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By using variational methods andMorse theory, we study the multiplicity of the periodic solutions
for a class of difference equations with double resonance at infinity. To the best of our knowledge,
investigations on double-resonant difference systems have not been seen in the literature.

1. Introduction

Denote by Z the set of integers. For a given positive integer p, consider the following periodic
problem on difference equation:

−Δ2x(k − 1) = f(k, x(k)),

x
(
k + p

)
= x(k),

k ∈ Z, (1.1)

where Δ is the forward difference operator defined by Δx(k) = x(k + 1) − x(k) and Δ2x(k) =
Δ(Δx(k)) for k ∈ Z. In this paper, we always assume that

(f1) f : Z × R → R is C1-differentiable with respect to the second variable and satisfies
f(k + p, t) = f(k, t) for (k, t) ∈ Z × R and f(k, 0) ≡ 0 for k ∈ Z.

As a natural phenomenon, resonance may take place in the real world such as
machinery, construction, electrical engineering, and communication. In a system described
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by a mathematical model, the feature of resonance lies in the interaction between the linear
spectrum and the nonlinearity. It is known (see [1]) that the eigenvalue problem

−Δ2x(k − 1) = λx(k), x
(
k + p

)
= x(k), k ∈ Z (1.2)

possess p1 + 1 distinct eigenvalues λl = 4sin2(lπ/p), l = 0, 1, 2, . . . , p1, where p1 = [p/2], that
is, the integer part of p/2.

For a, b ∈ Zwith a < b, define Z(a, b) = {a, a + 1, . . . b}. Now, we suppose that

(f2) p > 3, and there exists some h ∈ Z(0, p1 − 1) such that

λh ≤ lim inf
|t|→∞

f(k, t)
t

≤ lim sup
|t|→∞

f(k, t)
t

≤ λh+1 for k ∈ Z
(
1, p
)
. (1.3)

Remark 1.1. The assumption (f2) characterizes problem (1.1) as double resonant between two
consecutive eigenvalues at infinity. Problem (1.1) is the discrete analogue of the differential
equation with double resonance

−z̈(t) = g(t, z),

z(0) − z(2π) = ż(0) − ż(2π) = 0,
(1.4)

whose solvability has been studied in [2], where g : [0, 2π] × R → R is a differentiable
function satisfying

h2 ≤ lim inf
|z|→∞

g(t, z)
z

≤ lim sup
|z|→∞

g(t, z)
z

≤ (h + 1)2, (1.5)

for some h ∈ N ∪ {0} and uniformly for a.e. t ∈ [0, 2π].

Recently, many authors have studied the boundary value problems on nonlinear
differential equations with double resonance(see [2–5]). It is well known that in different
fields of research, such as computer science, mechanical engineering, control systems,
artificial or biological neural networks, and economics, the mathematical modelling of
important questions leads naturally to the consideration of nonlinear difference equations.
For this reason, in recent years the solvability of nonlinear difference equations have been
extensively investigated(see [1, 6–8] and the references cited therein). However, to the best
of our knowledge, investigations on double resonant difference systems have not been seen
in the literature.

In this paper, several theorems on the multiplicity of the periodic solutions to the
double resonant system (1.1) are obtained via variational methods and Morse theory. The
research here was mainly motivated by the works [2, 4].
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We need the following assumptions (f3) and (f4):

(f3) p > 3, and there exists some h ∈ Z(0, p1 − 1) such that

(i) lim inf
|t|→∞

|t|
(
f(k, t)

t
− λh

)
> 0,

(ii) lim sup
|t|→∞

|t|
(
f(k, t)

t
− λh+1

)
< 0,

for k ∈ Z
(
1, p
)

(1.6)

(f4
±) for some m ∈ Z(0, p1),

±
∫ t

0

(
f(k, s) − λms

)
ds ≥ 0 for |t| > 0 small, k ∈ Z

(
1, p
)
. (1.7)

Remark 1.2. The assumption (f3) implies (f2) and will be employed to control the resonance
at infinity. We will need (f4) in the case that (1.1) is also resonant at the origin.

Now, the main results of this paper are stated as follows.

Theorem 1.3. Assume that (f1) and (f3) hold. Then, problem (1.1) has at least two nontrivial p-
periodic solutions in each of the following two cases:

(i) h ∈ Z(1, p1 − 1) and f ′(k, 0) < λ0 for k ∈ Z(1, p),

(ii) h ∈ Z(0, p1 − 2) and f ′(k, 0) > λp1 for k ∈ Z(1, p).

