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We focus on a Cauchy problem for impulsive integrodifferential equations involving nonlocal
initial conditions, where the linear part is a generator of a solution operator on a complex
Banach space. A suitable mild solution for the Cauchy problem is introduced. The existence and
uniqueness of mild solutions for the Cauchy problem, under various criterions, are proved. In the
last part of the paper, we construct an example to illustrate the feasibility of our results.

1. Introduction

Let (X, ‖ · ‖) denote a complex Banach space and denote L(X) by the space of all bounded
linear operators from X into X with the usual operator norm ‖ · ‖L(X). Let us recall the
following definitions.

Definition 1.1 (see [1]). Let f : R
+ → R be a continuous function and γ ≥ 1. Then the

expression

(
Iγf
)
(t) =

∫ t

0

(t − s)γ−2

Γ
(
γ − 1

) f(s)ds (1.1)

is called the Riemann-Liouville integral of order γ − 1.

Definition 1.2 (see [2]). Let A be a linear and closed operator with domain D(A) defined on
X. By a solution operator associated with A in X, we mean a family {Qα : R

+ → L(X)} of
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strongly continuous operators satisfying

(1) {λα : Reλ > θ} ⊂ ρ(A) and

(2)

λα−1R(λα,A)x =
∫∞

0
e−λtQα(t)x dt (Reλ > θ, x ∈ X), (1.2)

where θ ∈ R is a constant and R(λ,A) = (λI −A)−1 stands for the resolvent of A. In this case,
we also say that Qα(t) is a solution operator generated by A.

Remark 1.3. It is to be noted that in the border case α = 1, the family Qα(t) corresponds to
a classical strongly continuous semigroup, whereas in the case α = 2 a solution operator
corresponds to the concept of a cosine family. Moreover, according to [3], one can find that
solution operators are a particular case of (a, k)-regularized families and a solution operator
Qα(t) corresponds to a (1, tα−1/Γ(α))-regularized family.

Remark 1.4. Note that solution operator Qα(t) does not satisfy the semigroup property.

Remark 1.5. Various solution operators are usually key tools in dealing with the abstract
Cauchy problems and related issues. For more information, please see, for example, [4–11]
and references therein.

Starting from some speculations of Leibniz and Euler, the fractional calculus (such
as the Riemann-Liouville fractional integral) which allows us to consider integration and
differentiation of any order, not necessarily integer, have been the object of extensive study
for analyzing not only stochastic processes driven by fractional Brownian motion, but also
nonrandom fractional phenomena in physics and optimal control (cf. e.g., [1, 12, 13]). One of
the emerging branches of the study is the Cauchy problems of abstract differential equations
involving fractional integration or fractional differentiation (see, e.g., [1, 14–17]). Let us point
out that many phenomena in engineering, physics, economy, chemistry, aerodynamics, and
electrodynamics of complex medium can be modeled by this class of equations.

In the present paper we study the existence and uniqueness of mild solutions for
the Cauchy problem for impulsive integrodifferential equations involving nonlocal initial
conditions in the form

u′(t) −
∫ t

0

(t − s)α−2

Γ(α − 1)
Au(s)ds = F(t, u(t)), 0 ≤ t ≤ a, t /= ti,

u(0) = H(u),

u
(
t+i
)
= u
(
t−i
)
+ Ti
(
u
(
t−i
))
, i = 1, . . . , n,

(1.3)

where 1 < α < 2, A : D(A) ⊂ X → X is a generator of a solution operator Qα(t), 0 < t1 <
· · · < tn < a, u(t+i ) = limδ→ 0+u(ti + δ) and u(t−i ) = limδ→ 0−u(ti + δ) stand for the right and
left limits of u(t) at t = ti, respectively, and F : [0, a] × X → X, Ti : X → X, i = 1, . . . , n
are appropriate functions to be specified later. As can be seen, the convolution integral in
(1.3) is the Riemann-Liouville fractional integral, and the function H constitutes a nonlocal
condition.
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As usual, the solution t → u(t)with the points of discontinuity at the moments ti (i =
1, . . . , n) follows that u(ti) = u(t−i ), that is, at which it is continuous from the left.

We mention that in recent years, the theory of various integrodifferential equations
in Banach spaces has been studied deeply due to their important values in sciences and
technologies, and many significant results have been established (see, e.g., [2, 18–23] and
references therein).

