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This paper investigates the existence of the extremal solutions to the integral boundary
value problem for first-order impulsive functional integrodifferential equations with deviating
arguments under the assumption of existing upper and lower solutions in the reversed order.
The sufficient conditions for the existence of solutions were obtained by establishing several new
comparison principles and using the monotone iterative technique. At last, a concrete example is
presented and solved to illustrate the obtained results.

1. Introduction

Impulsive differential equations arise naturally from a wide variety of applications, such as
control theory, physics, chemistry, population dynamics, biotechnology, industrial robotic,
and optimal control ([1–4]). Therefore, it is very important to develop a general theory for
differential equations with impulses including some basic aspects of this theory.

In this paper, we consider the following integral boundary value problem for first-
order impulsive functional integrodifferential equations with deviating arguments:

u′(t) = f(t, u(t), u(α(t)),Wu(t), Su(t)), t ∈ J ′,

Δu(tk) = Ik(u(tk)), k = 1, 2, . . . , m,

u(0) = ru(T) + μ

∫T

0
ω(s, u(s))ds + d,

(1.1)
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where t ∈ J = [0, T] (T > 0), f ∈ C(J × R4, R), Ik ∈ C(R,R), ω ∈ C(J × R,R), r, μ, d ∈
R, α ∈ C(J, J), 0 = t0 < t1 < · · · < tk < · · · < tm < tm+1 = T, J ′ = J \ {t1, t2, . . . , tm}, Δu(tk) =
u(t+k) − u(t−k), where u(t+k) and u(t−k) denote the right and the left limits of u(t) at t = tk (k =
1, 2, . . . , m), respectively, and

Wu(t) =
∫β(t)

0
k(t, s)u

(
γ(s)

)
ds, Su(t) =

∫T

0
h(t, s)u(δ(s))ds; (1.2)

here β, γ, δ ∈ C(J, J), k(t, s) ∈ C(D,R+), h(t, s) ∈ C(J × J, R+), D = {(t, s) ∈ R2 | 0 ≤ s ≤
β(t), t ∈ J}, R+ = [0,+∞). Let PC(J, R) = {u : J → R | u(t) is continuous at t /= tk, left
continuous at t = tk and u(t+k) exists, k = 1, 2, . . . , m} and PC1(J, R) = {u ∈ PC(J, E) | u(t)
is continuously differentiable at t /= tk, u′(t+

k
) and u′(t−

k
) exist, k = 1, 2, . . . , m}. Evidently,

PC(J, R) and PC1(J, R) are Banach spaces with respective norms

‖u‖PC = sup
t∈J

|u(t)|, ‖u‖PC1 = max
{‖u‖PC,∥∥u′∥∥

PC

}
. (1.3)

In recent years, attention has been given to integral type of boundary conditions.
The interest in the study of integral boundary conditions lies in the fact that it has
various applications in applied fields such as blood flow problems, chemical engineering,
thermoelasticity, underground water flow, and population dynamics. For a detailed
description of the integral boundary conditions, we refer the reader to some recent papers
([5–12]) and the references therein.

The method of upper and lower solutions coupled with its associated monotone
iteration scheme is an interesting and powerful mechanism that offers the theoretical as well
constructive existence results for nonlinear problem in a closed set, generated by the lower
and upper solutions (see [9–26]). In the above-mentioned papers,main results are formulated
and proved under the assumption of existing upper and lower solutions in the usual order.

However in many cases, the lower and upper solutions occur in the reversed order.
This is a fundamentally different situation. In 2009, Wang et al. [27] successfully investigated
boundary value problem for functional differential equations without impulses under the
assumption of existing upper and lower solutions in the reversed order. In our recent work
[28], the monotone iterative technique, combining with the upper and lower solutions in the
reversed order, has been successfully applied to obtain the existence of the extremal solutions
for a class of nonlinear first-order impulsive functional differential equations. About other
existence results for the nonordered case, see ([29–33]).