Theorem 1.4. Assume that (f1) and (f3) hold. If there exists m ∈ Z(0, p1 − 1) with m/=h such that
λm < f ′(k, 0) < λm+1 for k ∈ Z(1, p), then problem (1.1) has at least two nontrivial p-periodic
solutions.

Theorem 1.5. Assume that (f1) and (f3) hold. If there existsm ∈ Z(0, p1 − 1) such that f ′(k, 0) ≡ λm
for k ∈ Z(1, p). Then problem (1.1) has at least two nontrivial p-periodic solutions in each of the
following two cases:

(i) h ∈ Z(0, p1 − 2) and (f+
4 ) withm/=h,

(ii) h ∈ Z(1, p1 − 1) and (f−
4 ) withm/=h + 1.

In Section 3, we will prove the main results, before which some preliminary results
on Morse theory will be collected in Section 2. Some fundamental facts relative to (1.1)
revealed here will benefit the further investigations in this direction, which will be remarked
in Section 4.

2. Preliminary Results on Critical Groups

In this section, we recall some basic facts in Morse theory which will be used in the proof of
the main results. For the systematic discussion on Morse theory, we refer the reader to the
monograph [9] and the references cited therein. Let H be a Hilbert space and Φ ∈ C2(H,R)
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be a functional satisfying the compactness condition (PS), that is, every sequence {un} such
that {Φ(un)} is bounded and that Φ′(un) → 0 as n → ∞ contains a convergent subsequence.
Denote by Hq(X,Y ) the qth singular relative homology group of the topological pair (X,Y )
with integer coefficients. Let u0 be an isolated critical point of Φwith Φ(u0) = c, c ∈ R, andU
be a neighborhood of u0. For q ∈ N ∪ {0}, the group

Cq(Φ, u0) : = Hq(Φc ∩U,Φc ∩U \ {u0}) (2.1)

is called the qth critical group of Φ at u0, where Φc = {u ∈ H : Φ(u) ≤ c}.
If the set of critical points of Φ, denoted by K := {u ∈ H : Φ′(u) = 0}, is finite and

a < infΦ(K), the critical groups of Φ at infinity are defined by (see [10])

Cq(Φ,∞) := Hq(H,Φa), q ∈ N ∪ {0}. (2.2)

For q ∈ N∪{0}, we call βq := dimCq(Φ,∞) the Betti numbers ofΦ and define the Morse-type
numbers of the pair (H,Φa) by

Mq := Mq(H,Φa) =
∑

u∈K
dimCq(Φ, u). (2.3)

The following facts (2.a)–(2.g) are derived from [6, Chapter 8].

(2.a) If Cμ(Φ,∞) � 0 for some μ ∈ N∪{0}, then there exists x0 ∈ K such that Cμ(Φ, x0) �

0,

(2.b) IfK = {x0}, then Cq(Φ,∞) ∼= Cq(Φ, x0),

(2.c)
∑q

j=0(−1)q−jMj ≥
∑q

j=0(−1)q−jβj for q ∈ N ∪ {0},
(2.d)

∑∞
j=0 (−1)jMj =

∑∞
j=0 (−1)jβj .

If x0 ∈ K and Φ′′(x0) is a Fredholm operator and the Morse index μ0 and nullity v0 of
x0 are finite, then we have

(2.e) dimCq(Φ, x0) ∼= 0 for q /∈ Z(μ0, μ0 + ν0),

(2.f) If Cμ0(Φ, x0) � 0 then Cq(Φ, x0) ∼= δq,μ0Z and if Cμ0+ν0(Φ, x0) � 0 then Cq(Φ, x0) ∼=
δq,μ0+ν0Z,

(2.g) If m := dimH < +∞, then Cq(Φ, x0) ∼= δq,0Z when x0 is local minimum of Φ, while
Cq(Φ, x0) ∼= δq,mZwhen x0 is the local maximum of Φ.

We say thatΦ has a local linking at x0 ∈ K if there exist the direct sum decompositions
H = H+ ⊕H− and ε > 0 such that

Φ(x) > Φ(x0) if x − x0 ∈ H+, 0 < ‖x − x0‖ ≤ ε,

Φ(x) ≤ Φ(x0) if x − x0 ∈ H−, ‖x − x0‖ ≤ ε.
(2.4)

The following results were due to Su [5].
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(2.h) Assume that Φ has a local linking at x0 ∈ K with respect to H = H+ ⊕ H− and
k = dimH− < +∞. Then,

Cq(Φ, x0) ∼= δq,μ0Z, if k = μ0,

Cq(Φ, x0) ∼= δq,μ0+v0Z, if k = μ0 + v0.
(2.5)

3. Proofs of Main Results

In this section, we will establish the variational structure relative to problem (1.1) and prove
the main results via Morse theory.

