
Hindawi Publishing Corporation
Advances in Difference Equations
Volume 2011, Article ID 659597, 11 pages
doi:10.1155/2011/659597

Research Article
Weighted Inequalities for Potential Operators with
Lipschitz and BMO Norms

Yuxia Tong and Jiantao Gu

College of Science, Hebei United University, Tangshan 063009, China

Correspondence should be addressed to Yuxia Tong, tongyuxia@126.com

Received 1 January 2011; Accepted 7 March 2011

Academic Editor: Jin Liang

Copyright q 2011 Y. Tong and J. Gu. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

Some Lipschitz norm and BMO norm inequalities for potential operator to the versions of
differential forms are obtained, and some properties of a new kind of Aλ3

r (λ1, λ2,Ω) weight are
derived.

1. Introduction

In many situations, the process to study solutions of PDEs involves estimating the various
norms of the operators. Hence, we are motivated to establish some Lipschitz norm
inequalities and BMO norm inequalities for potential operator to the versions of differential
forms.

We keep using the traditional notation.
Let Ω be a connected open subset of Rn, let e1, e2, . . . , en be the standard unit basis of

Rn, and let
∧l =

∧l(Rn) be the linear space of l-covectors, spanned by the exterior products
eI = ei1 ∧ ei2 ∧ · · · ∧ eil , corresponding to all ordered l-tuples I = (i1, i2, . . . , il), 1 ≤ i1 < i2 < · · · <
il ≤ n, l = 0, 1, . . . , n. We let R = R1. The Grassman algebra ∧ = ⊕∧l is a graded algebra with
respect to the exterior products. For α =

∑
αIeI ∈ ∧ and β =

∑
βIeI ∈ ∧, the inner product in ∧

is given by 〈α, β〉 =
∑

αIβI with summation over all l-tuples I = (i1, i2, . . . , il) and all integers
l = 0, 1, . . . , n. We define the Hodge star operator � :∧ → ∧ by the rule �1 = e1 ∧ e2 ∧ · · · ∧ en
and α ∧ �β = β ∧ �α = 〈α, β〉(�1) for all α, β ∈ ∧. The norm of α ∈ ∧ is given by the formula
|α|2 = 〈α, α〉 = �(α ∧ �α) ∈ ∧0 = R. The Hodge star is an isometric isomorphism on ∧ with
� :
∧l → ∧n−l and � � (−1)l(n−l) :∧l → ∧l. Balls are denoted by B, and ρB is the ball with

the same center as B and with diam(ρB) = ρdiam(B). We do not distinguish balls from cubes
throughout this paper. The n-dimensional Lebesguemeasure of a set E ⊆ Rn is denoted by |E|.
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We call w(x) a weight if w ∈ L1
loc(R

n) and that is, w > 0. For 0 < p < ∞ and a weight w(x),
we denote the weighted Lp-norm of a measurable function f over E by

∥
∥f
∥
∥
p,E,wα =

(∫

E

∣
∣f(x)

∣
∣pwαdx

)1/p

, (1.1)

where α is a real number.
Differential forms are important generalizations of real functions and distributions;

note that a 0-form is the usual function in Rn. A differential l-form ω on Ω is a Schwartz
distribution on Ω with values in

∧l(Rn). We use D′(Ω,
∧l) to denote the space of all

differential l-forms ω(x) =
∑

I ωI(x)dxI =
∑

ωi1i2,...,il(x)dxi1 ∧ dxi2 ∧ · · · ∧ dxil . We write
Lp(Ω,

∧l) for the l-forms with ωI ∈ Lp(Ω,R) for all ordered l-tuples I. Thus, Lp(Ω,
∧l) is a

Banach space with norm

‖ω‖p,Ω =
(∫

Ω
|ω(x)|pdx

)1/p

=
(∫

Ω

(∑
|ωI(x)|2

)p/2
dx

)1/p

. (1.2)