Interest in impulsive nonlocal Cauchy problems stems mainly from the observation
that on one side, nonlocal initial conditions have better effects in treating physical problems
than the usual ones (see [21, 22, 24–27] and the references therein for more detailed
information about the importance of nonlocal initial conditions in applications); on the other
side, the dynamics of many evolutionary processes from some research fields are subject
to abrupt changes of states at certain moments of time between intervals of continuous
evolution, such changes can be well approximated as being instantaneous changes as state,
that is, in the form of “impulses” (cf. [20, 28] and the references therein). This class of
equations has been the object of extensive study in recent years, see [29–31] and the references
therein for more comments and citations. It is worth mentioning that in [31], Liang et al.
considered the following impulsive nonlocal Cauchy problem

u′(t) = Au(s) + f(t, u(t)), 0 ≤ t ≤ a, t /= ti,

u(0) + g(u) = u0,

u
(
t+i
) − u

(
t−i
)
= Ii(u(ti)), i = 1, . . . , n, 0 < t1 < · · · < tn < a,

(1.4)

where A is the generator of a strongly continuous semigroup in a Banach space and the
existence and uniqueness of mild and classical solutions for the Cauchy problem, under
various criterions, are proved. Also, Wang et al. [32] proved the existence and uniqueness
of mild and classical solutions for the nonlocal Cauchy problem in the form

u′(t) = Au(s) + h(t, u(t)), t > 0,

u(0) +H
(
t1, . . . , tp, u

)
= u0,

(1.5)

where 0 < t1 < · · · < tp−1 < tp < ∞ (p ∈ N),A is aω-almost sectorial operator (not necessarily
densely defined).

In this work, motivated by the above contributions, we shall combine these earlier
work and extend the study to the Cauchy problem (1.3). New existence and uniqueness
results in the case when A is a generator of a solution operator, under various criterions,
are proved. In the last part of paper, we construct an example to illustrate the feasibility of
our results.

2. Preliminaries

Throughout this paper, we takeC([0, a];X) to be the Banach space of allX-valued continuous
functions from [0, a] into X endowed with the uniform norm topology

‖u‖a = sup{‖u(t)‖; t ∈ [0, a]}. (2.1)
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Put

I0 = [0, t1], Ii = (ti, ti+1], i = 1, . . . , n, (2.2)

with t0 = 0, tn+1 = a, and let ui be the restriction of a function u to Ii (i = 0, 1, . . . , n).
Consider the set of functions

PC([0, a];X) = {u : [0, a] −→ X; ui ∈ C(Ii;X), i = 0, 1, . . . , n,

u
(
t+i
)
, u
(
t−i
)
exist, and satisfy u(ti) = u

(
t−i
)
for i = 1, . . . , n

}
,

(2.3)

endowed with the norm

‖u‖PC = max

{

sup
t∈Ii

‖ui(t)‖; i = 0, 1, . . . , n

}

. (2.4)

It is easy to see PC([0, a];X) is a Banach space.
Let 1 < α < 2. It follows from [33] that if A is sectorial of type θ (∈ R), that is, A is a

closed linear operator, and there exist constants ϕ ∈ (0, π/2) and C′ > 0 such that C − {θ + λ :
λ ∈ C, | arg(−λ)| < ϕ} ⊂ ρ(A) and

‖R(λ,A)‖L(X) ≤
C′

|λ − θ| , λ ∈ C − {θ + λ : λ ∈ C,
∣∣arg(−λ)∣∣ < ϕ

}
, (2.5)

then A is a generator of a solution operator Qα(t), which is given by

Qα(t) =
1

2πi

∫

Γ
eλtλα−1(λα −A)−1dλ, (2.6)

provided that 0 ≤ ϕ < (1 − α/2)π , where Γ is a suitable path lying outside the sector {θ + λ :
λ ∈ C, | arg(−λ)| < ϕ}. And Cuesta [18, Theorem 1], has proved that ifA is a sectorial operator
of type θ < 0 and there is a positive constant Cα which depends on C′ such that the estimate

‖Qα(t)‖L(X) ≤
Cα

1 + |θ|tα (2.7)

holds for all t ≥ 0.
We recall that the Laplace transform of a abstract function g ∈ L1(R+, X) is defined by

ĝ(ζ) :=
∫∞

0
e−ζtg(t)dt. (2.8)
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We first treat the following problem:

u′(t) =
∫ t

0

(t − s)α−2

Γ(α − 1)
Au(s)ds + f(t), t > 0, 1 < α < 2,

u(0) = u0.

(2.9)

Formally applying the Laplace transform in (2.9), we obtain

λû(ζ) − u0 = λ1−αAû(ζ) + f̂(λ), (2.10)

which establishes the following result:

û(ζ) = λα−1R(λα,A)u0 + λα−1R(λα,A)f̂(λ). (2.11)

This means that

u(t) = Qα(t)u0 +
∫ t

0
Qα(t − s)f(s)ds. (2.12)

Motivated by the above consideration, we give the following definition.