Denote X := {x = {x(k)}k∈Z : x(k) ∈ R for k ∈ Z} and

E :=
{
x ∈ X : x

(
k + p

)
= x(k) for k ∈ Z

}
. (3.1)

Equipped with the inner product 〈·, ·〉 and norm ‖ · ‖ as follows:

〈
x, y
〉
=

p∑

k=1

x(k)y(k), ‖x‖ =

(
p∑

k=1

|x(k)|2
)1/2

, x, y ∈ E, (3.2)

(E, 〈·, ·〉) is linearly homeomorphic to Rp. Throughout this paper, we always identify x ∈ E
with x = (x(1), x(2), . . . , x(p))T ∈ Rp.

Define the operator −Δ̃2 : E �→ E by −Δ̃2x = {−Δ2x(k − 1)}, x ∈ E and denote E l =
ker(−Δ̃2 − λlI), l = 0, 1, . . . , p1, where I is the identity operator. Set

E− = ⊕h−1
l=0 E

l, E+ =
(
⊕h+1
l=0 E

l
)⊥

, Ev = E− ⊕ E+, (3.3)

then E has the decomposition E = Eh ⊕ Eh+1 ⊕ Ev. In the rest of this paper, the expression
x = xh + xh+1 + xv for x ∈ E always means x† ∈ E†, † = h, h + 1, v.

Remark 3.1. From the discussion in [1, Section 2], we see that dimE0 = 1, dimEl = 2, for
l = 1, 2, . . . , p1 − 1 and dimEp1 = 1 if p is even or dimEp1 = 2 if p is odd.

Define a family of functionals Js : E → R, s ∈ [0, 1] by

Js(x) = −1
2

〈
Δ̃2x, x

〉
− 1 − s

4
(λh + λh+1)‖x‖2 − s

p∑

k=1

F(k, x(k)) for x ∈ E, (3.4)

where F(k, t) =
∫ t
0 f(k, ξ)dξ, (k, t) ∈ Z(1, p) × R. Then, the Fréchet derivative of Js at x ∈ E,

denoted by J ′s(x), can be described as (see [1])

〈
J ′s(x), y

〉
= −
〈
Δ̃2x, y

〉
−

p∑

k=1

gs(k, x(k))y(k) for y ∈ E, (3.5)
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where s ∈ [0, 1] and

gs(k, t) = sf(k, t) +
1 − s

2
(λh + λh+1)t for (k, t) ∈ Z × R. (3.6)

Remark 3.2. From (3.5)with s = 1, we know by computation(or see [1]) that x ∈ E is a critical
point of J1 if and only if {x(k)}k∈Z is a p-periodic solution of problem (1.1). Moreover, J1 is
C2− differentiable and

〈
J ′′1 (x)y, z

〉
= −
〈
Δ̃2y, z

〉
−

p∑

k=1

ft(k, x(k))y(k)z(k), ∀y, z ∈ E, (3.7)

where ft(k, t) is the derivative of f(k, t)with respect to t.
Let αk ∈ R, k ∈ Z(1, p) and E0 consist of w ∈ E satisfying

〈
−Δ̃2w, z

〉
=

p∑

k=1

αkw(k)z(k) for z ∈ E. (3.8)

Remark 3.3. E0 is the solution space of the system Bx = 0, x ∈ E, where

B =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 − α1 −1 0 . . . 0 0 −1
−1 2 − α2 −1 . . . 0 0 0

. . . . . . . . . . . .

0 0 0 . . . −1 2 − αp−1 −1
−1 0 0 . . . 0 −1 2 − αp

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

p×p

. (3.9)

Thus, dimE0 ≤ 2 since B possesses of non-degenerate (p − 2) order submatrixes.

Lemma 3.4. If λh ≤ αk ≤ λh+1, k ∈ Z(1, p) and w = wh +wh+1 satisfies (3.8), where wh ∈ Eh and
wh+1 ∈ Eh+1, then either wh = 0 or wh+1 = 0.

Proof. Setting z = wh and z = wh+1, respectively, in (3.8), we have

λh

p∑

k=1

(
wh(k)

)2
=

p∑

k=1

αk

(
wh(k)

)2
+

p∑

k=1

αkw
h+1(k)wh(k),

λh+1

p∑

k=1

(
wh+1(k)

)2
=

p∑

k=1

αk

(
wh+1(k)

)2
+

p∑

k=1

αkw
h(k)wh+1(k).

