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We establish a composition theorem of Stepanov almost periodic functions, and, with its help, a
composition theorem of Stepanov-like pseudo almost periodic functions is obtained. In addition,
we apply our composition theorem to study the existence and uniqueness of pseudo-almost
periodic solutions to a class of abstract semilinear evolution equation in a Banach space. Our results
complement a recent work due to Diagana (2008).

1. Introduction

Recently, in [1, 2], Diagana introduced the concept of Stepanov-like pseudo-almost
periodicity, which is a generalization of the classical notion of pseudo-almost periodicity, and
established some properties for Stepanov-like pseudo-almost periodic functions. Moreover,
Diagana studied the existence of pseudo-almost periodic solutions to the abstract semilinear
evolution equation u′(t) = A(t)u(t) + f(t, u(t)). The existence theorems obtained in [1, 2] are
interesting since f(·, u) is only Stepanov-like pseudo-almost periodic, which is different from
earlier works. In addition, Diagana et al. [3] introduced and studied Stepanov-like weighted
pseudo-almost periodic functions and their applications to abstract evolution equations.

On the other hand, due to the work of [4] by N’Guérékata and Pankov, Stepanov-like
almost automorphic problems have widely been investigated. We refer the reader to [5–11]
for some recent developments on this topic.

Since Stepanov-like almost-periodic (almost automorphic) type functions are not
necessarily continuous, the study of such functions will be more difficult considering
complexity and more interesting in terms of applications.
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Very recently, in [12], Li and Zhang obtained a new composition theorem of Stepanov-
like pseudo-almost periodic functions; the authors in [13] established a composition theorem
of vector-valued Stepanov almost-periodic functions. Motivated by [2, 12, 13], in this paper,
we will make further study on the composition theorems of Stepanov almost-periodic
functions and Stepanov-like pseudo-almost periodic functions. As one will see, our main
results extend and complement some results in [2, 13].

Throughout this paper, let R be the set of real numbers, let mesE be the Lebesgue
measure for any subset E ⊂ R, and X,Y be two arbitrary real Banach spaces. Moreover, we
assume that 1 ≤ p < +∞ if there is no special statement. First, let us recall some definitions and
basic results of almost periodic functions, Stepanov almost periodic functions, pseudo-almost
periodic functions, and Stepanov-like pseudo-almost periodic functions (for more details, see
[2, 14, 15]).

Definition 1.1. A set E ⊂ R is called relatively dense if there exists a number l > 0 such that

(a, a + l) ∩ E/= ∅, ∀a ∈ R. (1.1)

Definition 1.2. A continuous function f : R → X is called almost periodic if for each ε > 0
there exists a relatively dense set P(ε, f) ⊂ R such that

sup
t∈R

∥
∥f(t + τ) − f(t)

∥
∥ < ε, ∀τ ∈ P

(

ε, f
)

. (1.2)

We denote the set of all such functions by AP(R, X) or AP(X).

Definition 1.3. A continuous function f : R × X → Y is called almost periodic in t uniformly
for x ∈ X if, for each ε > 0 and each compact subset K ⊂ X, there exists a relatively dense set
P(ε, f,K) ⊂ R

sup
t∈R

∥
∥f(t + τ, x) − f(t, x)

∥
∥ < ε, ∀τ ∈ P

(

ε, f,K
)

, ∀x ∈ K. (1.3)

We denote by AP(R ×X,Y ) the set of all such functions.

Definition 1.4. The Bochner transform fb(t, s), t ∈ R, s ∈ [0, 1], of a function f(t) on R, with
values in X, is defined by

fb(t, s) := f(t + s). (1.4)

Definition 1.5. The space BSp(X) of all Stepanov bounded functions, with the exponent p,
consists of all measurable functions f on R with values in X such that

‖f‖Sp := sup
t∈R

(∫ t+1

t

‖f(τ)‖p dτ

)1/p

< +∞ (1.5)

It is obvious that Lp(R;X) ⊂ BSp(X) ⊂ L
p

loc(R;X) and BSp(X) ⊂ BSq(X) whenever
p ≥ q ≥ 1.
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Definition 1.6. A function f ∈ BSp(X) is called Stepanov almost periodic if fb ∈
AP(Lp(0, 1;X)); that is, for all ε > 0, there exists a relatively dense set P(ε, f) ⊂ R such
that

sup
t∈R

(∫1

0
‖f(t + s + τ) − f(t + s)‖pds

)1/p

< ε, ∀τ ∈ P
(

ε, f
)

. (1.6)

We denote the set of all such functions by APSp(R, X) or APSp(X).

