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This paper is concerned with a weakly coupled system of quasilinear parabolic equations where
the coefficients are allowed to be discontinuous and the reaction functions may depend on
continuous delays. By the method of upper and lower solutions and the associated monotone
iterations and by difference ratios method and various estimates, we obtained the existence and
uniqueness of the global piecewise classical solutions under certain conditions including mixed
quasimonotone property of reaction functions. Applications are given to three 2-species Volterra-
Lotka models with discontinuous coefficients and continuous delays.

1. Introduction

Reaction-diffusion equations with time delays have been studied by many researchers
(see [1–8] and references therein). However, all of the discussions in the literature are
devoted to the equations with continuous coefficients. In this paper, we consider a weakly
coupled system of quasilinear parabolic equations where the coefficients are allowed to
be discontinuous and the reaction functions may depend on continuous (infinite or finite)
delays.

To describe the problem, we first introduce some notations. Let Ω be a bounded
domain with the boundary ∂Ω in R

n (n ≥ 1). Suppose that Ω consists of a finite number
of domains Ωk (k = 1, . . . , K) separated by Γk′ , where Γk′ , k′ = 1, . . . , K′, are surfaces which
do not intersect with each other and with ∂Ω. Γ := ∪Γk′ and −→n is the normal to Γ. The symbol
[v]Γ×[0,+∞) denotes the jump in the function v as it crosses Γ× [0,+∞). For any vector function
u = (u1, . . . , uN), we write ult := ∂ul/∂t, ulxi := ∂ul/∂xi, ulx := (ulx1 , . . . , u

l
xn), l = 1, . . . ,N,

i = 1, . . . , n.
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In this paper, we consider the following reaction-diffusion system:

ult − Ll
(
ul
)
= gl(x, t,u, J ∗ u) (x ∈ Ω, t > 0),

[
ul
]
Γ×[0,+∞)

= 0,

⎡
⎣

n∑
i,j=1

alij

(
x, t, ul

)
ulxj cos

(−→n , xi
)
⎤
⎦

Γ×[0,+∞)

= 0,

ul = hl(x, t) (x ∈ ∂Ω, t ≥ 0),

ul(x, t) = ψl(x, t)
(
x ∈ Ω, t ∈ Il

)
, l = 1, . . . ,N,

(1.1)

where

J ∗ u :=
(
J1 ∗ u1, . . . , JN ∗ uN

)
, Jl ∗ ul :=

∫

Il∪[0,t]
Jl(x, t − s)ul(x, s)ds, (1.2)

Ll
(
ul
)
:=

n∑
i=1

d
dxi

⎛
⎝

n∑
j=1

alij

(
x, t, ul

)
ulxj

⎞
⎠ +

n∑
j=1

blj

(
x, t, ul

)
ulxj ,

Il :=

⎧
⎨
⎩
(−∞, 0] for l = 1, . . . ,N0,
[−rl, 0] for l =N0 + 1, . . . ,N,

(1.3)

the expressions (d/dxi)(alij(x, t, u
l)ulxj )mean that

d
dxi

(
alij

(
x, t, ul

)
ulxj

)
=

⎡
⎣∂a

l
ij

(
x, t, ul

)

∂xi
+
∂alij

(
x, t, ul

)

∂ul
ulxi

⎤
⎦ulxj + alij

(
x, t, ul

)
ulxjxi , (1.4)

N0 is a nonnegative integer, and rl, l =N0 + 1, . . . ,N, are positive constants.
The equations with discontinuous coefficients have been investigated extensively in

the literature (see [9–16] and references therein]). However, the discussions in these literature
are devoted either to scalar equations without time delays or to coupled system of equations
without time delays and with the restrictive conditions that the principal parts are the same
and the convection functions bl(x, t,u, ulx) satisfy (see [16])

ulbl(x, t,u, 0) ≥ −C1|u|2 − C2

(
x ∈ Ωk, t ∈ [0, T], u ∈ R

N
)
, k = 1, . . . , K, l = 1, . . . ,N.

(1.5)

In this paper we will extend the method of upper and lower solutions and the monotone
iteration scheme to reaction-diffusion system with discontinuous coefficients and continuous
delays and use thesemethods and the results of [15, 16] to prove the existence and uniqueness
of the piecewise classical solutions for (1.1) under hypothesis (H) in Section 2.

This paper is organized as follows. In the next section we will prove a weak
comparison principle and construct two monotone sequences. Section 3 is devoted to



Advances in Difference Equations 3

investigate the uniform estimates of the sequences. In Section 4 we prove the existence and
uniqueness of the piecewise classical solutions for (1.1). Applications of these results are
given in Section 5 to three 2-species Volterra-Lotka models with discontinuous coefficients
and continuous delays.