(3.10)

Comparing the above two equalities, we get

p∑

k=1

(λh+1 − αk)
(
wh+1(k)

)2
=

p∑

k=1

(λh − αk)
(
wh(k)

)2
, (3.11)
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which, by αk ∈ [λh, λh+1], k ∈ Z(1, p), implies that

(αk − λh)wh(k) ≡ 0, (αk − λh+1)wh+1(k) ≡ 0 for k ∈ Z
(
1, p
)
. (3.12)

On the other hand, by the definition of wh and wh+1, we have

λ†w†(k) = 2w†(k) −w†(k − 1) −w†(k + 1),

w†(k + p
)
= w†(k) for k ∈ Z

(
1, p
)
,

(3.13)

where † = h, h + 1. There are two cases to be considered.

Case 1. wh(k)/= 0 for k ∈ Z(1, p). Then by (3.12), αk = λh and wh+1(k) = 0 for k ∈ Z(1, p), that
is, wh+1 = 0.

Case 2. There exists k∗ ∈ Z(1, p) such that wh(k∗) = 0. By (3.13), we have

wh(k∗ + 1) = −wh(k∗ − 1). (3.14)

If wh(k∗ + 1) = 0, then wh(k − 1) = 0 which, by (3.13), implies that wh(k) = 0 for k ∈ Z(1, p),
that is, wh = 0. If wh(k∗ + 1)/= 0, then wh(k∗ − 1)/= 0. This, by (3.12), implies αk∗−1 = αk∗+1 = λh
and wh+1(k∗ − 1) = wh+1(k∗ + 1) = 0. Thus, by (3.13), wh+1(k) = 0 for k ∈ Z(1, p), that is
wh+1 = 0. The proof is complete.

Set γ1 = (λh+1 − λh)/2, γ2 = (λh+1 + λh )/2 and A = −Δ̃2 − γ2I. The following Lemmas
3.5–3.7 benefit from [4].

Lemma 3.5. Assume that (f1) and (f2) hold. Let {sn} ⊂ [0, 1] and {xn} ⊂ E satisfy ‖xn‖ → ∞ and
J ′sn(xn) → 0 as n → ∞. Then,

lim sup
n→∞

‖Axn‖‖xn‖−1 ≤ γ1. (3.15)

Proof. From (f2), we have

λh ≤ lim inf
|t|γ →∞

gs(k, t)
t

≤ lim sup
|t|→∞

gs(k, t)
t

≤ λh+1 for (k, t) ∈ Z × R, (3.16)

where the limitation is uniformly in s ∈ [0, 1]. It follows that for any ε > 0, there exists R > 0
such that

∣∣gs(k, t) − γ2t
∣∣ ≤ (γ1 + ε

)|t| for |t| > R, k ∈ Z
(
1, p
)
, s ∈ [0, 1]. (3.17)

Thus, there exists η > 0 such that

∣∣gs(k, t) − γ2t
∣∣ ≤ (γ1 + ε

)(|t| + η
)

for k ∈ Z
(
1, p
)
, s ∈ [0, 1]. (3.18)
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By the assumption on {xn}, we have 〈J ′sn(xn), Axn/‖Axn‖〉 → 0 as n → ∞. It follows
from (3.5) that

‖Axn‖ − ‖Axn‖−1
p∑

k=1

(
gsn(k, xn(k)) − γ2xn(k)

)
(Axn)(k) −→ 0 as n −→ ∞, (3.19)

which, combining with (3.18), implies that

lim sup
n→∞

{

‖Axn‖ −
γ1 + ε

‖Axn‖

[
p∑

k=1

|xn(k)(Axn)(k)| + η
p∑

k=1

|(Axn)(k)|
]}

≤ 0. (3.20)

By using, Holder inequality on the above two summations, we get

lim sup
n→∞

{‖Axn‖ −
(
γ1 + ε

)‖xn‖ − η
√
p
} ≤ 0, (3.21)

which leads to

lim sup
n→∞

‖Axn‖
‖xn‖ ≤ γ1 + ε. (3.22)

Note that ε > 0 is arbitrarily small, we get (3.15), and the proof is complete.