For ω ∈ D′(Ω,
∧l), the vector-valued differential form ∇ω = (∂ω/∂x1, . . . , ∂ω/∂xn) consists

of differential forms ∂ω/∂xi ∈ D′(Ω,
∧l), where the partial differentiations are applied to the

coefficients of ω. As usual, W1,p(Ω,
∧l) is used to denote the Sobolev space of l-forms, which

equals Lp(Ω,
∧l) ∩ L

p

1(Ω,
∧l) with norm

‖ω‖W1,p(Ω,
∧l) = ‖ω‖W1,p(Ω,

∧l) = diam (Ω)−1‖ω‖p,Ω + ‖∇ω‖p,Ω. (1.3)

The notations W1,p
loc (Ω,R) and W

1,p
loc (Ω,

∧l) are self-explanatory. For 0 < p < ∞ and a weight

w(x), the weighted norm of ω ∈ W1,p(Ω,
∧l) over Ω is denoted by

‖ω‖W1,p(Ω,
∧l),wα = ‖ω‖W1,p(Ω,

∧l),wα = diam (Ω)−1‖ω‖p,Ω,wα + ‖∇ω‖p,Ω,wα , (1.4)

where α is a real number. We denote the exterior derivative by d :D′(Ω,
∧l) → D′(Ω,

∧l+1)
for l = 0, 1, . . . , n. Its formal adjoint operator d� :D′(Ω,

∧l+1) → D′(Ω,
∧l) is given by d� =

(−1)nl+1 � d� on D′(Ω,
∧l+1), l = 0, 1, . . . , n.

Let u ∈ L1
loc(Ω,

∧l), l = 0, 1, . . . , n. We write u ∈ loc Lipk(Ω,
∧l), 0 ≤ k ≤ 1 if

‖u‖loc Lipk ,Ω
= sup

σQ⊂Ω
|Q|−(n+k)/n

∥
∥u − uQ

∥
∥
1,Q < ∞, (1.5)

for some σ ≥ 1. Further, we write Lipk(Ω,
∧l) for those forms whose coefficients are in the

usual Lipschitz space with exponent k and write ‖u‖Lipk,Ω
for this norm. Similarly, for u ∈

L1
loc(Ω,

∧l), l = 0, 1, . . . , n, we write u ∈ BMO(Ω,
∧l) if

‖u‖�,Ω = sup
σQ⊂Ω

|Q|−1∥∥u − uQ

∥
∥
1,Q < ∞, (1.6)

for some σ ≥ 1. When u is a 0-form, (1.6) reduces to the classical definition of BMO(Ω).
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Based on the above results, we discuss the weighted Lipschitz and BMO norms. For
u ∈ L1

loc(Ω,
∧l, wα), l = 0, 1, . . . , n, we write u ∈ loc Lipk(Ω,

∧l, wα), 0 ≤ k ≤ 1 if

‖u‖loc Lipk ,Ω,wα = sup
σQ⊂Ω

(
μ(Q)

)−(n+k)/n∥∥u − uQ

∥
∥
1,Q,wα < ∞, (1.7)

for some σ > 1, where Ω is a bounded domain, the Radon measure μ is defined by dμ =
w(x)αdx, w is a weight and α is a real number. For convenience, we will write the following
simple notation loc Lipk(Ω,

∧l) for loc Lipk(Ω,
∧l, wα). Similarly, for u ∈ L1

loc(Ω,
∧l, wα), l =

0, 1, . . . , n, we write u ∈ BMO(Ω,
∧l, wα) if

‖u‖�,Ω,wα = sup
σQ⊂Ω

(
μ(Q)

)−1∥∥u − uQ

∥
∥
1,Q,wα < ∞, (1.8)

for some σ > 1, where the Radon measure μ is defined by dμ = w(x)αdx, w is a weight, and
α is a real number. Again, we use BMO(Ω,

∧l) to replace BMO(Ω,
∧l, wα)whenever it is clear

that the integral is weighted.
From [1], if ω is a differential form defined in a bounded, convex domain M, then

there is a decomposition

ω = d(Tω) + T(dω), (1.9)

where T is called a homotopy operator. Furthermore, we can define the k-form ωM ∈
D′(M,

∧k) by

ωM = |M|−1
∫

M

ω
(
y
)
dy, k = 0, ωM = d(Tω), k = 1, 2, . . . , n, (1.10)

for all ω ∈ Lp(M,
∧k), 1 ≤ p < ∞.

