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We investigate the solution to the following function equation f1(x)g1(y)+ · · ·+fn(x)gn(y) = G(x+
y), which arises from the theory of divergence measures. Moreover, new results on divergence
measures are given.

1. Introduction

As early as in 1952, Chernoff [1] used the α-divergence to evaluate classification errors. Since
then, the study of various divergence measures has been attracting many researchers. So
far, we have known that the Csiszár f-divergence is a unique class of divergences having
information monotonicity, from which the dual α geometrical structure with the Fisher
metric is derived, and the Bregman divergence is another class of divergences that gives
a dually flat geometrical structure different from the α-structure in general. Actually, a
divergence measure between two probability distributions or positive measures have been
proved a useful tool for solving optimization problems in optimization, signal processing,
machine learning, and statistical inference. For more information on the theory of divergence
measures, please see, for example, [2–5] and references therein.

Motivated by these studies, we investigate in this paper the solution to the following
function equation

f1(x)g1
(
y
)
+ · · · + fn(x)gn

(
y
)
= G

(
x + y

)
, (1.1)

which arises from the discussion of the theory of divergence measures, and show that for
n > 1, if fi : [a, b] → R, gi : [a, b] → R, i = 1, 2, . . . , n, and G : [2a, 2b] → R satisfy

n∑

i=1

fi(x)gi
(
y
)
= G

(
x + y

)
, (1.2)
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then G is the solution of a linear homogenous differential equation with constant coefficients.
Moreover, new results on divergence measures are given.

Throughout this paper, we let R be the set of real numbers and F ⊂ Rn are a convex
set.

Basic notations: Rn
+ := {x ∈ Rn : xi > 0, i = 1, 2, . . . , n}; φ : F → R is strictly convex

and twice differentiable; π : Rn
+ → F is differentiable injective map; Dπ

φ
is the general

vector Bregman divergence; f : (0,+∞) → [0,+∞) is strictly convex twice-continuously
differentiable function satisfying f(1) = 0, f ′(1) = 0; Df is the vector f-divergence.

If for every p, q ∈ Rn
+,

Dπ
φ

[
p : q

]
= Df

[
p : q

]
, (1.3)

then we say the Dπ
φ or Df is in the intersection of f-divergence and general Bregman

divergence.
For more information on some basic concepts of divergence measures, we refer the

reader to, for example, [2–5] and references therein.

2. Main Results

Theorem 2.1. Assume that there are differentiable functions

fi : [a, b] −→ R, gi : [a, b] −→ R, i = 1, 2, . . . , n, (2.1)

and G : [2a, 2b] → R such that

n∑

i=1

fi(x)gi
(
y
)
= G

(
x + y

)
, for every x, y ∈ [a, b]. (2.2)

Then G ∈ C∞[2a, 2b] and

anG
(n) + an−1G(n−1) + · · · + a1G

′ + a0G = 0, (2.3)

for some an, an−1, . . . , a0 ∈ R.

Proof. Since fi, gi is differentiable functions, it is clear that

fi, gi ∈ L2[a, b], i = 1, 2, . . . , n. (2.4)

Let

M = span
{
f1, f2, . . . , fn

}
. (2.5)

Then M is a finite dimension space. So we can find differentiable functions

s1, s2, . . . , sm ∈ M (2.6)
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as the orthonormal bases of M, wherem ≤ n. Observing that

n∑

i=1

fi(x)gi
(
y
)
=

n∑

i=1

⎡

⎣
m∑

j=1

aijsj(x)gi
(
y
)
⎤

⎦

=
m∑

j=1

sj(x)
n∑

i=1

aijgi
(
y
)

=
m∑

j=1

sj(x)tj
(
y
)
,

(2.7)

where

aij ∈ R, tj
(
y
)
=

n∑

i=1

aijgi
(
y
)
, i = 1, 2, . . . , n, j = 1, 2, . . . , m, (2.8)

we have

G
(
x + y

)
=

n∑

i=1

fi(x)gi
(
y
)
=

m∑

j=1

sj(x)tj
(
y
)
, for every x, y ∈ [a, b]. (2.9)