Motivated by the above-mentioned works, in this paper, we study the integral
boundary value problem (1.1). As far as I am concerned, no paper has considered first-
order impulsive functional integrodifferential equations with integral boundary conditions
and deviating arguments (i.e., problem (1.1)) under the assumption of existing upper and
lower solutions in the reverse order. This paper fills this gap in the literature.

The rest of the paper is organized as follows. In Section 2, we establish several new
comparison principles, which play an important role in the proof of main results. Further, to
study the nonlinear problem (1.1), we consider the associated linear problem and obtain the
uniqueness of the solutions to the associated linear problem. In Section 3, the main theorems
are formulated and proved. In Section 4, we give an example about integral boundary value
problem for impulsive functional integrodifferential equations of mixed type (1.1).
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2. Several Comparison Principles and Linear Problem

Lemma 2.1 (comparison result). Assume that u ∈ PC1(J, R) satisfies

u′(t) ≥ M(t)u(t) +K(t)u(α(t)) +N(t)(Wu)(t) + L(t)(Su)(t), t ∈ J ′,

Δu(tk) ≥ Lku(tk), k = 1, 2, . . . , m,

u(0) ≥ ru(T),

(2.1)

whereM ∈ C(J, R), K,N, L ∈ C(J, R+), Lk ≥ 0, r > 0 satisfy

(i) r[1 +
∫T
0 q(t)dt +

∑
0<tk<T Lk]e

∫T
0 M(τ)dτ > 1,

(ii) [
∫T
0 q(t)dt +

∑
0<tk<T Lk](1 + re

∫T
0 M(τ)dτ ) ≤ 1;

here

q(t)=

[
K(t)e

∫α(t)
0 M(τ)dτ+N(t)

∫β(t)

0
k(t, s)e

∫γ(s)
0 M(τ)dτds+L(t)

∫T

0
h(t, s)e

∫δ(s)
0 M(τ)dτds

]
e−

∫ t
0 M(τ)dτ .

(2.2)

Then u(t) ≤ 0, t ∈ J .

Proof. Supposing that contrary (i.e., u(t) > 0 for some t ∈ J), we consider the following two
possible cases:

(1) u(t) ≥ 0 for all t ∈ J ;

(2) there exist t∗, t∗ ∈ J such that u(t∗) > 0 and u(t∗) < 0.

Let v(t) = u(t)e−
∫ t
0 M(τ)dτ ; we have

v′(t) ≥
[
K(t)v(α(t))e

∫α(t)
0 M(τ)dτ +N(t)

∫β(t)
0 k(t, s)v

(
γ(s)

)
e
∫ γ(s)
0 M(τ)dτds

+L(t)
∫T
0 h(t, s)v(δ(s))e

∫δ(s)
0 M(τ)dτds

]
e−

∫ t
0 M(τ)dτ , t ∈ J ′,

Δv(tk) ≥ Lkv(tk), k = 1, 2, . . . , m,

v(0) ≥ rv(T)e
∫T
0 M(τ)dτ .

(2.3)

Case 1. Equation (2.3) implies that v′(t) ≥ 0 for t /= tk and Δv(tk) ≥ 0 (k = 1, 2, . . . , m), hence,
v(t) is nondecreasing on J . By (2.3), we can get



4 Advances in Difference Equations

v′(t) ≥
[
K(t)e

∫α(t)
0 M(τ)dτ +N(t)

∫β(t)

0
k(t, s)e

∫ γ(s)
0 M(τ)dτds + L(t)

∫T

0
h(t, s)e

∫δ(s)
0 M(τ)dτds

]

× e−
∫ t
0 M(τ)dτv(0).

(2.4)

Integrating the above inequality from 0 to t, we have

v(t) = v(0) +
∫ t

0
v′(r)dr +

∑
0<tk<t

[
v
(
t+k
) − v(tk)

]

≥ v(0) +
∫ t

0

[
K(r)e

∫α(r)
0 M(τ)dτ +N(r)

∫β(r)

0
k(r, s)e

∫ γ(s)
0 M(τ)dτds

+ L(r)
∫T

0
h(r, s)e

∫δ(s)
0 M(τ)dτds

]
e−

∫r
0 M(τ)dτv(0)dr +

∑
0<tk<t

Lkv(tk)

≥
{
1+

∫ t

0

[
K(r)e

∫α(r)
0 M(τ)dτ +N(r)

∫β(r)

0
k(r, s)e

∫γ(s)
0 M(τ)dτds+L(r)

∫T

0
h(r, s)e

∫δ(s)
0 M(τ)dτds

]

× e−
∫r
0 M(τ)dτdr +

∑
0<tk<t

Lk

}
v(0)

=

{
1 +

∫ t

0
q(r)dr +

∑
0<tk<t

Lk

}
v(0).