Remark 1.7. It is clear that AP(X) ⊂ APSp(X) ⊂ APSq(X) for p ≥ q ≥ 1.

Definition 1.8. A function f : R × X → Y, (t, u) → f(t, u) with f(·, u) ∈ BSp(Y ), for each
u ∈ X, is called Stepanov almost periodic in t ∈ R uniformly for u ∈ X if, for each ε > 0 and
each compact set K ⊂ X, there exists a relatively dense set P(ε, f,K) ⊂ R such that

sup
t∈R

(∫1

0

∥
∥f(t + s + τ, u) − f(t + s, u)

∥
∥
p
ds

)1/p

< ε, (1.7)

for each τ ∈ P(ε, f,K) and each u ∈ K. We denote by APSp(R × X,Y ) the set of all such
functions.

It is also easy to show that APSp(R ×X,Y ) ⊂ APSq(R ×X,Y ) for p ≥ q ≥ 1.
Throughout the rest of this paper, let Cb(R, X) (resp., Cb(R × X,Y )) be the space of

bounded continuous (resp., jointly bounded continuous) functions with supremum norm,
and

PAP0(R, X) =

{

ϕ ∈ Cb(R, X) : lim
T →+∞

1
2T

∫T

−T

∥
∥ϕ(t)

∥
∥dt = 0

}

. (1.8)

We also denote by PAP0(R ×X,Y ) the space of all functions ϕ ∈ Cb(R ×X,Y ) such that

lim
T →+∞

1
2T

∫T

−T

∥
∥ϕ(t, x)

∥
∥dt = 0 (1.9)

uniformly for x in any compact set K ⊂ X.

Definition 1.9. A function f ∈ Cb(R, X) (Cb(R ×X,Y )) is called pseudo-almost periodic if

f = g + ϕ (1.10)

with g ∈ AP(X)(AP(R × X,Y )) and ϕ ∈ PAP0(R, X)(PAP0(R × X,Y )). We denote by
PAP(X)(PAP(R ×X,Y )) the set of all such functions.

It is well-known that PAP(X) is a closed subspace of Cb(R, X), and thus PAP(X) is a
Banach space under the supremum norm.
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Definition 1.10. A function f ∈ BSp(X) is called Stepanov-like pseudo-almost periodic if it
can be decomposed as f = g + h with gb ∈ AP(R, Lp(0, 1;X)) and hb ∈ PAP0(R, Lp(0, 1;X)).
We denote the set of all such functions by PAPSp(R, X) or PAPSp(X).

It follows from [2] that PAP(X) ⊂ PAPSp(X) for all 1 ≤ p < +∞.

Definition 1.11. A function F : R × X → Y, (t, u) → f(t, u) with f(·, u) ∈ BSp(Y ), for each
u ∈ X, is called Stepanov-like pseud-almost periodic in t ∈ R uniformly for u ∈ X if it can be
decomposed as F = G+H withGb ∈ AP(R×X,Lp(0, 1;Y )) andHb ∈ PAP0(R×X,Lp(0, 1;Y )).
We denote by PAPSp(R ×X,Y ) the set of all such functions.

Next, let us recall some notations about evolution family and exponential dichotomy.
For more details, we refer the reader to [16].

Definition 1.12. A set {U(t, s) : t ≥ s, t, s ∈ R} of bounded linear operator on X is called an
evolution family if

(a) U(s, s) = I, U(t, s) = U(t, r)U(r, s) for t ≥ r ≥ s and t, r, s ∈ R,

(b) {(τ, σ) ∈ R
2 : τ ≥ σ} � (t, s) → U(t, s) is strongly continuous.