Clearly,

tj ∈ L2[a, b], j = 1, . . . , m. (2.10)

Next we prove that

tj ∈ M, j = 1, . . . , m. (2.11)

It is easy to see that we only need to prove the following fact:

span{s1, s2, . . . , sm, t1, t2, . . . , tm} = M. (2.12)

Actually, if this is not true, that is,

span{s1, s2, . . . , sm, t1, t2, . . . , tm}/=M, (2.13)

then there exists t /= 0 such that

t ∈ span{s1, s2, . . . , sm, t1, t2, . . . , tm}, t ⊥ M. (2.14)
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Therefore

∫b

a

G
(
x + y

)
t(x)dx =

∫b

a

m∑

i=1

si(x)t(x)ti
(
y
)
dx

=
m∑

i=1

∫b

a

si(x)t(x)dx ti
(
y
)

= 0, for every y ∈ [a, b],
∫b

a

G
(
y + x

)
t
(
y
)
dy =

∫b

a

m∑

i=1

si(x)t
(
y
)
ti
(
y
)
dy

=
m∑

i=1

∫b

a

ti
(
y
)
t
(
y
)
dy si(x), for every x ∈ [a, b].

(2.15)

Because

∫b

a

G
(
x + y

)
t(x)dx = 0, for every y ∈ [a, b], (2.16)

we get

∫b

a

G
(
y + x

)
t
(
y
)
dy = 0, for every x ∈ [a, b], (2.17)

that is,

m∑

i=1

∫b

a

ti
(
y
)
t
(
y
)
dy si(x) = 0, for every x ∈ [a, b]. (2.18)

Since s1, s2, . . . , sm is linearly independent, we see that

∫b

a

ti
(
y
)
t
(
y
)
dy = 0. (2.19)

So

t ⊥ span{s1, s2, . . . , sm, t1, t2, . . . , tm}. (2.20)

This is a contradiction. Hence (2.12) holds, and so does (2.11). Thus, there are bij ∈ R (i =
1, 2, . . . , m, j = 1, 2, . . . , m) such that

ti = bijsj , i = 1, 2, . . . , m, j = 1, 2, . . . , m. (2.21)
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Therefore,

G
(
x + y

)
=

m∑

i=1

si(x)ti
(
y
)
=

m∑

i,j=1

bijsi(x)sj
(
y
)
, for every x, y ∈ [a, b],

G
(
y + x

)
=

m∑

i=1

si
(
y
)
ti(x) =

m∑

i,j=1

bijsi
(
y
)
sj(x), for every x, y ∈ [a, b].

(2.22)

So we have

G
(
x + y

)
=

m∑

i,j=1

bij + bji

2
si(x)sj

(
y
)
, for every x, y ∈ [a, b]. (2.23)

Define

cij :=
bij + bji

2
, i = 1, 2, . . . , m, j = 1, 2, . . . , m. (2.24)

Then

G
(
x + y

)
=

m∑

i,j=1

cijsi(x)sj
(
y
)
, for every x, y ∈ [a, b]. (2.25)

Let S = (s1, s2, . . . , sm), and

C =

⎛

⎜⎜
⎜⎜⎜
⎜
⎝

c11 c12 · · · c1m

c21 c22 · · · c2m

...
...

...
...

cn1 cm1 · · · cmm

⎞

⎟⎟
⎟⎟⎟
⎟
⎠

. (2.26)

Then

G
(
x + y

)
=

m∑

i,j=1

cijsi(x)sj
(
y
)
= S(x)CS

(
y
)T
, for every x, y ∈ [a, b]. (2.27)

Since C is a symmetric matrix, we have

C = QΛQT. (2.28)
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for an orthogonal matrix Q, and a diagonal matrix

Λ =

⎛

⎜⎜⎜
⎝

λ1

. . .

λm

⎞

⎟⎟⎟
⎠

. (2.29)

Write

W = (r1, r2, . . . , rm) = (s1, s2, . . . , sm)Q. (2.30)

Then

G
(
x + y

)
= S(x)CS

(
y
)T = W(x)ΛW

(
y
)T
, for every x, y ∈ [a, b]. (2.31)

So, for all x, y ∈ [a, b],

G
(
x + y

)
= (r1(x) · · · rm(x))

⎛

⎜⎜⎜
⎝

λ1

. . .