For any differential k-form ω(x), we define the potential operator P by

Pω(x) =
∑

I

∫

E

K
(
x, y
)
ωI

(
y
)
dy dxI, (1.11)

where the kernel K(x, y) is a nonnegative measurable function defined for x/=y, and the
summation is over all ordered k-tuples I. It is easy to find that the case k = 0 reduces to the
usual potential operator. That is,

Pf(x) =
∫

E

K
(
x, y
)
f
(
y
)
dy, (1.12)

where f(x) is a function defined on E ⊂ Rn. Associated with P , the functional ϕ is defined as

ϕ(B) = sup
x,y∈B, |x−y|≥Cr

K
(
x, y
)
, (1.13)
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where C is some sufficiently small constant and B ⊂ E is a ball with radius r. Throughout this
paper, we always suppose that ϕ satisfies the following conditions: there exists Cϕ such that

ϕ(2B) ≤ Cϕϕ(B) for all balls B ⊂ E, (1.14)

and there exists ε > 0 such that

ϕ(B1)μ(B1) ≤ Cϕ

(
r(B1)
r(B2)

)ε

ϕ(B2)μ(B2) for all balls B1 ⊂ B2. (1.15)

On the potential operator P and the functional ϕ, see [2] for details.
The nonlinear elliptic partial differential equation d�A(x, du) = 0 is called the

homogeneous A-harmonic equation or the A-harmonic equation, and the differential
equation

d�A(x, du) = B(x, du) (1.16)

is called the nonhomogeneous A-harmonic equation for differential forms, where A :Ω ×
∧l(Rn) → ∧l(Rn) and B :Ω ×∧l(Rn) → ∧l−1(Rn) satisfy the conditions

|A(x, ξ)| ≤ a|ξ|p−1, 〈A(x, ξ), ξ〉 ≥ |ξ|p, |B(x, ξ)| ≤ b|ξ|p−1, (1.17)

for almost every x ∈ Ω and all ξ ∈ ∧l(Rn). Here a, b > 0 are constants and 1 < p < ∞ is a
fixed exponent associated with (1.16). A solution to (1.16) is an element of the Sobolev space
W

1,p
loc (Ω,

∧l−1) such that

∫

Ω
A(x, du) · dϕ + B(x, du) · ϕ = 0, (1.18)

for all ϕ ∈ W
1,p
loc (Ω,

∧l−1) with compact support. When u is a 0-form, that is, u is a function,
(1.16) is equivalent to

divA(x,∇u) = B(x,∇u). (1.19)

Lots of results have been obtained in recent years about different versions of the A-harmonic
equation, see [3–5].

2. The Estimate for Potential Operators with
Lipschitz Norm and BMO Norm

In this section, we give the estimate for potential operators with Lipschitz norm and BMO
norm applied to differential forms. The following strong type (p, p) inequality for potential
operators appears in [6].
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Lemma 2.1 (see [6]). Let u ∈ D′(E,
∧k), k = 0, 1, . . . , n − 1, be a differential form defined in a

bounded, convex domain E, and let uI be coefficient of u with suppuI ⊂ E for all ordered k-tuples I.
Assume that 1 < p < ∞ and P is the potential operator with k(x, y) = ϕε(x − y) for any ε > 0, then
there exists a constant C, independent of u, such that

‖P(u) − (P(u))E‖p,E ≤ C|E|diam(E)‖u‖p,E. (2.1)

We will establish the following estimate for potential operators.

Theorem 2.2. Let u ∈ D′(E,
∧k), k = 0, 1, . . . , n − 1, be a differential form defined in a bounded,

convex domain E, and let uI be coefficient of u with suppuI ⊂ E for all ordered k-tuples I. Assume
that 1 < p < ∞ and P is the potential operator with k(x, y) = ϕε(x − y) for any ε > 0, then there
exists a constant C, independent of ω, such that

‖P(u)‖�,E ≤ ‖P(u)‖loc Lipk ,E
≤ C‖u‖p,E. (2.2)

Proof. By the definition of the Lipschitz norm, (2.1), and hölder’s inequality with 1 = 1/p +
(p − 1)/p, we have