Lemma 3.6. Under the conditions of Lemma 3.5, one further has

‖xv
n‖

‖xn‖ −→ 0 as n −→ ∞. (3.23)

Proof. Since Eh, Eh+1, and Ev are invariant with respect to A, we have

‖Axn‖2 =
∥∥∥Axh

n

∥∥∥
2
+
∥∥∥Axh+1

n

∥∥∥
2
+ ‖Axv

n‖2

= γ21

∥∥∥xh
n + xh+1

n

∥∥∥
2
+ ‖Axv

n‖2.
(3.24)

If, for the contradiction, (3.23) is false, then there is a subsequence of {xn}, called {xn}
again, and a number δ > 0, such that ‖xv

n‖/‖xn‖ ≥ δ, n = 1, 2, . . .. Then,

γ−21
‖Axn‖1
‖xn‖2

=

(∥∥xh
n + xh+1

n

∥∥/‖xv
n ‖)2 + γ−21 (‖Axv

n ‖/‖xv
n ‖)2

(∥∥∥xh
n + xh+1

n

∥∥∥/‖xv
n‖
)2

+ 1

≥ (‖xh
n + xh+1

n ‖/‖xv
n‖)

2 + (θ/γ1)
2

(∥∥∥xh
n + xh+1

n

∥∥∥/‖xv
n‖
)2

+ 1
,

(3.25)

where θ = inf{‖Axv‖/‖xv‖ : xv ∈ Ev \ {0}}.
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By the fact that −γ1 and γ1 are two consecutive eigenvalues of A with corresponding
eigenspace Eh and Eh+1, we have θ/γ1 > 1 and then, the function φ(t) = (t + (θ/γ1)

2)/(t + 1)
is strictly decreasing on (0,∞) with φ(t) → 1 as t → +∞. Besides, ‖xh

n + xh+1
n ‖/‖xv

n‖ ≤
‖xn‖/‖xv

n‖ ≤ 1/δ. So, by (3.25),

γ−21
‖Axn‖2
‖xn‖2

≥ φ

(
1
δ2

)
> 1. (3.26)

This contradict to (3.15) and the proof is complete.

Lemma 3.7. Under the assumption of Lemma 3.5, there exists a subsequence of {xn}, still called {xn},
such that

either

∥
∥xh

n

∥
∥

‖xn‖ −→ 1 or

∥
∥xh+1

n

∥
∥

‖xn‖ −→ 1 as n −→ ∞. (3.27)

Proof. Since ‖xn‖ → ∞ as n → ∞, we can assume (by passing to a subsequence if necessary)
that

for some K ⊂ Z
(
1, p
)

with K/= ∅, lim
n→∞

xn(k) = ∞ for k ∈ K,

if Kc ≡ Z
(
1, p
) \K/= ∅, {xn(k)} is bounded for k ∈ Kc.

(3.28)

Thus, (3.16) implies

λh ≤ lim inf
n→∞

gsn(k, xn(k))
xn(k)

≤ lim sup
n→∞

gsn(k, xn(k))
xn(k)

≤ λh+1 for k ∈ K, (3.29)

which implies that there exists a subsequence of {xn}, still called {xn}, and αk ∈ [λh, λh+1], k ∈
K, such that

lim
n→∞

gsn(k, xn(k))
xn(k)

= αk for k ∈ K. (3.30)

Let wn = xn/‖xn‖, then ‖wn‖ = 1, and, by Lemma 3.6, there is a convergent
subsequence of {xn}, call it {xn} again, such that

wn −→ w ∈ Eh ⊕ Eh+1 as n −→ ∞. (3.31)

To prove (3.27), we only need to show that wh = 0 or wh+1 = 0. For every y ∈ E, we
have 〈J ′sn(xn), y〉/‖xn‖ → 0 as n → ∞, that is,

〈
−Δ̃2wn, y

〉
−

p∑

k=1

gsn(k, xn(k))
‖xn‖ y(k) −→ 0 as n −→ ∞. (3.32)
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If Kc /= ∅, gsn(k, xn(k))/‖xn‖ → 0 as n → ∞ for k ∈ Kc, then we can rewrite (3.32) as

〈
−Δ̃2wn, y

〉
−
∑

k∈K

gsn(k, xn(k))
xn(k)

xn(k)
‖xn‖ y(k) −→ 0 as n −→ ∞. (3.33)

Letting n → ∞ in (3.33) and using (3.30) and (3.31), we get

〈
−Δ̃2w,y

〉
=
∑

k∈K
αkw(k)y(k) for y ∈ E. (3.34)

Since w(k) = 0 for k ∈ Kc, by setting αk = λh for k ∈ Kc, we rewrite (3.34) as

〈
−Δ̃2w,y

〉
=

p∑

k=1

αkw(k)y(k) for y ∈ E. (3.35)

Obviously, if Kc = ∅, (3.35) still holds. By Lemma 3.4, wh = 0 or wh+1 = 0 and the proof is
complete.

