

(2.10)



Advances in Difference Equations 5

Thus,

u(t) = − 1
Γ(α)

∫ t

0
(t − s)α−1y(s)ds +

1
Γ(α)

∫1

0
tα−1(1 − s)α−β−1y(s)ds

+
1

AΓ(α)

m−2∑

i=1

ξiη
α−β−1
i

∫1

0
tα−1(1 − s)α−β−1y(s)ds

− 1
AΓ(α)

m−2∑

i=1

ξi

∫ηi

0
tα−1
(
ηi − s

)α−β−1
y(s)ds

=
1

Γ(α)

∫ t

0

(
tα−1(1 − s)α−β−1 − (t − s)α−1

)
y(s)ds +

1
Γ(α)

∫1

t

tα−1(1 − s)α−β−1y(s)ds

+
1

AΓ(α)
ξ1η

α−β−1
1

∫η1

0
tα−1(1 − s)α−β−1y(s)ds +

1
AΓ(α)

ξ1η
α−β−1
1

∫1

η1

tα−1(1 − s)α−β−1y(s)ds

− 1
AΓ(α)

ξ1

∫η1

0
tα−1
(
η1 − s

)α−β−1
y(s)ds

+ · · ·

+
1

AΓ(α)
ξm−2η

α−β−1
m−2

∫ηm−2

0
tα−1(1 − s)α−β−1y(s)ds

+
1

AΓ(α)
ξm−2η

α−β−1
m−2

∫1

ηm−2
tα−1(1 − s)α−β−1y(s)ds

− 1
AΓ(α)

ξm−2

∫ηm−2

0
tα−1
(
ηm−2 − s

)α−β−1
y(s)ds

=
∫1

0
G1(t, s)y(s)ds +

∫1

0
G2(t, s)y(s)ds

=
∫1

0
G(t, s)y(s)ds.

(2.11)

The proof is complete.

Lemma 2.2. If
∑m−2

i=1 ξiη
α−β−1
i < 1, then function G(t, s) in Lemma 2.1 satisfies the following

conditions:

(i) G(t, s) > 0, for s, t ∈ (0, 1),

(ii) G(t, s) ≤ G(t, s) ≤ G∗(s, s), for s,t ∈ [0, 1],

where

G(t, s) = G1(t, s) +G2(t, s), (2.12)
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in which

G1(t, s) =
1

Γ(α)
tα−1(1 − s)α−β−1,

G2(t, s) =
1

AΓ(α)

m−2∑

i=1

ξiη
α−β−1
i tα−1(1 − s)α−β−1,

G∗(s, s) = max
t∈[0,1]

G1(t, s) + max
t∈[0,1]

G2(t, s).

(2.13)

Proof. When 0 < s ≤ t < 1, we have

tα−1(1 − s)α−β−1 − (t − s)α−1 = (t − ts)α−1(1 − s)−β − (t − s)α−1 > 0. (2.14)

Thus, G1(t, s) > 0 for s, t ∈ (0, 1).
Furthermore, we conclude that

ξit
α−1(ηi − s

)α−β−1 = ξiη
α−β−1
i tα−1

(

1 − s

ηi

)α−β−1

≤ ξiη
α−β−1
i tα−1(1 − s)α−β−1.

(2.15)

So, G2(t, s) ≥ 0 for s, t ∈ [0, 1]. This, together with G1(t, s) > 0 for s, t ∈ (0, 1), yields G(t, s) > 0
for t, s ∈ (0, 1).

Observing the express of G(t, s), G(t, s), and G∗(t, s), we see that (ii) holds.
The proof is complete.

Remark 2.3. From the express of G1(t, s) and G2(t, s), we see that

max
t∈[0,1]

G1(t, s) =
1

Γ(α)
(1 − s)α−β−1,

max
t∈[0,1]

G2(t, s) =
1

AΓ(α)

m−2∑

i=1

ξiη
α−β−1
i (1 − s)α−β−1.

(2.16)

Thus,

G∗(s, s) =
1

Γ(α)
(1 − s)α−β−1 +

1
AΓ(α)

m−2∑

i=1

ξiη
α−β−1
i (1 − s)α−β−1. (2.17)

Now, we define an operator T : P → P by

(Tu)(t) =
∫1

0
G(t, s)f(s, u(s))ds. (2.18)
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Theorem 2.4. Let condition (H1) be satisfied. Suppose that
∫1
0 G∗(s, s)q(s)ds < 1. Then, problem

(1.4) has at least one positive solution.

Proof. Let Br = {u ∈ E, ‖u‖ ≤ r}, where

r =

∫1
0 G∗(s, s)p(s)ds

1 − ∫10 G∗(s, s)q(s)ds
. (2.19)

Step 1. T : Br → Br , for any u ∈ Br

|(Tu)(t)| =
∣
∣
∣
∣
∣

∫1

0
G(t, s)f(s, u(s))ds

∣
∣
∣
∣
∣

≤
∫1

0
G∗(s, s)

(
p(s) + q(s)u(s)

)
ds

≤
∫1

0
G∗(s, s)p(s)ds +

∫1

0
G∗(s, s)q(s)ds‖u‖

≤
∫1

0
G∗(s, s)p(s)ds + r

∫1

0
G∗(s, s)q(s)ds

= r,

(2.20)

which implies that ‖Tu‖ ≤ r.