‖P(u)‖loc Lipk,E
= sup

σB⊂E

(
μ(B)

)−(n+k)/n‖P(u) − (P(u))B‖1,B

≤ sup
σB⊂E

(
μ(B)

)−(n+k)/n
(∫

B

|P(u) − (P(u))B|pdx
)1/p(∫

B

1p/(p−1)dx
)(p−1)/p

= sup
σB⊂E

(
μ(B)

)−(n+k)/n+(p−1)/p‖P(u) − (P(u))B‖p,B

≤ sup
σB⊂E

(
μ(B)

)−(n+k)/n+(p−1)/p
C|B| diam(B)‖u‖p,B

≤ C|E|−(n+k)/n+(p−1)/p+1+1/n‖u‖p,E
≤ C‖u‖p,E,

(2.3)

since −1/p − k/n + 1 + 1/n > 0 and |Ω| < ∞, where σ is a constant and σB ⊂ Ω.
By the definition of the BMO norm, we have

‖P(u)‖�,E = sup
σB⊂E

(
μ(B)

)−1‖P(u) − (P(u))B‖1,B

= sup
σB⊂E

(
μ(B)

)k/n(
μ(B)

)−(n+k)/n‖P(u) − (P(u))B‖1,B

≤ C sup
σB⊂E

(
μ(B)

)−(n+k)/n‖P(u) − (P(u))B‖1,B

≤ C‖P(u)‖loc Lipk,E
.

(2.4)

We have completed the proof of Theorem 2.2.
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3. The Aλ3
r (λ1, λ2,Ω) Weight

In this section, we introduce the Aλ3
r (λ1, λ2,Ω) weight appeared in [7].

Definition 3.1. Letw1(x), w2(x) be two locally integrable nonnegative functions in E ⊂ Rn and
assume that 0 < w1, w2 < ∞ almost everywhere. We say that (w1(x), w2(x)) belongs to the
Aλ3

r (λ1, λ2, E) class, 1 < r < ∞ and 0 < λ1, λ2, λ3 < ∞, or that (w1(x), w2(x)) is anAλ3
r (λ1, λ2, E)

weight, write (w1, w2) ∈ Aλ3
r (λ1, λ2, E) or (w1, w2) ∈ Aλ3

r (λ1, λ2) when it will not cause any
confusion, if

sup
B

(
1
|B|
∫

B

wλ1
1 dx

)(
1
|B|
∫

B

(
1
w2

)λ2/(r−1)
dx

)λ3(r−1)
< ∞ (3.1)

for all balls B ⊂ E ⊂ Rn.

The following results show that the Aλ3
r (λ1, λ2) weights have the properties similar to

those of the Ar weights.

Theorem 3.2. If 1 < r < s < ∞, thenAλ3
r (λ1, λ2) ⊂ Aλ3

s (λ1, λ2).

Proof. Let (w1, w2) ∈ Aλ3
r (λ1, λ2). Since 1 < r < s < ∞, by Hölder’s inequality,

(∫

B

(
1
w2

)λ2/(s−1)
dx

)λ3(s−1)
≤
(∫

B

(
1
w2

)λ2/(r−1)
dx

)λ3(r−1)(∫

B

1λ2/(s−r)dx
)λ3(s−r)

= |B|λ3(s−r)
(∫

B

(
1
w2

)λ2/(r−1)
dx

)λ3(r−1)

=
|B|λ3(s−1)
|B|λ3(r−1)

(∫

B

(
1
w2

)λ2/(r−1)
dx

)λ3(r−1)
,

(3.2)

so that

(
1
|B|
∫

B

(
1
w2

)λ2/(s−1)
dx

)λ3(s−1)
≤
(

1
|B|
∫

B

(
1
w2

)λ2/(r−1)
dx

)λ3(r−1)
. (3.3)

Thus, we find that

sup
B

(
1
|B|
∫

B

wλ1
1 dx

)(
1
|B|
∫

B

(
1
w2

)λ2/(s−1)
dx

)λ3(s−1)

≤ sup
B

(
1
|B|
∫

B

wλ1
1 dx

)(
1
|B|
∫

B

(
1
w2

)λ2/(r−1)
dx

)λ3(r−1)
,

(3.4)
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for all balls B ⊂ Rn since (w1, w2) ∈ Aλ3
r (λ1, λ2). Therefore, (w1, w2) ∈ Aλ3

s (λ1, λ2), and hence
Aλ3

r (λ1, λ2) ⊂ Aλ3
s (λ1, λ2).