Lemma 3.8. Assume that (f1) and (f3) hold. Let {sn} ⊂ [0, 1] and {xn} ⊂ E satisfy ‖xn‖ → ∞ and
J ′sn(xn) → 0 as n → ∞. Then, there exists a subsequence of {xn}, still called {xn}, such that

either Γ1 := lim sup
n→∞

p∑

k=1

{
gsn(k, xn(k)) − λhxn(k)

}xh
n(k)∥∥∥xh
n

∥∥∥
> 0

or Γ2 := lim inf
n→∞

p∑

k=1

{
gsn(k, xn(k)) − λh+1xn(k)

}xh+1
n (k)
∥∥∥xh+1

n

∥∥∥
< 0.

(3.36)

Proof. As that in the above proof, we can assume that {xn} satisfies (3.28). Noticing that (f3)
implies (f2) and by Lemma 3.7, we have two cases to be considered.

Case 1. ‖xh
n‖/‖xn‖ → 1 as n → ∞. We have ‖xh

n‖ → ∞ as n → ∞ and

lim
n→∞

∥∥xh+1
n

∥∥
∥∥∥xh

n

∥∥∥
= 0, lim

n→∞
‖xv

n‖∥∥∥xh
n

∥∥∥
= 0. (3.37)

IfKc /= ∅, then {xn(k)} and {gsn(k, xn(k))−λhxn(k)} are bounded for k ∈ Kc and n ∈ N.
It follows that xn(k)/‖xh

n‖ → 0 as n → ∞ for k ∈ Kc and

lim
n→∞

{
gsn(k, xn(k)) − λhxn(k)

}xh
n(k)∥∥∥xh
n

∥∥∥
= 0 for k ∈ Kc. (3.38)
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By (f3(i)), there existM > 0 and ξ > 0 such that |t|(f(k, t)/t−λh) > ξ and |t|(λh+1−λh) > ξ
for |t| > M and k ∈ Z(1, p). Then, for |t| > M, k ∈ Z(1, p) and s ∈ [0, 1],

(
gs(k, t)

t
− λh

)
|t| = s

(
f(k, t)

t
− λh

)
|t| + 1 − s

2
(λh+1 − λh)|t|

≥ s ξ +
1 − s

2
ξ ≥ ξ

2
.

(3.39)

Choose N > 0 such that |xn(k)| > M for k ∈ K and n > N. It follows that

{
gsn(k, xn(k)) − λhxn(k)

}
xh
n(k)

=
{
gsn(k, xn(k))

xn(k)
− λh

}
xn(k)(xn(k) − zn(k))

≥
{
gsn(k, xn(k))

xn(k)
− λh

}
|xn(k)|(|xn(k)| − |zn(k)|)

≥ ξ

2
(|xn(k)| − |zn(k)|) for k ∈ K, n > N,

(3.40)

where zn = xh+1
n + xv

n. Since E is a finite dimensional vector space and possesses another
norm defined by ‖x‖1 ≡

∑p

k=1 |x(k)|, x ∈ E, which is equivalent to ‖ · ‖, there exists a positive
constant C > 0 such that ‖x‖1 � C‖x‖, x ∈ E. Thus, by (3.37)–(3.40),

Γ1 ≥ lim sup
n→∞

ξ

2
∥∥∥xh

n

∥∥∥

{
∑

k∈K
|xn(k)| −

∑

k∈K
|zn(k)|

}

= lim sup
n→∞

ξ

2
∥∥∥xh

n

∥∥∥

{
p∑

k=1

|xn(k)| −
p∑

k=1

|zn(k)|
}

≥ lim sup
n→∞

ξ

2
∥∥∥xh

n

∥∥∥

(
C‖xn‖ −

√
p‖zn‖

)
=

Cξ

2
.

(3.41)

Obviously, if Kc = ∅, the above inequality still holds.

Case 2. ‖xh+1
n ‖/‖xn‖ → 1 as n → ∞. By using (f3(ii)), we can show that Γ2 < 0 in the same

way. The proof is complete.

In the rest of this section, wewill use the facts (2.a)–(2.h) stated in Section 2 to complete
the proofs.

Lemma 3.9. Let f satisfy (f1) and (f3). Then, for every ŝ ∈ [0, 1], Jŝ satisfies the (PS) condition and

Cq(J1,∞) ∼= δq,μZ, μ = 2h + 1. (3.42)
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Proof. First we have the following claim:

Claim 1. For any sequences {xn} ⊂ E and {sn} ⊂ [0, 1], if J ′sn(xn) → 0 as n → ∞, then
{xn} is bounded.

In fact, if {xn} is unbounded, there exists a subsequence, still called {xn}, such that
‖xn‖ → ∞ as n → ∞. By Lemma 3.8, there exists a subsequence, still called {xn}, such that
Γ1 > 0 or Γ2 < 0.