Definition 2.1. Let 1 < α < 2. A solution u ∈ C([0, a];X) of the integral equation

u(t) = Qα(t)H(u) +
∫ t

0
Qα(t − s)F(s, u(s))ds, t ∈ [0, a], (2.13)

is called a mild solution of the following problem:

u′(t) −
∫ t

0

(t − s)α−2

Γ(α − 1)
Au(s)ds = F(t, u(t)), t ∈ [0, a],

u(0) = H(u),

(2.14)

where Qα is the solution operator generated by A.

We list the following basic assumptions of this paper.

(H1) F : [0, a] × X → X is continuous in t on [0, a] and there exists a constant LF > 0
such that

‖F(t, u1) − F(t, u2)‖ ≤ LF‖u1 − u2‖ (2.15)

for all (t, u1), (t, u2) ∈ [0, a] ×X.
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(H ′
1) F : [0, a] × X → X is continuous and there exists a function ρ(t) ∈ L1([0, a];R+)

such that

‖F(t, u1) − F(t, u2)‖ ≤ ρ(t)‖u1 − u2‖ (2.16)

for all t ∈ [0, a], u1, u2 ∈ X.

(H2) H : PC([0, a];X) → X is completely continuous and there exists a continuous
nondecreasing function Φ : R

+ → R
+ such that for each r > 0,

sup
‖u‖PC≤r

‖H(u)‖ ≤ Φ(r),

lim inf
r→+∞

Φ(r)
r

= η < +∞.

(2.17)

(H ′
2) H : PC([0, a];X) → X is Lipschitz continuous with Lipschitz constant LH .

(H3) For i = 1, . . . , n, Ti : X → X is Lipschitz continuous with Lipschitz constant Li.

(H ′
3) For i = 1, . . . , n, Ti : X → X is completely continuous and there exists a continuous

nondecreasing function Υi : R
+ → R

+ such that for each r > 0,

sup
‖u‖≤r

‖Ti(u)‖ ≤ Υi(r), lim inf
r→+∞

Υi(r)
r

= λi < +∞. (2.18)

The following fixed-point theorem plays a key role in the proof of our main results.

Lemma 2.2 (see [34]). Let Y be a convex, bounded, and closed subset of a Banach space X and let
Ψ : Y → Y be a condensing map. Then, Ψ has a fixed point in Y .

3. Main Results

To set the framework for ourmain existence results, wewill make use of the following lemma.

Lemma 3.1. Let 1 < α < 2. Assume thatA is a sectorial operator of type θ < 0 andQα(t) is a solution
operator generated by A. Suppose in addition that F : [0, a] × X → X is a continuous function. If
u ∈ C([0, a];X) is a mild solution of the Cauchy problem (2.14) in the sense of Definition 2.1, then,
u satisfying the following impulsive integral equation:

u(t) = Φα
i (t)H(u) +

∫ t

ti

Qα(t − s)F(s, u(s))ds

+
∑

1≤j≤i

∫ tj

tj−1
Φα

i,j(t)Qα

(
tj − s

)
F(s, u(s))ds

+
∑

1≤j≤i
Φα

i,j(t)Tj
(
u
(
t−j
))

, t ∈ Ii, i = 0, 1, . . . , n,

(3.1)
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is a mild solution of problem (1.3), where

Φα
i (t) :=

⎧
⎪⎨

⎪⎩

Qα(t) if i = 0,
∏

1≤j≤i
Qα(t − ti)Qα

(
tj − tj−1

)
if i ≥ 1, (3.2)

Φα
i,j(t) :=

⎧
⎪⎨

⎪⎩

Qα(t − ti) if j = i,
∏

j<k≤i
Qα(t − ti)Qα(tk − tk−1) if j < i.

(3.3)

Proof. Assume that u ∈ C([0, a];X) is a mild solution of (2.14) in the sense of Definition 2.1.
Obviously, if t ∈ I0, then one sees from Definition 2.1, that the assertion of theorem remains
true. Thus, the rest proof of the theorem is done under t ∈ Ii (i = 1, . . . , n).

By Definition 2.1, note that

u(t) = Qα(t)H(u) +
∫ t

0
Qα(t − s)F(s, u(s))ds (3.4)

for all t ∈ I0. Taking t = t1, then we get

u(t1) = Qα(t1)H(u) +
∫ t1

0
Qα(t1 − s)F(s, u(s))ds. (3.5)

Hence, it follows form u(t+1 ) = u(t−1 ) + T1(u(t−1 )) that

u
(
t+1
)
= Qα(t1)H(u) +

∫ t1

0
Qα(t1 − s)F(s, u(s))ds + T1

(
u
(
t−1
))
. (3.6)

If t ∈ I1, then combining Definition 2.1 and the result above, we deduce that

u(t) = Qα(t − t1)u
(
t+1
)
+
∫ t

t1

Qα(t − s)F(s, u(s))ds

= Qα(t − t1)Qα(t1)H(u) +Qα(t − t1)T1
(
u
(
t−1
))

+
∫ t1

0
Qα(t − t1)Qα(t1 − s)F(s, u(s))ds

+
∫ t

t1

Qα(t − s)F(s, u(s))ds.