Step 2. T : Br → Br is continuous.
It is obvious from f ∈ C([0, 1] × [0,∞), [0,∞)).

Step 3. T(Br) is equicontinuous.
From (2.11) and (2.18), for any t1, t2 ∈ [0, 1], t1 < t2, u ∈ Br , we conclude that

|(Tu)(t2) − (Tu)(t1)| =
∣
∣
∣
∣
∣

∫1

0
(G(t2, s) −G(t1, s))f(s, u(s))ds

∣
∣
∣
∣
∣

≤ 1
Γ(α)

∫ t1

0

∣
∣
∣(t2 − s)α−1 − (t1 − s)α−1

∣
∣
∣
(
p(s) + rq(s)

)
ds

+
1

Γ(α)

∫ t2

t1

(t2 − s)α−1
(
p(s) + rq(s)

)
ds

+
1

Γ(α)

∫1

0

∣
∣
∣tα−12 − tα−11

∣
∣
∣(1 − s)α−β−1

(
p(s) + rq(s)

)
ds
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+
1

AΓ(α)

m−2∑

i=1

ξiη
α−β−1
i

∫1

0

∣
∣
∣tα−12 − tα−11

∣
∣
∣(1 − s)α−β−1

(
p(s) + rq(s)

)
ds

+
1

AΓ(α)

m−2∑

i=1

ξi

∫ηi

0

∣
∣
∣tα−12 − tα−11

∣
∣
∣
(
ηi − s

)α−β−1(
p(s) + rq(s)

)
ds.

(2.21)

As t1 → t2, the right-hand side of the above inequality tends to zero, so, T(Br) is
equicontinuous.

By the Arzelá-Ascoli theorem,we conclude that the operator T : Br → Br is completely
continuous. Thus, our conclusion follows from Schauder fixed point theorem, and the proof
is complete.

Theorem 2.5. Besides the hypotheses of Theorem 2.4, we suppose that (H2) holds. Then, BVP (1.4)
has minimal positive solution u in Br and maximal positive solution w in Br ; Moreover, vm(t) →
u(t), wm(t) → w(t) as m → ∞ uniformly on [0, 1], where

vm(t) =
∫1

0
G(t, s)f(s, vm−1(s))ds, (2.22)

wm(t) =
∫1

0
G(t, s)f(s,wm−1(s))ds. (2.23)

Proof. By Theorem 2.4, we know that BVP (1.4) has at least one positive solution in Br .

Step 1. BVP (1.4) has a positive solution in Br , which is minimal positive solution.
From (2.18) and (2.22), one can see that

vm(t) = (Tvm−1)(t), t ∈ [0, 1], m = 1, 2, 3, . . . . (2.24)

This, together with (H2), yields that

0 = v0(t) ≤ v1(t) ≤ · · · ≤ vm(t) ≤ · · · , t ∈ [0, 1]. (2.25)

From v0 ∈ Br and the proof of Theorem 2.4, it may be concluded that vm ∈ Br and Tvm ∈ Br .
Let

W = {vm : m = 0, 1, 2, . . .}, TW = {Tvm : m = 0, 1, 2, . . .}. (2.26)

Thus,

W = {v0} ∪ TW, W ⊂ Br, T : W −→ W. (2.27)
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By the complete community of T , we know that TW is relatively compact. So, there exists a
u ∈ E and a subsequence

{
vmj : j = 1, 2, 3, . . .

}
⊂ W (2.28)

such that {vmj : j = 1, 2, 3, . . .} converges to u uniformly on [0, 1]. Since P is normal and
{vm(t) : m = 1, 2, . . .} is nondecreasing, it is easily seen that the entire sequence {vm(t) : m =
1, 2, . . .} converges to u(t) uniformly on [0, 1]. Br being closed convex set in E and vm ∈ Br

imply that u ∈ Br .
From

f ∈ C([0, 1] × [0,∞), [0,∞)) (2.29)

and (H1), we see that

f(s, vm(s)) −→ f(s, u(s)) as m −→ ∞, for s ∈ [0, 1],

G(t, s)f(s, vm(s)) ≤ G∗(s, s)f(s, vm(s))

≤
(

1
Γ(α)

+
1

AΓ(α)

m−2∑

i=1
ξiη

α−β−1
i

)

f(s, vm(s))

≤
(

1
Γ(α)

+
1

AΓ(α)

m−2∑

i=1
ξiη

α−β−1
i

)
(
p(s) + rq(s)

) ∈ L[0, 1].

(2.30)

By (2.30), (2.22), and Lebesgue’s dominated convergence theorem, we get

u(t) =
∫1

0
G(t, s)f(s, u(s))ds. (2.31)

Let u(t) be any positive solution of BVP (1.4) in Br . It is obvious that 0 = v0(t) ≤ u(t) = (Tu)(t).
Thus,

vm(t) ≤ u(t) (m = 0, 1, 2, 3, . . .). (2.32)

Taking limits asm → ∞ in (2.32), we get u(t) ≤ u(t) for t ∈ [0, 1].