On the other hand, 〈J ′sn(xn), x
†
n/‖x†

n‖〉 → 0 as n → ∞, † = h, h + 1, that is

〈

−Δ̃2xn,
x†
n∥

∥
∥x†

n

∥
∥
∥

〉

−
p∑

k=1

gsn(k, xn(k))
x†
n(k)∥
∥
∥x†

n

∥
∥
∥

−→ 0 as n −→ ∞, † = h, h + 1. (3.43)

Note that 〈−Δ̃2xn, x
†
n〉 = 〈λ†xn, x

†
n〉, † = h, h+ 1, it follows that Γ1 = Γ2 = 0. This contradiction

proves Claim 1.

Setting sn ≡ ŝ, n = 1, 2, . . . in Claim 1, we see that Jŝ satisfies (PS) condition. Now, we
start to prove (3.42). Define a functional I : E �→ R as

I(x) =
1
4
(λh+1 + λh)‖x‖2 −

p∑

k=1

F(k, x(k)). (3.44)

Claim 2. There exist M > 0 such that

inf
{∥∥J ′s(x)

∥∥ : ‖x‖ > M, s ∈ [0, 1]
}
> 0. (3.45)

In fact, if Claim 2 is not true, there exists {xn} ⊂ E and {sn} ⊂ [0, 1] such that ‖xn‖ → ∞
and Jsn(xn) → 0 as n → ∞, which contradict Claim 1.

Noticing that a0 := inf{Js(x) : s ∈ [0, 1], ‖x‖ ≤ M} > −∞, we set a < a0. Then,
x ∈ Ja0 = {x ∈ E : J0 ≤ a} implies ‖x‖ > M. Consider the flow σ : [0, 1] × E → E generated by

dσ

ds
= − I(σ)

‖J ′s(σ)‖2
J ′s(σ), σ(0, x) = x, x ∈ Ja0 . (3.46)

The chain rule for differentiation reads dJs(σ)/ds = 〈J ′s(σ), dσ/ds〉 + I(σ). Thus,

dJs(σ)
ds

= −
〈

I(σ)

‖J ′s(σ)‖2
J ′s(σ), J

′
s(σ)

〉

+ I(σ) = 0 for s ∈ [0, 1], (3.47)

and Js(σ(s, x)) ≡ J0(x) ≤ a, s ∈ [0, 1], which implies that ‖σ(s, x)‖ > M, s ∈ [0, 1]. Then, the
flow σ(s, x) is well defined on Ja0 and σ(1, ·) is a homeomorphism of Ja0 to Ja1 and (see [11])

Hq

(
E, Ja0

) ∼= Hq

(
E, Ja1

)
. (3.48)
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On the other hand,

J0(x) =
1
2

〈
−Δ̃2x, x

〉
− 1
4
(λh + λh+1)‖x‖2. (3.49)

Note that x = 0 is the unique critical point of J0 with Morse index μ := dim(E− ⊕ Eh) =
2h + 1(see Remark 3.1) and nullity ν = 0. Then, by (2.b), (2.f) and (3.48), we have

Cq(J1,∞) ∼= Cq(J0,∞) ∼= Cq(J0, 0) ∼= δq,μZ. (3.50)

The proof is completed.

Proof of Theorem 1.3. By lemma 3.9, we get (3.42) which, by (2.a), implies that there exists
x1 ∈ Kwith

Cμ(J1, x1)/= 0, μ = 2h + 1. (3.51)

Since 0 ≤ h < p1, we have 1 ≤ μ < p. Denote by μ1 and ν1 the Morse index and nullity of x1.
By (2.e), we get μ1 ≤ μ ≤ μ1 + ν1.

Denote αk = ft(k, x1(k)), k ∈ Z(1, p). Then, from (3.7) and Remark 3.3, we see that
ν1 = dim ker J ′′1 (x1) ≤ 2.