Theorem 3.3. If (w1, w2) ∈ Aλ3
r (λ1, λ2), λ1 ≥ 1, λ2, λ3 > 0 and the measures μ, ν are defined by

dμ = w1(x)dx, dν = w2(x)λ2dx, then

|E|λ3r
|B|λ1+λ3(r−1)

≤ C(r, λ1, λ2, λ3, w1, w2)
μ(E)λ3

μ(B)λ1
, (3.5)

where B is a ball in Rn and E is a measurable subset of B.

Proof. By Hölder’s inequality, we have

|E| =
∫

E

dx =
∫

E

wλ2/r
2 w−λ2/r

2 dx

≤
(∫

E

wλ2
2 dx

)1/r(∫

E

w
λ2/(1−r)
2 dx

)(r−1)/r

=
(
μ(E)

)1/r
(∫

E

w
λ2/(1−r)
2 dx

)(r−1)/r
.

(3.6)

This implies

|E|r ≤ μ(E)
(∫

E

w
λ2/(1−r)
2 dx

)(r−1)
. (3.7)

Note that λ1 ≥ 1, by Hölder’s inequality again, we have

1
|B|
∫

B

w1dx ≤
(

1
|B|
∫

B

wλ1
1 dx

)1/λ1
, (3.8)

so that

1 =
1

μ(B)

∫

B

w1dx ≤ |B|
μ(B)

(
1
|B|
∫

B

wλ1
1 dx

)1/λ1
. (3.9)

Hence, we obtain

μ(B)λ1 ≤ |B|λ1−1
∫

B

wλ1
1 dx. (3.10)

Since (w1, w2) ∈ Aλ3
r (λ1, λ2), there exists a constant C(r, λ1, λ2, λ3, w1, w2) such that

(
1
|B|
∫

B

wλ1
1 dx

)(
1
|B|
∫

B

(
1
w2

)λ2/(r−1)
dx

)λ3(r−1)
≤ C(r, λ1, λ2, λ3, w1, w2). (3.11)
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Combining (3.7), (3.10), and (3.11), we deduce that

|E|λ3rμ(B)λ1 ≤ μ(E)λ3 |B|λ1−1
(∫

E

w
λ2/(1−r)
2 dx

)λ3(r−1) ∫

B

wλ1
1 dx

= μ(E)λ3 |B|λ1+λ3(r−1)
(

1
|B|
∫

E

w
λ2/(1−r)
2 dx

)λ3(r−1)( 1
|B|
∫

B

wλ1
1 dx

)

≤ C(r, λ1, λ2, λ3, w1, w2)μ(E)λ3 |B|λ1+λ3(r−1).

(3.12)

Hence,

|E|λ3r
|B|λ1+λ3(r−1)

≤ C(r, λ1, λ2, λ3, w1, w2)
μ(E)λ3

μ(B)λ1
. (3.13)

The desired result is obtained.

If we choose λ1 = λ2 = λ3 = 1 andw1 = w2 = w in Theorem 3.3, we will obtain

|E|r
|B|r ≤ C(r,w)

μ(E)
μ(B)

, (3.14)

which is called the strong doubling property of Ar weights; see [8].

4. The Weighted Inequality for Potential Operators

In this section, we are devoted to develop some two-weight norm inequalities for potential
operator P to the versions of differential forms. We need the following lemmas.

Lemma 4.1 (see [9]). Ifw ∈ Ar(Ω), then there exist constants β > 1 and C, independent ofw, such
that

‖w‖β,B ≤ C|B|(1−β)/β‖w‖1,B, (4.1)

for all balls B ⊂ Rn.

Lemma 4.2. Let 0 < α < ∞, 0 < β < ∞, and s−1 = α−1 + β−1. If f and g are measurable functions on
Rn, then

∥
∥fg

∥
∥
s,E ≤ ∥∥f∥∥α,E · ∥∥g∥∥β,E, (4.2)

for any E ⊂ Rn.