(3.7)

This proves, for the case i = 1, that the conclusion of theorem holds.
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Now taking t = t2 in (3.7), one has

u(t2) = Qα(t2 − t1)Qα(t1)H(u) +Qα(t2 − t1)T1
(
u
(
t−1
))

+
∫ t1

0
Qα(t2 − t1)Qα(t1 − s)F(s, u(s))ds

+
∫ t2

t1

Qα(t2 − s)F(s, u(s))ds,

(3.8)

which implies that

u
(
t+2
)
= Qα(t2 − t1)Qα(t1)H(u) +Qα(t2 − t1)T1

(
u
(
t−1
))

+ T2
(
u
(
t−2
))

+
∫ t1

0
Qα(t2 − t1)Qα(t1 − s)F(s, u(s))ds

+
∫ t2

t1

Qα(t2 − s)F(s, u(s))ds,

(3.9)

provided that u(t+2 ) = u(t−2 ) + T2(u(t−2 )). Then, again making use of Definition 2.1, we get for
all t ∈ I2,

u(t) = Qα(t − t2)u
(
t+2
)
+
∫ t

t2

Qα(t − s)F(s, u(s))ds

= Qα(t − t2)Qα(t2 − t1)Qα(t1)H(u)

+Qα(t − t2)Qα(t2 − t1)T1
(
u
(
t−1
))

+Qα(t − t2)T2
(
u
(
t−2
))

+
∫ t1

0
Qα(t − t2)Qα(t2 − t1)Qα(t1 − s)F(s, u(s))ds

+
∫ t2

t1

Qα(t − t2)Qα(t2 − s)F(s, u(s))ds

+
∫ t

t2

Qα(t − s)F(s, u(s))ds,

= Φα
2(t)H(u) +

∫ t

t2

Qα(t − s)F(s, u(s))ds

+
∑

1≤j≤2

∫ tj

tj−1
Φα

2,j(t)Qα

(
tj − s

)
F(s, u(s))ds

+
∑

1≤j≤2
Φα

2,j(t)Tj
(
u
(
t−j
))

,

(3.10)
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here Φα
2(t) and Φα

2,j(t) are given by (3.2) and (3.3) with i = 2, respectively. A continuation of
the same process shows that for any t ∈ Ii (i = 1, . . . , n), the assertion of theorem holds.

In this work, we adopt the following concept of mild solution for the problem (1.3).

Definition 3.2. Let 1 < α < 2. Assume that A is a sectorial operator of type θ < 0, Qα(t)
is a solution operator generated by A, and Φα

i (t) and Φα
i,j(t) are given by (3.2) and (3.3),

respectively. A solution u ∈ PC([0, a];X) of the integral equation

u(t) = Φα
i (t)H(u) +

∫ t

ti

Qα(t − s)F(s, u(s))ds

+
∑

1≤j≤i

∫ tj

tj−1
Φα

i,j(t)Qα

(
tj − s

)
F(s, u(s))ds

+
∑

1≤j≤i
Φα

i,j(t)Tj
(
u
(
t−j
))

, t ∈ Ii,

(3.11)

here i = 0, 1, . . . , n, is called a mild solution of the Cauchy problem (1.3).

Remark 3.3. Note that if there is no discontinuity, that is, if Ti(u(t−i )) = 0, i = 1, . . . , n, then
Definition 2.1 is equivalent to Definition 3.2.

Now we present and prove our main results.

Theorem 3.4. Let 1 < α < 2. Assume that A is a sectorial operator of type θ < 0 and Qα(t) is
a solution operator generated by A. Suppose in addition that assumptions (H1)–(H3) are fulfilled.
Then the Cauchy problem (1.3) admits at least one mild solution, provided

Cn+1
α η + aCαLF + aCn+1

α LF + Cn
α

∑

1≤j≤n
Lj < 1 if Cα ≥ 1,

Cαη + aCαLF + aC2
αLF + Cα

∑

1≤j≤n
Lj < 1 if Cα < 1.