(2.5)

Thus,

v(0) ≥ rv(T)e
∫T
0 M(τ)dτ ≥ r

[
1 +

∫T

0
q(r)dr +

∑
0<tk<t

Lk

]
v(0)e

∫T
0 M(τ)dτ . (2.6)

Noting condition (i), we have v(0) = 0. Besides, rv(T)e
∫T
0 M(τ)dτ ≤ v(0) = 0, that is, v(T) ≤ 0.

Since v(t) is nondecreasing on J , then we have v(t) ≡ 0, for all t ∈ J . That is, u(t) ≡ 0, for all
t ∈ J .

Case 2. Firstly, we consider (2.3). Let inft∈Jv(t) = −λ, then λ > 0, and for some i ∈ {1, 2, . . . , m},
there exists a t∗ ∈ (ti, ti+1], such that v(t∗) = −λ or v(t+i ) = −λ. We only consider v(t∗) = −λ, for
the case v(t+i ) = −λ, and the proof is similar.

By (2.3), we have

v(t) = v(0) +
∫ t

0
v′(s)ds +

∑
0<tk<t

[
v
(
t+k
) − v(tk)

]

≥ v(0) − λ

[∫ t

0
q(s)ds +

∑
0<tk<t

Lk

]
.

(2.7)
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Let t = t∗ in (2.7); we have

−λ ≥ v(0) − λ

[∫ t

0
q(s)ds +

∑
0<tk<t

Lk

]
. (2.8)

So,

v(0) ≤ −λ + λ

[∫T

0
q(s)ds +

∑
0<tk<T

Lk

]
. (2.9)

On the other hand,

v(t) = v(T) −
∫T

t

v′(s)ds −
∑

t≤tk<T

[
v
(
t+k
) − v(tk)

]
. (2.10)

Let t = t∗ in (2.10), then

0 < u(t∗)e−
∫ t∗
0 M(τ)dτ = v(t∗) = v(T) −

∫T

t∗
v′(s)ds −

∑
t∗≤tk<T

[
v
(
t+k
) − v(tk)

]
. (2.11)

That is,

v(T) >
∫T

t∗
v′(s)ds +

∑
t∗≤tk<T

[
v
(
t+k
) − v(tk)

]
. (2.12)

By (2.3), we have

v(T) > −λ
[∫T

0
q(s)ds +

∑
0<tk<T

Lk

]
. (2.13)

Thus, by (2.9), (2.13), and v(0) ≥ rv(T)e
∫T
0 M(τ)dτ , we obtain

−λ
[∫T

0
q(s)ds +

∑
0<tk<T

Lk

]
re

∫T
0 M(τ)dτ < −λ + λ

[∫T

0
q(s)ds +

∑
0<tk<T

Lk

]
. (2.14)

So, [
∫T
0 q(t)dt+

∑
0<tk<T Lk](1+re

∫T
0 M(τ)dτ ) > 1, which contradicts condition (ii). Hence, u(t) ≤ 0

on J .

The proof of Lemma 2.1 is complete.

Corollary 2.2. Assume that M ∈ C(J, R), K,N, L ∈ C(J, R+), Lk ≥ 0, re
∫T
0 M(τ)dτ > 1, and

condition (ii) in Lemma 2.1 hold. Let u ∈ PC1(J, R) satisfy (2.1). Then u(t) ≤ 0, t ∈ J .

Proof. The proof of Corollary 2.2 is easy, so we omit it.