Definition 1.13. An evolution family U(t, s) is called hyperbolic (or has exponential
dichotomy) if there are projections P(t), t ∈ R, being uniformly bounded and strongly
continuous in t, and constants M, ω > 0 such that

(a) U(t, s)P(s) = P(t)U(t, s) for all t ≥ s,

(b) the restriction UQ(t, s) : Q(s)X → Q(t)X is invertible for all t ≥ s (and we set
UQ(s, t) = UQ(t, s)

−1),

(c) ‖U(t, s)P(s)‖ ≤ Me−ω(t−s) and ‖UQ(s, t)Q(t)‖ ≤ Me−ω(t−s) for all t ≥ s,

where Q := I − P . We call that

Γ(t, s) :=

⎧

⎨

⎩

U(t, s)P(s), t ≥ s, t, s ∈ R,

−UQ(t, s)Q(s), t < s, t, s ∈ R,
(1.11)

is the Green’s function corresponding to U(t, s) and P(·).

Remark 1.14. Exponential dichotomy is a classical concept in the study of long-term behaviour
of evolution equations; see, for example, [16]. It is easy to see that

∥
∥Γ(t, s)

∥
∥ ≤
⎧

⎨

⎩

Me−ω(t−s), t ≥ s, t, s ∈ R,

Me−ω(s−t), t < s, t, s ∈ R.
(1.12)

2. Main Results

Throughout the rest of this paper, for r ≥ 1, we denote by Lr(R × X,X) the set of all the
functions f : R ×X → X satisfying that there exists a function Lf ∈ BSr(R) such that

∥
∥f(t, u) − f(t, v)

∥
∥ ≤ Lf(t)

∥
∥u − v

∥
∥, ∀t ∈ R, ∀u, v ∈ X, (2.1)
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and, for any compact set K ⊂ X, we denote by APS
p

K(R × X,Y ) the set of all the functions
f ∈ APSp(R ×X,Y ) such that (1.7) is replaced by

sup
t∈R

[∫1

0

(

sup
u∈K

∥
∥f(t + s + τ, u) − f(t + s, u)

∥
∥

)p

ds

]1/p

< ε. (2.2)

In addition, we denote by ‖ · ‖p the norm of Lp(0, 1;X) and Lp(0, 1;R).

Lemma 2.1. Let p ≥ 1, K ⊂ X be compact, and f ∈ APSp(R × X,X)
⋂Lp(R × X,X). Then

f ∈ APS
p

K(R ×X,X).

Proof. For all ε > 0, there exist x1, . . . , xk ∈ K such that

K ⊂
k⋃

i=1

B(xi, ε). (2.3)

Since f ∈ APSp(R × X,X), for the above ε > 0, there exists a relatively dense set P(ε) ⊂ R

such that

∥
∥f(t + τ + ·, u) − f(t + ·, u)∥∥

p
<

ε

k
, (2.4)

for all τ ∈ P(ε), t ∈ R, and u ∈ K. On the other hand, since f ∈ Lp(R × X,X), there exists a
function Lf ∈ BSp(R) such that (2.1) holds.

Fix t ∈ R, τ ∈ P(ε). For each u ∈ K, there exists i(u) ∈ {1, 2, . . . , k} such that ‖u−xi(u)‖ <
ε. Thus, we have

∥
∥f(t + s + τ, u) − f(t + s, u)

∥
∥

≤ Lf(t + s + τ)ε +
∥
∥f
(

t + s + τ, xi(u)
) − f

(

t + s, xi(u)
)∥
∥ + Lf(t + s)ε,

(2.5)

for each u ∈ K and s ∈ [0, 1], which gives that

sup
u∈K

∥
∥f(t + s + τ, u) − f(t + s, u)

∥
∥

≤ [Lf(t + s + τ) + Lf(t + s)
]

ε +
k∑

i=1

∥
∥f(t + s + τ, xi) − f(t + s, xi)

∥
∥, ∀s ∈ [0, 1].

(2.6)
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Now, by Minkowski’s inequality and (2.4), we get

[∫1

0

(

sup
u∈K

∥
∥f(t + s + τ, u) − f(t + s, u)

∥
∥

)p

ds

]1/p

≤
[∫1

0
L
p

f(t + s + τ)ds

]1/p

· ε +
[∫1

0
L
p

f(t + s)ds

]1/p

· ε

+
k∑

i=1

[∫1

0

∥
∥f(t + s + τ, xi) − f(t + s, xi)

∥
∥
p
ds

]1/p

≤
(

2
∥
∥Lf

∥
∥
Sp + 1

)

ε,

(2.7)

which means that f ∈ APS
p

K(R ×X,X).