(3.12)

Proof. Consider the mapping Γα : PC([0, a];X) → PC([0, a];X), which is defined for each
u ∈ PC([0, a];X) by

(Γαu)(t) = Φα
i (t)H(u) +

∫ t

ti

Qα(t − s)F(s, u(s))ds

+
∑

1≤j≤i

∫ tj

tj−1
Φα

i,j(t)Qα

(
tj − s

)
F(s, u(s))ds

+
∑

1≤j≤i
Φα

i,j(t)Tj
(
u
(
t−j
))

, t ∈ Ii, i = 0, 1, . . . , n.

(3.13)

Then it is clear that Γα is well defined.
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To prove the theorem, it is sufficient to prove that Γα has a fixed point in PC([0, a];X).
Put

Wr := {v ∈ PC([0, a];X); ‖v(t)‖ ≤ r, ∀t ∈ [0, a]} (3.14)

for r > 0 as selected below.
We first show that there exists an integer r > 0 such that Γα maps Wr into Wr . For the

case t ∈ I0, by assumption (H1) and the estimate (2.7), a straightforward calculation yields
that

‖(Γαu)(t)‖

≤ ‖Qα(t)H(u)‖ +
∫ t

0
‖Qα(t − s)F(s, u(s))‖ds

≤ ‖Qα(t)‖L(X)‖H(u)‖ +
∫ t

0
‖Qα(t − s)‖L(X)‖F(s, 0)‖ds

+
∫ t

0
‖Qα(t − s)‖L(X)‖F(s, u(s)) − F(s, 0)‖ds

≤ Cα‖H(u)‖ + CαLF

∫ t

0
‖u(s)‖ds + t1Cα sup

s∈I0
‖F(s, 0)‖.

(3.15)

We claim that there exists an integer r > 0 such that ‖(Γαu)(t)‖ ≤ r provided that u ∈ Wr . In
fact, if this is not the case, then for each N > 0, there would exist u ∈ WN and tN ∈ I0 such
that ‖(ΓαuN)(tN)‖ > N. Thus, by (3.15) and assumption (H2) we obtain

N < ‖(ΓαuN)(tN)‖ ≤ CαΦ(N) + t1NCαLF + t1Cα sup
s∈I0

‖F(s, 0)‖. (3.16)

Dividing on both sides by N and taking the lower limit as N → +∞, we get

Cαη + t1CαLF ≥ 1, (3.17)

which contradicts (3.12).
Since the interval [0, a] is divided into finite subintervals by ti, i = 1, . . . , n, we only

need to prove that for a fixed i (∈ {1, . . . , n}),

(
Γαi u
)
(t) := (Γαu)(t)|t∈Ii (3.18)

maps Wr into Wr , here r > 0 is a positive number yet to be determined, as the cases for other
subintervals are the same.
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From the Hypotheses (H1)–(H3), we infer for any u ∈ Wr ,

∥
∥(Γαi u

)
(t)
∥
∥ ≤ ∥∥Φα

i (t)H(u)
∥
∥ +

∑

1≤j≤i

∫ tj

tj−1

∥
∥
∥Φα

i,j(t)Qα

(
tj − s

)
F(s, u(s))

∥
∥
∥ds

+
∫ t

ti

‖Qα(t − s)F(s, u(s))‖ds +
∑

1≤j≤i

∥
∥
∥Φα

i,j(t)Tj
(
u
(
t−j
))∥∥
∥

≤ ∥∥Φα
i (t)
∥
∥
L(X)‖H(u)‖ +

∫ t

ti

‖Qα(t − s)‖L(X)‖F(s, 0)‖ds

+
∫ t

ti

‖Qα(t − s)‖L(X)‖F(s, u(s)) − F(s, 0)‖ds

+
∑

1≤j≤i

∫ tj

tj−1

∥
∥
∥Φα

i,j(t)Qα

(
tj − s

) ∥∥
∥
L(X)

‖F(s, u(s)) − F(s, 0)‖ds

+
∑

1≤j≤i

∫ tj

tj−1

∥∥∥Φα
i,j(t)Qα

(
tj − s

)∥∥∥
L(X)

‖F(s, 0)‖ds

+
∑

1≤j≤i

∥∥∥Φα
i,j(t)Tj(0)

∥∥∥ +
∑

1≤j≤i

∥∥∥Φα
i,j(t)

∥∥∥
L(X)

∥∥∥Tj
(
u
(
t−j
))

− Tj(0)
∥∥∥

≤ Ci+1
α Φ(r) + (t − ti)Cαsup

τ∈Ii
‖F(τ, 0)‖ + (t − ti)CαLFr

+ tiC
i+1
α LFr + Ci

α

∑

1≤j≤i

∥∥Tj(0)
∥∥ + Ci

αr
∑

1≤j≤i
Lj

+ Ci+1
α

∑

1≤j≤i

(
tj − tj−1

)
sup

τ∈[tj−1,tj]
‖F(τ, 0)‖.