Lemma 2.3 (comparison result). Let u ∈ PC1(J, R) satisfy (2.1). Assume that M,K,N, L ∈
C(J, [0,+∞)), Lk ≥ 0, r ≥ 0 and condition (i) in Lemma 2.1 hold. In addition assume that
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(iii)
∫T
0 [M(t) +K(t) +N(t)

∫β(t)
0 k(t, s)ds + L(t)

∫T
0 h(t, s)ds]dt +

∑
0<tk<T Lk ≤ 1/(r + 1).

Then u(t) ≤ 0, t ∈ J .

Proof. The proof is similar to the proof of Lemma 2.1 [28], so we omit it.

Corollary 2.4. Assume that M,K,N, L ∈ C(J, [0,+∞)),
∫T
0 M(t)dt > 0, Lk ≥ 0, r ≥ 1, and

condition (iii) in Lemma 2.3 hold. Let u ∈ PC1(J, R) satisfy (2.1). Then u(t) ≤ 0, t ∈ J .

Proof. The proof of Corollary 2.4 is easy, so we omit it.

Remark 2.5. Corollary 2.4 holds for r > 1 if we delete
∫T
0 M(t)dt > 0.

Remark 2.6. In the special case where (2.1) does not contain the operators Wu(t) =∫β(t)
0 k(t, s)u(γ(s))ds and Su(t) =

∫T
0 h(t, s)u(δ(s))ds, Lemmas 2.1 and 2.3 develop Lemma

2.1 [28], and Corollaries 2.2 and 2.4 develop Corollary 2.1 [28]. Moreover, the condition
M ∈ C(J, R) in Lemma 2.1 and Corollary 2.2 is more extensive than the corresponding
condition in [28], and if we let N(t) = L(t) = 0 in Lemma 2.3 and Corollary 2.4, we can
obtain Lemma 2.1 and Corollary 2.1 in [28], respectively. Therefore, our comparison results
in this paper develop and generalize the corresponding results in [28].

To study the nonlinear problem (1.1), we first consider the associated linear problem

u′(t) = σ(t) +M(t)u(t) +K(t)u(α(t)) +N(t)(Wu)(t) + L(t)(Su)(t), t ∈ J ′,

Δu(tk) = γk + Lku(tk), k = 1, 2, . . . , m,

u(0) = ru(T) + b,

(2.15)

where σ ∈ PC(J, R), γk, b ∈ R.

Definition 2.7. One says u ∈ PC1(J, R) is a solution of (2.15) if it satisfies (2.15).

Definition 2.8. One says that u ∈ PC1(J, R) is called a lower solution of (2.15) if

u′(t) ≤ σ(t) +M(t)u(t) +K(t)u(α(t)) +N(t)(Wu)(t) + L(t)(Su)(t), t ∈ J ′,

Δu(tk) ≤ γk + Lku(tk), k = 1, 2, . . . , m,

u(0) ≤ ru(T) + b,

(2.16)

and it is an upper solution of (2.15) if the above inequalities are reversed.

Lemma 2.9. Let all assumptions of Lemma 2.1 hold. In addition assume that u0, v0 ∈ PC1(J, R) are
lower and upper solutions of (2.15), respectively, and u0(t) ≥ v0(t), for all t ∈ J . Then the problem
(2.15) has a unique solution w ∈ PC1(J, R).

Proof. The proof is similar to the proof of Lemma 2.2 [28], so we omit it.

Remark 2.10. In Lemma 2.9, if we replace “Lemma 2.1” by any of “Corollary 2.2”,
“Lemma 2.3”, or “Corollary 2.4”, then the conclusion of Lemma 2.9 holds.
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3. Nonlinear Problem

Definition 3.1. One says u ∈ PC1(J, R) is a solution of (1.1) if it satisfies (1.1).

Definition 3.2. One says that u ∈ PC1(J, R) is called a lower solution of (1.1) if

u′(t) ≤ f(t, u(t), u(α(t)),Wu(t), Su(t)), t ∈ J ′,

Δu(tk) ≤ Ik(u(tk)), k = 1, 2, . . . , m,

u(0) ≤ ru(T) + μ

∫T

0
ω(s, u(s))ds + d,

(3.1)

and it is an upper solution of (1.1) if the above inequalities are reversed.