Theorem 2.2. Assume that the following conditions hold:

(a) f ∈ APSp(R ×X,X) with p > 1, and f ∈ Lr(R ×X,X) with r ≥ max{p, p/(p − 1)}.
(b) x ∈ APSp(X), and there exists a set E ⊂ R withmesE = 0 such that

K := {x(t) : t ∈ R \ E} (2.8)

is compact in X.
Then there exists q ∈ [1, p) such that f(·, x(·)) ∈ APSq(X).

Proof. Since r ≥ p/(p − 1), there exists q ∈ [1, p) such that r = pq/(p − q). Let

p′ =
p

p − q
, q′ =

p

q
. (2.9)

Then p′, q′ > 1 and 1/p′ + 1/q′ = 1. On the other hand, since f ∈ Lr(R × X,X), there is a
function Lf ∈ BSr(R) such that (2.1) holds.

It is easy to see that f(·, x(·)) is measurable. By using (2.1), for each t ∈ R, we have

(∫ t+1

t

‖f(s, x(s))‖qds
)1/q

≤
(∫ t+1

t

∥
∥f(s, x(s)) − f(s, 0)

∥
∥
q
ds

)1/q

+
∥
∥f(·, 0)∥∥

Sq

≤
(∫ t+1

t

L
q

f(s)
∥
∥x(s)

∥
∥
q
ds

)1/q

+
∥
∥f(·, 0)∥∥

Sq

≤
(∫ t+1

t

Lr
f(s)ds

)1/r

·
(∫ t+1

t

∥
∥x(s)

∥
∥
p
dt

)1/p

+
∥
∥f(·, 0)∥∥

Sq

≤ ∥∥Lf

∥
∥
Sr · ‖x‖Sp + ‖f(·, 0)‖Sq < +∞.

(2.10)

Thus, f(·, x(·)) ∈ BSq(X).
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Next, let us show that f(·, x(·)) ∈ APSq(X). By Lemma 2.1, f ∈ APS
p

K(R × X,X). In
addition, we have x ∈ APSp(X). Thus, for all ε > 0, there exists a relatively dense set P(ε) ⊂ R

such that

[∫1

0

(

sup
u∈K

∥
∥f(t + s + τ, u) − f(t + s, u)

∥
∥

)p

ds

]1/p

< ε,

‖x(t + τ + ·) − x(t + ·)‖p < ε

(2.11)

for all τ ∈ P(ε) and t ∈ R. By using (2.11), we deduce that

(∫1

0

∥
∥f(t + s + τ, x(t + s + τ)) − f(t + s, x(t + s))

∥
∥
q

)1/q

≤
(∫1

0
L
q

f(t + s + τ)
∥
∥x(t + s + τ) − x(t + s)

∥
∥
q

)1/q

+

(∫1

0

∥
∥f(t + s + τ, x(t + s)) − f(t + s, x(t + s))

∥
∥
q

)1/q

≤
(∫1

0
Lr
f(t + s + τ)dt

)1/r

·
(∫1

0

∥
∥x(t + s + τ) − x(t + s)

∥
∥
p
dt

)1/p

+

(∫1

0
‖f(t + s + τ, x(t + s)) − f(t + s, x(t + s))‖p

)1/p

≤ ‖Lf‖Sr · ‖x(t + τ + ·) − x(t + ·)‖p +
[∫1

0

(

sup
u∈K

∥
∥f(t + s + τ, u) − f(t + s, u)

∥
∥

)p

ds

]1/p

≤
(

‖Lf‖Sr + 1
)

ε

(2.12)

for all τ ∈ P(ε) and t ∈ R. Thus, f(·, x(·)) ∈ APSq(X).