λm

⎞

⎟⎟⎟
⎠

⎛

⎜⎜⎜
⎝

r1
(
y
)

...

rm
(
y
)

⎞

⎟⎟⎟
⎠

. (2.32)

Without loss the generalization, we can assume that

λ1, λ2, . . . , λm /= 0. (2.33)

Thus, for all x, y ∈ [a, b],

∂G
(
x + y

)

∂x
=
(
r1(x) · · · r ′m(x)

)

⎛

⎜⎜⎜
⎝

λ1

. . .

λm

⎞

⎟⎟⎟
⎠

⎛

⎜⎜⎜
⎝

r1
(
y
)

...

rm
(
y
)

⎞

⎟⎟⎟
⎠

. (2.34)

By the similar arguments as above, we can prove

span
{
r1, . . . , rm, r

′
1, . . . , r

′
m

}
= span{r1, . . . , rm}. (2.35)

So there is a matrix A satisfying

(
r ′1 · · · r ′m

)
= (r1 . . . rm)A. (2.36)
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Thus,

G′(x + y
)
=
∂G

(
x + y

)

∂x
= R(x)AΛR

(
y
)T
. (2.37)

By mathematical induction we obtain

G(i)(x + y
)
= R(x)AiΛR

(
y
)T
, ∀i = 0, 1, . . . (2.38)

So G ∈ C∞[2a, 2b].
Let

b0 + b1λ + · · · + bmλ
m (2.39)

be the annihilation polynomial of A. Then

b0G
(
x + y

)
+ b1G

′(x + y
)
+ · · · + bmG

(m)(x + y
)

=
m∑

i=0

biR(x)AiΛR
(
y
)T

= R(x)
m∑

i=0

biA
iΛR

(
y
)

= 0.

(2.40)

Since n ≥ m, we can find an, an−1, . . . , a0 ∈ R such that

anG
(n) + an−1G(n−1) + · · · + a1G

′ + a0G = 0. (2.41)

The proof is then complete.

Theorem 2.2. Let the f-divergence Df be in the section of f-divergence and general Bregman
divergence. Then G(x) = f ′′(ex) satisfies

n∑

i=0

aiG
(i) = 0, (2.42)

for some an, . . . , a0 ∈ R.

Proof. IfDf, D
π
φ
are in the intersection of f-divergence and general Bregmen divergence, then

we have

xf
(y
x

)
n = φ(π(X)) − φ(π(Y)) −

n∑

i=1

∂φ(π(Y))
∂xi

(πi(X) − πi(Y)), ∀x, y ∈ (0,+∞), (2.43)
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where

X = (x, x, . . . , x) ∈ Rn, Y =
(
y, y, . . . , y

) ∈ Rn. (2.44)

Let

∂φ(π(Y))
∂xi

= si
(
y
)
, πi(X) = ti(x). (2.45)

Then

∂2xf
(
y/x

)
n

∂x∂y
=
∂2
[
φ(π(X)) − φ(π(Y)) −∑n

i=1 si
(
y
)(
ti(x) − ti

(
y
))]

∂x∂y
. (2.46)

Hence

y

x2 f
′′
(y
x

)
=

n∑

i=1

s′i
(
y
)
t′i(x). (2.47)

Let

G(x) = f ′′(ex), fi(x) =
s′i(e

x)
ex

, gi(x) = ti
(
e−x

)
e−2x. (2.48)

Then

G
(
x + y

)
=

n∑

i=1

fi(x)gi
(
y
)
. (2.49)

Thus, a modification of Theorem 2.1 implies the conclusion.

Moreover, it is not so hard to deduce the following theorem.

Theorem 2.3. Let a vector f-divergence is are the intersection of vector f-divergence and general
Bregman divergence and π satisfy

π(x) = (π1(x1), . . . , πn(xn)), ∀x ∈ Rn
+, (2.50)

where π1, . . . , πn is strictly monotone twice-continuously differentiable functions. Then the f
divergence is α-divergence or vector α-divergence times a positive constant c.
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