Theorem 3.3. Let all assumptions of Lemma 2.1 hold. In addition assume that

(H1) u0, v0 ∈ PC1(J, R) are lower and upper solutions of (1.1), respectively, and u0(t) ≥ v0(t),
for all t ∈ J ;

(H2) the function f ∈ C(J × R4, R) satisfies

f(t, u, v,w, z) − f(t, u, v,w, z) ≤ M(t)(u − u) +K(t)(v − v) +N(t)(w −w) + L(t)(z − z),
(3.2)

for v0(t) ≤ u ≤ u ≤ u0(t), v0(α(t)) ≤ v ≤ v ≤ u0(α(t)), Wv0(t) ≤ w ≤ w ≤ Wu0(t), Sv0(t) ≤
z ≤ z ≤ Su0(t), for all t ∈ J ;

(H3) the function Ik ∈ C(R,R) satisfies

Ik(u) − Ik(u) ≤ Lk(u − u), (3.3)

for v0(tk) ≤ u ≤ u ≤ u0(tk), k = 1, 2, . . . , m;

(H4) there exists a(t) ∈ C(J, R+) such that

μ

∫T

0
[ω(t, v) −ω(t, v)]dt ≤ −a(t)(v − v) (3.4)

if v0(t) ≤ v ≤ v ≤ u0(t).

Then there exist monotone iterative sequences {un}, {vn}, which converge uniformly on J to
the extremal solutions of (1.1) in [v0, u0] = {u ∈ PC1(J, R) :v0(t) ≤ u(t) ≤ u0(t)}.

Proof. For any η ∈ [v0, u0], we consider the problem

u′(t) = ση(t) +M(t)u(t) +K(t)u(α(t)) +N(t)(Wu)(t) + L(t)(Su)(t), t ∈ J ′,

Δu(tk) = γk + Lku(tk), k = 1, 2, . . . , m,

u(0) = ru(T) + b,

(3.5)
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where

ση(t) = f
(
t, η(t), η(α(t)),Wη(t), Sη(t)

)
−M(t)η(t) −K(t)η(α(t)) −N(t)

(
Wη

)
(t) − L(t)

(
Sη

)
(t),

γk = Ik
(
η(tk)

) − Lkη(tk), b = μ

∫T

0
ω
(
s, η(s)

)
ds + d.

(3.6)

Firstly, we verify that u0, v0 are lower and upper solutions in the reversed order of
(3.5). By (H1) ∼ (H4), we obtain, for t /= tk,

u′
0(t) ≤ f(t, u0(t), u0(α(t)),Wu0(t), Su0(t))

≤ f
(
t, η(t), η(α(t)),Wη(t), Sη(t)

) −M(t)η(t) −K(t)η(α(t)) −N(t)
(
Wη

)
(t)

− L(t)
(
Sη

)
(t) +M(t)u0(t) +K(t)u0(α(t)) +N(t)(Wu0)(t) + L(t)(Su0)(t)

= ση(t) +M(t)u0(t) +K(t)u0(α(t)) +N(t)(Wu0)(t) + L(t)(Su0)(t),

(3.7)

and, analogously,

v′
0(t) ≥ ση(t) +M(t)v0(t) +K(t)v0(α(t)) +N(t)(Wv0)(t) + L(t)(Sv0)(t). (3.8)

Besides, for t = tk,

Δu0(tk) ≤ Ik(u0(tk)) ≤ Ik
(
η(tk)

) − Lkη(tk) + Lku0(tk) = γk + Lku0(tk),

Δv0(tk) ≥ γk + Lkv0(tk).
(3.9)

In addition,

u0(0) ≤ ru0(T) + μ

∫T

0
ω(s, u0(s))ds + d ≤ ru0(T) + μ

∫T

0
ω
(
s, η(s)

)
ds + d = ru0(T) + b,

v0(0) ≥ rv0(T) + b.
(3.10)

Therefore, u0, v0 are lower and upper solutions in the reversed order of (3.5). By
Lemma 2.9, we know that (3.5) has a unique solution w ∈ PC1(J, R).