Lemma 2.3. Let K ⊂ X be compact, f ∈ Lp(R × X,X), and fb ∈ PAP0(R × X,Lp(0, 1;X)). Then
f̃ ∈ PAP0(R,R), where

f̃(t) =

∥
∥
∥
∥
∥
sup
u∈K

∥
∥f(t + ·, u)∥∥

∥
∥
∥
∥
∥
p

, t ∈ R. (2.13)

Proof. Noticing that K is a compact set, for all ε > 0, there exist x1, . . . , xk ∈ K such that

K ⊂
k⋃

i=1

B(xi, ε). (2.14)
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Combining this with f ∈ Lp(R ×X,X), for all u ∈ K, there exists xi such that

∥
∥f(t + s, u)

∥
∥ ≤ ∥∥f(t + s, u) − f(t + s, xi)

∥
∥ +
∥
∥f(t + s, xi)

∥
∥ ≤ Lf(t + s)ε +

∥
∥f(t + s, xi)

∥
∥

(2.15)

for all t ∈ R and s ∈ [0, 1]. Thus, we get

sup
u∈K

∥
∥f(t + s, u)

∥
∥ ≤ Lf(t + s)ε +

k∑

i=1

∥
∥f(t + s, xi)

∥
∥, ∀t ∈ R, ∀s ∈ [0, 1], (2.16)

which yields that

f̃(t) =

∥
∥
∥
∥
∥
sup
u∈K

∥
∥f(t + ·, u)∥∥

∥
∥
∥
∥
∥
p

≤ ‖L‖Sp · ε +
k∑

i=1

‖fb(t, xi)‖p, ∀t ∈ R. (2.17)

On the other hand, since fb ∈ PAP0(R ×X,Lp(0, 1;X)), for the above ε > 0, there exists T0 > 0
such that, for all T > T0,

1
2T

∫T

−T
‖fb(t, xi)‖pdt <

ε

k
, i = 1, 2, . . . , k. (2.18)

This together with (2.17) implies that

1
2T

∫T

−T
f̃(t)dt ≤

(

‖Lf‖Sp + 1
)

ε. (2.19)

Hence, f̃ ∈ PAP0(R,R).

Theorem 2.4. Assume that p > 1 and the following conditions hold:

(a) f = g + h ∈ PAPSp(R × X,X) with gb ∈ AP(R × X,Lp(0, 1;X)) and hb ∈ PAP0(R ×
X,Lp(0, 1;X)). Moreover, f, g ∈ Lr(R ×X,X) with r ≥ max{p, p/(p − 1)};

(b) x = y + z ∈ PAPSp(X) with yb ∈ AP(R, Lp(0, 1;X)) and zb ∈ PAP0(R, Lp(0, 1;X)),
and there exists a set E ⊂ R withmesE = 0 such that

K := {y(t) : t ∈ R \ E} (2.20)

is compact in X.
Then there exists q ∈ [1, p) such that f(·, x(·)) ∈ PAPSq(X).
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Proof. Let p, p′, and q′ be as in the proof of Theorem 2.2. In addition, let f(t, x(t)) = H(t) +
I(t) + J(t), where

H(t) = g
(

t, y(t)
)

, I(t) = f(t, x(t)) − f
(

t, y(t)
)

, J(t) = h
(

t, y(t)
)

. (2.21)

It follows from Theorem 2.2 that H ∈ APSq(X), that is, Hb ∈ AP(R, Lq(0, 1;X)).
Next, let us show that Ib, Jb ∈ PAP0(R, Lq(0, 1;X)). For Ib, we have

1
2T

∫T

−T
‖Ib(t)‖qdt =

1
2T

∫T

−T

(∫1

0
‖I(t + s)‖qds

)1/q

dt

≤ 1
2T

∫T

−T

(∫1

0
L
q

f(t + s)‖z(t + s)‖qds
)1/q

dt

≤ ‖Lf‖Sr

1
2T

∫T

−T
‖zb(t)‖pdt → 0, (T → +∞),

(2.22)

where zb ∈ PAP0(R, Lp(0, 1;X)) was used. For Jb, since h = f − g ∈ Lr(R × X,X) ⊂ Lp(R ×
X,X), by Lemma 2.3, we know that

lim
T →∞

1
2T

∫T

−T

∥
∥
∥
∥
∥
sup
u∈K

∥
∥h(t + ·, u)∥∥

∥
∥
∥
∥
∥
p

dt = 0, (2.23)

which yields

1
2T

∫T

−T
‖Jb(t)‖qdt ≤

1
2T

∫T

−T
‖Jb(t)‖pdt

=
1
2T

∫T

−T

(∫1

0
‖h(t + s, y(t + s)

)‖pds
)1/p

dt

≤ 1
2T

∫T

−T

[∫1

0

(

sup
u∈K

∥
∥h(t + s, u)

∥
∥

)p

ds

]1/p

dt → 0 (T → +∞),

(2.24)

that is, Jb ∈ PAP0(R, Lq(0, 1;X)). Now, we get f(·, x(·)) ∈ PAPSq(X).