Advances in Difference Equations 9

Lemma 4.3 (see [10]). Let ω ∈ D′(E,
∧k), k = 0, 1, . . . , n be a solution of the nonhomogeneous

A-harmonic equation in E, ρ > 1 and 0 < s, t < ∞, then there exists a constant C, independent of ω,
such that

‖ω‖s,B ≤ C|B|(t−s)/st‖ω‖t,σQ, (4.3)

for all B with ρB ⊂ E.

Theorem 4.4. Let u ∈ D′(E,
∧k, υ), k = 0, 1, 2, . . . , n − 1, be a solution of the nonhomogeneous A-

harmonic equation (1.16) in a bounded domainE and P is the potential operator with k(x, y) = ϕε(x−
y) for any ε > 0, where the Radon measures μ and υ are defined by dμ = wαλ1

1 (x), dυ = wαλ2λ3/s
2 (x).

Assume thatwλ1
1 (x) ∈ Ar(Ω) and (w1(x), w2(x)) ∈ Aλ3

r (λ1, λ2,Ω) for some r > 1, 0 < λ1, λ2, λ3 <
∞ withw1(x) ≥ ε > 0 for any x ∈ Ω, then there exists a constant C, independent of u, such that

‖P(u)‖
�,E,w

αλ1
1

≤ C‖u‖1,Ω,w
αλ2λ3/s
2

, (4.4)

where α is a constant with 0 < α < 1.

Proof. Sincewλ1
1 ∈ Ar(Ω), using Lemma 4.1, there exist constants β > 1 and C1 > 0, such that

∥
∥
∥w

λ1
1

∥
∥
∥
β,B

≤ C1|B|(1−β)/β
∥
∥
∥w

λ1
1

∥
∥
∥
1,B

, (4.5)

for any ball B ⊂ Rn.
Since 1 = 1/s + (s − 1)/s, by Lemma 4.2, we have

‖P(u) − P(u)B‖1,B,wαλ1
1

=
∫

B

|P(u) − P(u)B|wαλ1
1 dx

≤
(∫

B

|P(u) − P(u)B|swαλ1
1 dx

)1/s(∫

B

wαλ1
1 dx

)(s−1)/s

= μ(B)(s−1)/s‖P(u) − P(u)B‖s,B,wαλ1
1
.

(4.6)

Choose t = s/(1 − α/β) where 0 < α < 1, β > 1, then 1 < s < t and αt/(t − s) = β. Since
1/s = 1/t + (t − s)/st, by Lemma 4.2 and (4.5), we have

‖P(u) − P(u)B‖s,B,wαλ1
1

=
(∫

B

(
|P(u) − P(u)B |wαλ1/s

1

)s
dx

)1/s

≤
(∫

B

(|P(u) − P(u)B|tdx
)1/t(∫

B

w
λ1β

1 dx

)α/(βs)

= ‖P(u) − P(u)B‖t,B ·
∥
∥
∥w

λ1
1

∥
∥
∥
α/s

β,B

≤ ‖P(u) − P(u)B‖t,B · C2|B|(1−β)α/(βs)
∥
∥
∥w

λ1
1

∥
∥
∥
α/s

1,B
.

(4.7)
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From Lemma 2.1, we have

‖P(u) − (P(u))B‖t,B ≤ C3|B|diam(B)‖u‖t,B. (4.8)

Applying Lemma 4.3 (the weak reverse Hölder inequality for the solutions of the
nonhomogeneous A-harmonic equation), we obtain

‖u‖t,B ≤ C4|B|(m−t)/mt‖u‖m,σ1B
, (4.9)

where σ1 is a constant and σ1B ⊂ Ω. Choosing m = s/(αλ3(r − 1) + s), then m < 1 < s. Using
Hölder’s inequality with 1/m = 1/1 + αλ3(r − 1)/s, we have

‖u‖m,σ1B
=

(∫

σ1B

(
|u|wαλ2λ3/s

2 w−αλ2λ3/s
2

)m
dx

)1/m

≤
(∫

σ1B

|u|wαλ2λ3/s
2 dx

)(∫

σ1B

(
1
w2

)λ2/(r−1)
dx

)αλ3(r−1)/s

= ‖u‖1,σ1B,wαλ2λ3/s
2

∥
∥
∥
∥
∥

(
1
w2

)λ2
∥
∥
∥
∥
∥

αλ3/s

1/(r−1), σ1B
.