(3.19)

Now, an application of the same idea with above discussion yields that there exists a r > 0
such that ‖(Γαi u)(t)‖ ≤ r. Indeed, if this is not the case, then we would deduce that

Ci+1
α η + (t − ti)CαLF + tiC

i+1
α LF + Ci

α

∑

1≤j≤i
Lj ≥ 1. (3.20)

This is a contradiction to (3.12). Thus, we prove that there exists an integer r > 0 such that
Γα(Wr) ⊂ Wr .

For i = 0, 1, . . . , n, we decompose the mapping Γα = Γα1 + Γα2 as follows:

(
Γα1u
)
(t) = Φα

i (t)H(u), t ∈ Ii,

(
Γα2u
)
(t) =

∫ t

ti

Qα(t − s)F(s, u(s))ds +
∑

1≤j≤i
Φα

i,j(t)Tj
(
u
(
t−j
))

+
∑

1≤j≤i

∫ tj

tj−1
Φα

i,j(t)Qα

(
tj − s

)
F(s, u(s))ds

:=
∫ t

ti

Qα(t − s)F(s, u(s))ds +
(
ΓαTu
)
(t) +

(
ΓαInu

)
(t), t ∈ Ii.

(3.21)
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Next, we show that for each i (i = 0, 1, . . . , n), Γα1 is completely continuous, while
(Γα2u)(t)|t∈Ii is a contraction. In fact, it follows from assumption (H2) and the estimate (2.7)
that Γα1 |Ii , i = 0, 1, . . . , n is completely continuous. Note also that

(
ΓαInu

)
(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, t ∈ I0,

∫ t1

0
Qα(t − t1)Qα(t1 − s)F(s, u(s))ds, t ∈ I1,

· · ·
∑

1≤j≤n

∫ tj

tj−1
Φα

n,j(t)Qα

(
tj − s

)
F(s, u(s))ds, t ∈ In,

(
ΓαTu
)
(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, t ∈ I0,

Qα(t − t1)T1
(
u
(
t−1
))
, t ∈ I1,

· · ·
∑

1≤j≤n
Φα

n,j(t)Tj
(
u
(
t−j
))

, t ∈ In.

(3.22)

For the case i = 0, it is clear that the conclusion holds in view of (3.12). For t ∈ Ii (i = 1, . . . , n),
by (H1), (H3) and (2.7)we get

∥∥(Γα2u
)
(t) − (Γα2w

)
(t)
∥∥

≤
∫ t

ti

‖Qα(t − s)(F(s, u(s)) − F(s,w(s)))‖ds

+
∑

1≤j≤i
Φα

i,j(t)
(
Tj
(
u
(
t−j
))

− Tj
(
w
(
t−j
)))

+
∑

1≤j≤i

∫ tj

tj−1

∥∥∥Φα
i,j(t)Qα

(
tj − s

)
(F(s, u(s)) − F(s,w(s)))

∥∥∥ds

≤ CαLF

∫ t

ti

‖u(s) −w(s)‖ds + Ci
α

∑

1≤j≤i
Lj

∥∥u
(
tj
) −w

(
tj
)∥∥

+ Ci+1
α LF

∑

1≤j≤i

∫ tj

tj−1
‖u(s) −w(s)‖ds

≤ (t − ti)CαLF‖u(s) −w(s)‖PC + tiC
i+1
α LF‖u(s) −w(s)‖PC

+ Ci
α‖u(s) −w(s)‖PC

∑

1≤j≤i
Lj

≤
⎛

⎝(t − ti)CαLF + tiC
i+1
α LF + Ci

α

∑

1≤j≤i
Lj

⎞

⎠‖u(s) −w(s)‖PC,

(3.23)
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provided that u,w ∈ Wr . Hence, we deduce that

∥
∥Γα2u − Γα2w

∥
∥
PC ≤

(

(t − ti)CαLF + tiC
i+1
α LF + Ci

α

∑

1≤j≤i
Lj

)

‖u −w‖PC, (3.24)

which means that Γα2 is a contraction due to (3.12).
Thus, Γα = Γα1 + Γα2 is a condensing map on Wr . Then, it follows from Lemma 2.2 that

the Cauchy problem (1.3) admits at least one mild solution. This completes the proof.

Theorem 3.5. Let 1 < α < 2. Assume that A is a sectorial operator of type θ < 0, Qα(t) is a solution
operator generated byA, and the Hypotheses (H1), (H2), (H ′

3) are satisfied. Then the Cauchy problem
(1.3) admits at least one mild solution, provided

Cn+1
α η + aCαLF + aCn+1

α LF + Cn
α

∑

1≤j≤n
λj < 1 if Cα ≥ 1,

Cαη + aCαLF + aC2
αLF + Cα

∑

1≤j≤n
λj < 1 if Cα < 1.