Now, we prove thatw ∈ [v0, u0]. Let p = w − u0; we can get

p′(t) ≥ M(t)p(t) +K(t)p(α(t)) +N(t)
(
Wp

)
(t) + L(t)

(
Sp

)
(t), t ∈ J ′,

Δp(tk) ≥ Lkp(tk), k = 1, 2, . . . , m,

p(0) ≥ rp(T).

(3.11)

By Lemma 2.1, we have that p(t) ≤ 0, for all t ∈ J . That is,w ≤ u0. Similarly, we can show that
v0 ≤ w. Therefore, we have w ∈ [v0, u0].
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Next, we denote an operator A : [v0, u0] → [v0, u0] by u = Aη. We prove that A is
nondecreasing. Let η1, η2 ∈ [v0, u0] such that η1 ≤ η2. Setting p = u1 −u2, u1 = Aη1, u2 = Aη2,
by (H2) ∼ (H4), we have

p′(t) = f
(
t, η1(t), η1(α(t)),Wη1(t), Sη1(t)

) −M(t)η1(t) −K(t)η1(α(t)) −N(t)
(
Wη1

)
(t)

− L(t)
(
Sη1

)
(t) +M(t)u1(t) +K(t)u1(α(t)) +N(t)(Wu1)(t) + L(t)(Su1)(t)

− f
(
t, η2(t), η2(α(t)),Wη2(t), Sη2(t)

)
+M(t)η2(t) +K(t)η2(α(t)) +N(t)

(
Wη2

)
(t)

+ L(t)
(
Sη2

)
(t) −M(t)u2(t) −K(t)u2(α(t)) −N(t)(Wu2)(t) − L(t)(Su2)(t)

≥ M(t)p(t) +K(t)p(α(t)) +N(t)
(
Wp

)
(t) + L(t)

(
Sp

)
(t), t ∈ J ′,

Δp(tk) = Ik
(
η1(tk)

) − Lkη1(tk) + Lku1(tk) − Ik
(
η2(tk)

)
+ Lkη2(tk) − Lku2(tk)

≥ Lkp(tk), k = 1, 2, . . . , m,

p(0) = ru1(T) + μ

∫T

0
ω
(
s, η1(s)

)
ds + d − ru2(T) − μ

∫T

0
ω
(
s, η2(s)

)
ds − d

≥ rp(T).
(3.12)

By Lemma 2.1, we know p(t) ≤ 0 on J , that is, A is nondecreasing.
Now, let un = Aun−1, vn = Avn−1, n = 1, 2, . . ., then we have

v0 ≤ v1 ≤ · · · ≤ vn ≤ · · · ≤ un ≤ · · · ≤ u1 ≤ u0, n = 1, 2, . . . . (3.13)

Obviously, un, vn (n = 1, 2, . . .) satisfy

u′
n(t) = F(un−1(t), un(t)), t ∈ J ′,

Δun(tk) = Ik(un−1(tk)) + Lk(un − un−1)(tk), k = 1, 2, . . . , m,

un(0) = run(T) + μ

∫T

0
ω(s, un−1(s))ds + d,

v′
n(t) = F(vn−1(t), vn(t)), t ∈ J ′,

Δvn(tk) = Ik(vn−1(tk)) + Lk(vn − vn−1)(tk), k = 1, 2, . . . , m,

vn(0) = rvn(T) + μ

∫T

0
ω(s, vn−1(s))ds + d,

(3.14)

with F defined by

F
(
x(t), y(t)

)
= f(t, x(t), x(α(t)),Wx(t), Sx(t)) +M(t)

(
y(t) − x(t)

)
+K(t)

(
y(α(t)) − x(α(t))

)
+N(t)

((
Wy

)
(t) − (Wx)(t)

)
+ L(t)

((
Sy

)
(t) − (Sx)(t)

)
.