In Case (i), x = 0 is a local minimum of J1, hence, by (2.g),

Cq(J1, 0) ∼= δq,0Z, (3.52)

which, by comparing with (3.51), implies that x1 /= 0. Besides, 3 ≤ μ < p since h ∈ Z(1, p1 − 1).
Assume, for the contradiction, that x1 is the unique nontrivial critical point of J1, then K =
{0, x1}. If μ = μ1 or μ = μ1 + ν1, we have, by (2.f),

Cq(J1, x1) = δq,μ1Z, or Cq(J1, x1) = δq,μ1+ν1Z, (3.53)

from which, (2.d) reads (−1)0 + (−1)μ = (−1)μ, a contradiction.
If μ1 < μ < μ1 + ν1, then ν1 = 2 and μ = μ1 + 1. Since μ ≥ 3, we have μ1 ≥ 2. Thus, (2.c)

with q = 1 reads −1 ≥ 0, also a contradiction.
In Case (ii), x = 0 is a local maximum of J1, hence, by (2.g),

Cq(J1, 0) ∼= δq,pZ, (3.54)

which, by comparingwith (3.51), implies that x1 /= 0. Besides, 1 ≤ μ < p−3 since h ∈ Z(0, p1−2).
Assume, for the contradiction, that x1 is the unique nontrivial critical point of J1, then K =
{0, x1}. If μ = μ1 or μ = μ1 + ν1, then (3.53) holds, from which, (2.d) reads

(−1)p + (−1)μ = (−1)μ, (3.55)
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a contradiction. If μ1 < μ < μ1 + ν1, then ν1 = 2, μ = μ1 + 1 and, by (2.f),

Cμ1(J1, x1) ∼= Cμ1+ν1(J1, x1) ∼= 0. (3.56)

Note that μ ≤ p − 3, we have μ1 + 1 < μ1 + 2 ≤ p − 2. Thus, (2.c) with q = (μ1 + 1) and with
q = μ1 + 2 reads

dimCμ(J1, x1) ≥ 1, dimCμ(J1, x1) ≤ 1, (3.57)

respectively, which implies that Cq(J1, x1) ∼= δq,μZ. Then, (2.d) reads (3.55), also a
contradiction. The proof is complete.

Proof of Theorem 1.4. As above, there exists x1 ∈ K with the Morse index μ1, and nullity v1

satisfying μ1 ≤ μ ≤ μ1 + ν1, 0 ≤ v1 ≤ 2, and (3.51) holds.
On the other hand, x = 0 is a nondegenerate critical point of J1 with Morse index,

denoted by μ0. Thus, Cq(J1, 0) ∼= δq,μ0Z, μ0 = 2m + 1 and μ0 /=μ since m/=h, which, by
comparing with (3.51), implies that x1 /= 0.

Assume for the contradiction, that x1 is unique nontrivial critical point of J1, then
K = {0, x1}. If μ = μ1 or μ = μ1 + ν1, then (3.53) holds and (2.d) reads the contradicition
(−1)μ0 + (−1)μ = (−1)μ.

Now, we consider the case μ1 < μ < μ1 + ν1 where we have μ = μ1 + 1 and ν1 = 2 with
(3.56). Since m/=h, we know that either μ0 < μ − 1 or μ0 > μ + 1. If μ0 < μ − 1, (2.c) with
q = μ0 + 1 reads contradiction −1 ≥ 0. If μ0 > μ + 1, by similar argument, we can get (3.57).
Thus Cq(J1, x1) ∼= δq,μZ and (2.d) reads the contradiction (−1)μ0 + (−1)μ = (−1)μ. The proof is
complete.

The proof of the following lemma is similar to that of ([12]) and is omitted.

Lemma 3.10. Let f satisfy (f+
4 ) (or (f

−
4 )). Then J1 has a local linking at x = 0 with respect to the

decomposition E = H− ⊕ E+, where E− := ⊕l≤mEl (or E− := ⊕l<mE
l, respectively).

Proof of Theorem 1.5. Now f ′(k, 0) = λm, k ∈ Z(1, p). Thus, x = 0 is a degenerate critical point
of J1. Let μ0 and ν0 denote the Morse index and nullity of 0. By Lemma 3.10 and (2.h), we
have

Cq(J1, 0) ∼= δq,rZ, (3.58)

where r = μ0 or μ0 + ν0 corresponding to the case (f−4 ) or the case (f
+
4 ), respectively. The rest of

the proof is similar and is omitted. The proof is complete.

4. Conclusion and Future Directions

It is known that there have been many investigations on the solvability of elliptic equations
with double-resonance via variational methods, where the so called unique continuation
property of the Laplace operator, proved by Robinson [4], plays an important role in
proving the compactness of the corresponding functional (see [2–5] and the references cited
therein). In this paper, the solvability of the periodic problem on difference equations with
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double resonance is first studied and the “unique continuation property” of the second-order
difference operator is derived by proving Lemma 3.4.

In addition, under the double resonance assumption (f1) and (f2), some fundamental
facts relative to (1.1) are revealed in Lemmas 3.5–3.7, on which, further investigations,
employing new restrictions different from (f3) and (f4), may be based.

On the observations as above, it is reasonable to believe that the research in this paper
will benefit the future study in this direction.
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