Step 2. BVP (1.4) has a positive solution in Br , which is maximal positive solution.
Let

w0(t) =
∫1

0
G(t, s)

(
p(s) + rq(s)

)
ds. (2.33)
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It is obvious that

|w0(t)| ≤
∫1

0
G∗(s, s)

(
p(s) + rq(s)

)
ds = r. (2.34)

Thus, ‖w0‖ ≤ r and w0 ∈ Br .
By (2.18), (2.23), and (H1), we have

w1(t) = (Tw0)(t) =
∫1

0
G(t, s)f(s,w0(s))ds

≤
∫1

0
G(t, s)

(
p(s) + q(s)w0(s)

)
ds

≤
∫1

0
G(t, s)

(
p(s) + rq(s)

)
ds

= w0(t).

(2.35)

This, together with (H2), yields that

· · · ≤ wm(t) ≤ · · · ≤ w1(t) ≤ w0(t), t ∈ [0, 1]. (2.36)

Using a proof similar to that of Step 1, we can show that

wm(t) −→ w(t) (m −→ ∞),

w(t) =
∫1

0
G(t, s)f(s,w(s))ds.

(2.37)

Let u(t) be any positive solution of BVP (1.4) in Br .
Obviously,

u(t) = (Tu)(t) =
∫1

0
G(t, s)f(s, u(s))ds ≤

∫1

0
G(t, s)

(
p(s) + rq(s)

)
ds = w0(t). (2.38)

This, together with (H2), implies

u(t) ≤ wm(t). (2.39)

Taking limits asm −→ ∞ in (2.39), we obtain u(t) ≤ w(t) for t ∈ [0, 1].
The proof is complete.

On the other hand, we note that in these years, going with the significant
developments of various differential equations in abstract spaces (cf., e.g., [3–17] and
references therein), fractional differential equations in Banach spaces have also been
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investigated by many authors (cf. e.g., [1, 2, 18–26] and references therein). In our coming
papers, we will present more results on fractional differential equations in Banach spaces.

3. An Example

Example 3.1. Consider the following boundary value problem

D3/2
0+ u(t) +

u

1 + u
t11 + et + 1 = 0, 0 < t < 1,

u(0) = 0, D1/5
0+ u(1) =

2∑

i=1
ξiD

1/5
0+ u
(
ηi
)
,

(3.1)

where α = 3/2, β = 1/5, m = 4, ξ1 = η1 = 1/4, ξ2 = η2 = 1/2,

f(t, u) =
u

1 + u
t11 + et + 1, (3.2)

p(t) = et + 1, q(t) = t11. By computation, we deduce that

2∑

i=1

ξiη
α−β−1
i =

2∑

i=1

ξiη
3/10
i <

2∑

i=1

ξi =
1
4
+
1
2
=

3
4
< 1,

A = 1 −
2∑

i=1

ξiη
α−β−1
i >

1
4
,

1
A

< 4, Γ
(
3
2

)

=
√
π

2
.

(3.3)

From Remark 2.3, we get

G∗(s, s) =
1

Γ(α)
(1 − s)α−β−1 +

1
AΓ(α)

2∑

i=1

ξiη
α−β−1
i (1 − s)α−β−1. (3.4)

Therefore,

∫1

0
G∗(s, s)q(s)ds =

1
Γ(α)

∫1

0
(1 − s)α−β−1s11ds +

1
AΓ(α)

2∑

i=1

ξiη
α−β−1
i

∫1

0
(1 − s)α−β−1s11ds

≤ 2√
π

∫1

0
s11ds + 4 × 2√

π
× 3
4

∫1

0
s11ds

=
1

6
√
π

+
1

2
√
π

=
2

3
√
π

< 1.

(3.5)

On the one hand, it is obvious that f(t, u) ≤ p(t) + q(t)u. Thus, (H1) is satisfied.
For u1 ≤ u2, we see that f(t, u1) ≤ f(t, u2), which implies that (H2) holds.
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Hence, by Theorem 2.5, BVP (3.1) has minimal and maximal positive solutions in Br .
Furthermore, we can conclude that

∫1

0
G∗(s, s)p(s)ds =

1
Γ(α)

∫1

0
(1 − s)α−β−1(es + 1)ds +

1
AΓ(α)

2∑

i=1

ξiη
α−β−1
i

∫1

0
(1 − s)α−β−1(es + 1)ds

≤ 2√
π

∫1

0
(es + 1)ds + 4 × 2√

π
× 3
4

∫1

0
(es + 1)ds

=
2e√
π

+
6e√
π

=
8e√
π
,

r =

∫1
0 G∗(s, s)p(s)ds

1 − ∫10 G∗(s, s)q(s)ds
≤ 8e/

√
π

1 − 2/3
√
π

=
24e

3
√
π − 2

.

(3.6)
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