(4.10)

Since (w1, w2) ∈ Aλ3
r (λ1, λ2,Ω), then

∥
∥
∥w

λ1
1

∥
∥
∥
α/s

1,B
·
∥
∥
∥
∥
∥

(
1
w2

)λ2
∥
∥
∥
∥
∥

αλ3/s

1/(r−1),σ1B

≤
⎡

⎣

(∫

σ1B

wλ1
1 dx

)(∫

σ1B

(
1
w2

)λ2/(r−1)
dx

)λ3(r−1)
⎤

⎦

α/s

=

⎡

⎣|σ1B|λ3(r−1)+1
(

1
|σ1B|

∫

σ1B

wλ1
1 dx

)(
1

|σ1B|
∫

σ1B

(
1
w2

)λ2/(r−1)
dx

)λ3(r−1)
⎤

⎦

α/s

≤ C5|σ1B|αλ3(r−1)/s+α/s ≤ C6|B|αλ3(r−1)/s+α/s.

(4.11)

Since (m−t)/mt+αλ3(r−1)/s+α/s+(s−1)/s+(1−β)α/(βs) = 0, combining with (4.6)–(4.11),
we have

‖P(u) − P(u)B‖1,B,wαλ1
1

≤ μ(B)(s−1)/sC2|B|(1−β)α/(βs)C3|B| diam(B)C4|B|(m−t)/mtC6|B|αλ3(r−1)/s+α/s‖u‖1,σ1B,wαλ2λ3/s
2

≤ C7|B|diam(B)‖u‖1,σ1B,wαλ2λ3/s
2

.

(4.12)
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From the definition of the BMO norm, we obtain

‖P(u)‖
�,E,w

αλ1
1

= sup
σ2B⊂E

|B|−1‖P(u) − (P(u))B‖1,B,wαλ1
1

≤ sup
σ2B⊂E

|B|−1C7|B| diam(B)‖u‖1,σ1B,wαλ2λ3/s
2

≤ C8‖u‖1,σ1B,wαλ2λ3/s
2

,

(4.13)

for all balls B with σ2 > σ1 and σ2B ⊂ Ω. We have completed the proof of Theorem 4.4.

Acknowledgments

The authors are supported by NSF of Hebei Province (A2010000910) and Scientific Research
Fund of Zhejiang Provincial Education Department (Y201016044).

References

[1] R. P. Agarwal, S. Ding, and C. Nolder, Inequalities for Differential Forms, Springer, New York, NY, USA,
2009.

[2] J. M. Martell, “Fractional integrals, potential operators and two-weight, weak type norm inequalities
on spaces of homogeneous type,” Journal of Mathematical Analysis and Applications, vol. 294, no. 1, pp.
223–236, 2004.

[3] H. Gao, “Weighted integral inequalities for conjugate A-harmonic tensors,” Journal of Mathematical
Analysis and Applications, vol. 281, no. 1, pp. 253–263, 2003.

[4] H. Gao, J. Qiao, and Y. Chu, “Local regularity and local boundedness results for very weak solutions
of obstacle problems,” Journal of Inequalities and Applications, vol. 2010, Article ID 878769, 12 pages,
2010.

[5] H. Gao, J. Qiao, Y. Wang, and Y. Chu, “Local regularity results for minima of anisotropic functionals
and solutions of anisotropic equations,” Journal of Inequalities and Applications, vol. 2008, Article ID
835736, 11 pages, 2008.

[6] H. Bi, “Weighted inequalities for potential operators on differential forms,” Journal of Inequalities and
Applications, vol. 2010, Article ID 713625, 13 pages, 2010.

[7] Y. Tong, J. Li, and J. Gu, “Aλ3
r (λ1, λ2,Ω)-weighted inequalities with Lipschitz and BMO norms,” Journal

of Inequalities and Applications, vol. 2010, Article ID 713625, 13 pages, 2010.
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