(3.25)

Proof. Assume that the map Γα : PC([0, a];X) → PC([0, a];X) and the setWr are defined the
same as in Theorem 3.4. First we claim that there exists an positive number r > 0 such that
Γα(Wr) ⊂ Wr . For the case t ∈ I0, the proof of the assertion follows from Theorem 3.4. For the
case t ∈ Ii (i = 1, . . . , n), if the conclusion is not true, then for each positive integer r, there
would exist ur(·) ∈ Wr and tr ∈ Ii such that ‖(Γαi ur)(tr)‖ > r with (Γαi u)(t): = (Γαu)(t)|t∈Ii ,
where tr denotes t depending upon r. Thus, by assumptions (H1), (H2), (H ′

3), we have

r <
∥∥(Γαi ur

)
(tr)
∥∥ ≤ ∥∥Φα

i (tr)H(ur)
∥∥

+
∫ tr

ti

‖Qα(tr − s)F(s, ur(s))‖ds

+
∑

1≤j≤i

∫ tj

tj−1
‖Φα

i,j(tr)Qα

(
tj − s

)
F(s, ur(s))‖ds

+
∑

1≤j≤i
‖Φα

i,j(tr)Tj
(
ur

(
t−j
))

‖

≤ Ci+1
α Φ(r) + (tr − ti)Cα sup

τ∈Ii
‖F(τ, θ)‖ + (tr − ti)CαLFr

+ tiC
i+1
α LFr + Ci+1

α

∑

1≤j≤i

(
tj − tj−1

)
sup

τ∈[tj−1,tj ]
‖F(τ, θ)‖

+ Ci
α

∑

1≤j≤i
Υj(r).

(3.26)



14 Advances in Difference Equations

Dividing on both sides by r and taking the lower limit as r → +∞, we have

Ci+1
α η + aCαLF + aCi+1

α LF + Ci
α

∑

1≤j≤i
λj ≥ 1. (3.27)

This is a contradiction to (3.25).
For i = 0, 1, . . . , n, decompose the mapping Γα = Γα1 + Γα2 as follows:

(
Γα1u
)
(t) = Φα

i (t)H(u) +
∑

1≤j≤i
Φα

i,j(t)Tj
(
u
(
t−j
))

, t ∈ Ii

(
Γα2u
)
(t) =

∫ t

ti

Qα(t − s)F(s, u(s))ds +
∑

1≤j≤i

∫ tj

tj−1
Φα

i,j(t)Qα

(
tj − s

)
F(s, u(s))ds.

(3.28)

Next, we will verify that for each t ∈ Ii (i = 0, 1, . . . , n), Γα1 is a completely continuous
operator, while, Γα2 is a contraction. Obviously, by assumptions (H2), (H ′

3), it easily seen that
Γα1 is a completely continuous operator. Moreover, by a similar proof with that in Theorem 3.4,
we can prove that Γα2 is a contraction.

As a consequence of the above discussion and Lemma 2.2, we can conclude that the
problem (1.3) admits at least one mild solution. The proof is completed.

Theorem 3.6. Let 1 < α < 2. Assume that A is a sectorial operator of type θ < 0 and Qα(t) is a
solution operator generated by A. Then, under assumptions (H ′

1), (H
′
2), (H3), the Cauchy problem

(1.3) has a unique mild solution, provided

Cn+1
α LH +

(
Cα + Cn+1

α

)∫a

0
ρ(s)ds + Cn

α

∑

1≤j≤n
Lj < 1 if Cα ≥ 1,

CαLH +
(
Cα + C2

α

)∫a

0
ρ(s)ds + Cα

∑

1≤j≤n
Lj < 1 if Cα < 1.

(3.29)

Proof. Assume that the map Γα : PC([0, a];X) → PC([0, a];X) is defined the same as in
Theorem 3.4. Now, we prove that Γα is a contraction. Take any u,w ∈ PC([0, a];X). For the
case t ∈ I0, the conclusion follows from assumptions (H ′

1), (H
′
2), and (3.29). For t ∈ Ii (i =

1, . . . , n), a direct calculation yields

‖(Γαu)(t) − (Γαw)(t)‖
≤ ∥∥Φα

i (t)(H(u) −H(w))
∥∥

+
∫ t

ti

‖Qα(t − s)(F(s, u(s)) − F(s,w(s)))‖ds

+
∑

1≤j≤i

∫ tj

tj−1

∥∥∥Φα
i,j(t)Qα

(
tj − s

)
(F(s, u(s)) − F(s,w(s)))