Next, let us discuss the existence and uniqueness of pseudo-almost periodic solutions
for the following abstract semilinear evolution equation in X:

u′(t) = A(t)u(t) + f(t, u(t)). (2.25)
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Theorem 2.5. Assume that p > 1 and the following conditions hold:

(a) f = g + h ∈ PAPSp(R × X,X) with gb ∈ AP(R × X,Lp(0, 1;X)) and hb ∈ PAP0(R ×
X,Lp(0, 1;X)). Moreover, f, g ∈ Lr(R × X,X) with

r ≥ max
{

p,
p

p − 1

}

, r >
p

p − 1
; (2.26)

(b) the evolution family U(t, s) generated by A(t) has an exponential dichotomy with constants
M, ω > 0, dichotomy projections P(t), t ∈ R, and Green’s function Γ;

(c) for all ε > 0, for all h > 0, and for all F ∈ APS1(X) there exists a relatively dense set
P(ε) ⊂ R such that supr∈R

‖F(r + · + τ) − f(r + ·)‖ < ε and

sup
r∈R

∥
∥Γ(t + r + τ, s + r + τ) − Γ(t + r, s + r)

∥
∥ < ε, (2.27)

for all τ ∈ P(ε) and t, s ∈ R with |t − s| ≥ h.

Then (2.25) has a unique pseudo-almost periodic mild solution provided that

∥
∥Lf

∥
∥
Sr <

1 − e−ω

2M
·
(

ωr ′

1 − e−ωr ′

)1/r ′

, where (1/r) +
(

1/r ′
)

= 1. (2.28)

Proof. Let u = v +w ∈ PAP(X), where v ∈ AP(X) and w ∈ PAP0(X). Then u ∈ PAPSp(X)
and K := {v(t) : t ∈ R} is compact in X. By the proof of Theorem 2.4, there exists q ∈ (1, p)
such that f(·, u(·)) ∈ PAPSq(X).

Let

f(t, u(t)) = f1(t) + f2(t), t ∈ R, (2.29)

where fb
1 ∈ AP(R, Lq(0, 1;X)) and fb

2 ∈ PAP0(R, Lq(0, 1;X)). Denote

F(u)(t) :=
∫

R

Γ(t, s)f(s, u(s))ds = F1(u)(t) + F2(u)(t), t ∈ R, (2.30)

where

F1(u)(t) =
∫

R

Γ(t, s)f1(s)ds, F2(u)(t) =
∫

R

Γ(t, s)f2(s)ds. (2.31)
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By [13, Theorem 2.3] we have F1(u) ∈ AP(X). In addition, by a similar proof to that of [2,
Theorem 3.2], one can obtain that F2(u) ∈ PAP0(X). So F maps PAP(X) into PAP(X). For
u, v ∈ PAP(X), by using the Hölder’s inequality, we obtain

‖F(u)(t) − F(v)(t)‖ ≤
∫

R

∥
∥Γ(t, s)

∥
∥ · ∥∥f(s, u(s)) − f(s, v(s))

∥
∥ds

≤
∫ t

−∞
Me−ω(t−s)Lf(s)ds ·

∥
∥u − v

∥
∥ +
∫+∞

t

Me−ω(s−t)Lf(s)ds ·
∥
∥u − v

∥
∥

≤ 2M
1 − e−ω

(

1 − e−ωr ′

ωr ′

)1/r ′

‖Lf‖Sr ·
∥
∥u − v

∥
∥,

(2.32)

for all t ∈ R, which yields that F has a unique fixed point u ∈ PAP(X) and

u(t) =
∫

R

Γ(t, s)f(s, u(s))ds, t ∈ R. (2.33)

This completes the proof.

Remark 2.6. For some general conditions which can ensure that the assumption (c) in
Theorem 2.5 holds, we refer the reader to [17, Theorem 4.5]. In addition, in the case of
A(t) ≡ A and A generating an exponential stable semigroup T(t), the assumption (c)
obviously holds.
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