(3.15)
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Therefore, there exist u∗, v∗ such that

lim
n→∞

un(t) = u∗(t), lim
n→∞

vn(t) = v∗(t) (3.16)

uniformly on J , and the limit functions u∗, v∗ satisfy (1.1). Moreover, u∗, v∗ ∈ [v0, u0].
Finally, we prove that u∗, v∗ are the extremal solutions of (1.1) in [v0, u0]. Let w ∈

[v0, u0] be any solution of (1.1), then Aw = w. By v0 ≤ w ≤ u0 and the properties of A, we
have

vn ≤ w ≤ un, n = 1, 2, . . . . (3.17)

Thus, taking limit in (3.17) as n → ∞, we have v∗ ≤ w ≤ u∗. That is, u∗, v∗ are the
extremal solutions of (1.1) in [v0, u0].

The proof of Theorem 3.3 is complete.

Theorem 3.4. Let conditions (H1) ∼ (H4) and all assumptions of any of Corollary 2.2, Lemma 2.3,
or Corollary 2.4 satisfy, then the conclusion of Theorem 3.3 hold.

Proof. The proof is similar to the proof of Theorem 3.3, so we omit it.

4. Example

Consider the integral boundary value problem

u′(t) =
1
2
t4
[
t + u2(t)

] − 1
300

t2
[
t − u

(
t2
)]3 − 1

500
t

[
t3 −

∫ t

0
tsu

(
s3
)
ds

]5

− 1
700

t2
[
t2 −

∫1

0
t2su

(√
s
)
ds

]7

, t ∈ J = [0, 1], t /= t1,

Δu(t1) = b sinu(t1), 0 ≤ b ≤ 26
75

,

u(0) =
3
2
u(1) + μ

∫1

0

(
8s − s2u3(s)

)
ds + d, μ ∈ R+, d ∈ R,

(4.1)

where m = 1, 0 < t1 < 1, r = 3/2, α(t) = t2, β(t) = t, γ(t) = t3, δ(t) =
√
t, for all t ∈ J .

Obviously, u0 = 0, v0 = −1 are lower and upper solutions of (4.1), respectively, and
v0 ≤ u0.

Note that f(t, u, v,w, z) = (1/2)t4(t + u2) − (1/300)t2(t − v)3 − (1/500)t(t3 − w)5 −
(1/700)t2(t2 − z)7, I1(u) = b sinu, and ω(t, u) = 8t − t2u3.

We have

f(t, u, v,w, z) − f(t, u, v,w, z) ≤ 1
25

t2(v − v) +
4
25

t(w −w) +
16
25

t14(z − z), (4.2)

where v0(t) ≤ u ≤ u ≤ u0(t), v0(α(t)) ≤ v ≤ v ≤ u0(α(t)), Wv0(t) ≤ w ≤ w ≤
Wu0(t), Sv0(t) ≤ z ≤ z ≤ Su0(t), for all t ∈ J .
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For M(t) = a(t) = 0, L1 = b,K(t) = (1/25)t2, N(t) = (4/25)t, L(t) = (16/25)t14, r =
3/2, it is easy to verify that all conditions of Theorem 3.3 hold. Therefore, by Theorem 3.3,
there exist monotone iterative sequences {un}, {vn}, which converge uniformly on J to the
extremal solutions of (4.1) in [v0, u0].

Remark 4.1. For appropriate and suitable choices of b, μ, k, and t1, we see that problem (4.1)
has a very general form. For example, we can take b = 1/3, μ = 100, k = −50, and t1 = 2/3.

5. Conclusions

In this paper, we have discussed the integral boundary value problem for first-order
impulsive functional integrodifferential equations with deviating arguments under the
assumption of existing upper and lower solutions in the reversed order. The main results
(Theorems 3.3 and 3.4) are new and the following results appear as its special cases.

(i) If we take α(t) = t in (1.1), we obtain the first-order impulsive ordinary
integrodifferential equations with integral boundary conditions.

(ii) By taking r = 1 and μ = d = 0 in (1.1), our result corresponds to periodic boundary
value problem for first-order impulsive functional integrodifferential equations
with deviating arguments.

(iii) For Ik(u(tk)) = 0, k = 1, 2, . . . , m, in (1.1), we get the integral boundary value
problem for first-order mixed type integrodifferential equations with deviating
arguments.
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