∥∥∥ds

+
∑

1≤j≤i

∥∥∥Φα
i,j(t)

(
Tj
(
u
(
t−j
))

− Tj
(
w
(
t−j
)))∥∥∥
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≤ Ci+1
α LH‖u −w‖PC + Cα‖u −w‖PC

∫ t

ti

ρ(s)ds

+ Ci+1
α ‖u −w‖PC

∫ t

0
ρ(s)ds + Ci

α

∑

1≤j≤i
Lj

∥
∥
∥u
(
t−j
)
−w
(
t−j
)∥∥
∥

≤
⎛

⎝Ci+1
α LH + Cα

∫ t

ti

ρ(s)ds + Ci+1
α

∫ t

0
ρ(s)ds + Ci

α

∑

1≤j≤i
Lj

⎞

⎠‖u −w‖PC

≤
⎛

⎝Ci+1
α LH +

(
Cα + Ci+1

α

)∫a

0
ρ(s)ds + Ci

α

∑

1≤j≤i
Lj

⎞

⎠‖u −w‖PC.

(3.30)

in view of assumptions (H ′
1), (H

′
2), (H3). Hence, we deduce that

‖Γαu − Γαw‖PC

≤
⎛

⎝Ci+1
α LH +

(
Cα + Ci+1

α

)∫a

0
ρ(s)ds + Ci

α

∑

1≤j≤i
Lj

⎞

⎠‖u −w‖PC,
(3.31)

which implies Γα is a contractivemapping on PC([0, a];X) due to (3.29). Thus Γα has a unique
fixed point u ∈ PC([0, a];X), this means that u is a mild solution of (1.3). This completes the
proof of the theorem.

4. Example

In this section, we present an example to illustrate the abstract results of this paper, which do
not aim at generality but indicate how our theorems can be applied to concrete problems.

Consider the BVP of partial differential equation in the form

∂u(t, x)
∂t

− 1
Γ(α − 1)

∫ t

0
(t − s)α−2Lxu(s, x)ds =

|u(t, x)|
C(1 + |u(t, x)|) , 0 ≤ t ≤ a, t /= ti, 0 ≤ x ≤ π,

u(t, 0) = u(t, π) = 0, 0 ≤ t ≤ a,

u(0, x) =
1
C

∣∣u
(
t′0, x
)∣∣, 0 ≤ x ≤ π,

u
(
t+i , x

)
= u
(
t−i , x

)
+

|u(ti, x)|
(i + nC) + ti|u(ti, x)| , i = 1, . . . , n,

(4.1)
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where 1 < α < 2, t′0 is a constant in (0, a), C > 0 is a constant yet to be determined, Lx stands
for the operator with respect to the spatial variable x which is given by

Lx =
∂2

∂x2 − v (v > 0). (4.2)

In what follows we consider the space X = L2[0, π] with norm ‖ · ‖2 and the operator A :=
Lx : D(A) ⊂ X → X with domain

{
u ∈ X; u, u′ are absolutely continuous, u′′ ∈ X, and u(0) = u(π) = 0

}
. (4.3)

Clearly A is densely defined in X and is sectorial of type θ = −ν < 0. Hence A is
a generator of a solution operator satisfying the estimate (2.7) on X. Here, without lost of
generality, we take Cα ≥ 1.

Set

u(t)(x) = u(t, x),

F(t, u(t))(x) =
|u(t, x)|

C(1 + |u(t, x)|) ,

H(u)(x) =
1
C

∣∣u
(
t′0, x
)∣∣,

Ti(u(ti))(x) =
|u(ti, x)|

(i + nC) + ti|u(ti, x)| , i = 1, . . . , n.

(4.4)

Then we have

‖F(t, u(t)) − F(t, v(t))‖2 ≤
1
C
‖u(t) − v(t)‖2, 0 ≤ t ≤ a,

‖H(u) −H(v)‖2 ≤
1
C
‖u − v‖2,

‖Ti(u) − Ti(v)‖2 ≤
1

i + nC
‖u − v‖2, i = 1, . . . , n.

(4.5)

Note that the problem (4.1) also can be reformulated as the abstract problem (1.3), and
due to (4.5), it is not difficult to see that assumptions (H ′

1), (H
′
2), and (H3) hold with

ρ(t) =
1
C

(t ∈ [0, a]), LH =
1
C
, Li =

1
i + nC

, i = 1, . . . , n, (4.6)

which implies that one can choose large enough C such that the first inequality of (3.29)
is satisfied. Hence, according to Theorem 3.6, the Cauchy problem (4.1) has a unique mild
solution.
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