2. Two Monotone Sequences

The aim of this section is to prove a weak comparison principle and construct two monotone
sequences. In Section 4 we will show that these sequences converge to the unique solution of
(1.1).

2.1. The Definitions, Hypotheses, and Weak Comparison Principle

In all that follows, pairs of indices i or j imply a summation from 1 to n. The symbol Ω′ ⊂⊂ Ω
means that Ω′ ⊂ Ω and dist(Ω′, ∂Ω) > 0. For any T > 0, we set

Ω := Ω ∪ ∂Ω, Ωk := Ωk ∪ ∂Ωk, ST := ∂Ω × [0, T], ΓT := Γ × [0, T],

DT := Ω × (0, T], Dk,T := Ωk × (0, T], DT := Ω × [0, T], Dk,T := Ωk × [0, T],

DT := DT × · · · ×DT︸ ︷︷ ︸
N

, Dk,T := Dk,T × · · · ×Dk,T︸ ︷︷ ︸
N

, DT := DT × · · · ×DT︸ ︷︷ ︸
N

,

Ql
0 := Ω × Il, Ql

k,0 := Ωk × Il, Q
l

0 := Ω × Il, Q
l

k,0 = Ωk × Il,

Ql
T := Ω ×

(
Il ∪ [0, T]

)
, Ql

k,T := Ωk ×
(
Il ∪ [0, T]

)
, Q

l

T := Ω ×
(
Il ∪ [0, T]

)
,

QT := Q1
T × · · · ×QN

T , Qk,T := Q1
k,T × · · · ×QN

k,T , k = 1, . . . , K, l = 1, . . . ,N.

(2.1)

Let |u| := (
∑N

l=1(u
l)2)1/2, |ulx| := (

∑n
i=1(u

l
xi)

2)1/2, |ulxx| := (
∑n

i,j=1(u
l
xixj )

2)1/2.

W1,0
2 (DT ) and W1,1

2 (DT ) are the Hilbert spaces with scalar products (v,w)W1,0
2 (DT ) =∫∫

DT
(vw + vxiwxi)dxdt and (v,w)W1,1

2 (DT ) =
∫∫

DT
(vw + vtwt + vxiwxi)dxdt, respectively.

◦
W1,1

2 (DT ) and
◦
W1,0

2 (DT ) are the sets of all functions in W1,1
2 (DT ) and W1,0

2 (DT ) that vanish
on ST in the sense of trace, respectively. For vector functions withN-components, we use the
notations

Cα
(
DT

)
:= Cα

(
DT

)
× · · · × Cα

(
DT

)
︸ ︷︷ ︸

N

, W1,1
2 (DT) := W1,1

2 (DT) × · · · × W1,1
2 (DT)︸ ︷︷ ︸

N

,

Cα
(
QT

)
:= Cα

(
Q

1
T

)
× · · · × Cα

(
Q
N

T

)
.

(2.2)

In Section 3 the same notations are also used to denote the spaces of the vector functions with
2N-components. Similar notations are used for other function spaces and other domains.
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Definition 2.1 (see [3, 5]). Write u, v in the split form

u =
(
ul, [u]al , [u]bl

)
, v = ([v]cl , [v]dl). (2.3)

The vector function g(·,u,v) := (g1(·,u,v), . . . , gN(·,u,v)) is said to be mixed quasimonotone
in A ⊂ R

N × R
N if, for each l = 1, . . . ,N, there exist nonnegative integers al, bl, cl, and dl

satisfying

al + bl =N − 1, cl + dl =N, (2.4)

such that gl(·, ul, [u]al , [u]bl , [v]cl , [v]dl) is nondecreasing in [u]al and [v]cl , and is nonincreas-
ing in [u]bl and [v]dl for all (u,v) ∈ A.

Let

Hl(τ ;v,η) :=
∫∫

Dτ

{
vltη

l + alij
(
x, t, vl

)
vlxj η

l
xi + b

l
j

(
x, t, vl

)
vlxj η

l
}
dxdt, (2.5)

where Dτ := Ω × (0, τ].

Definition 2.2. A pair of functions ũ = (ũ1, . . . , ũN), û = (û1, . . . , ûN) are called coupled weak
upper and lower solutions of (1.1) if (i) ũ and û are in Cα0(QT ) ∩ C1+α0(Dk,T ) (k = 1, . . . , K)
for some α0 ∈ (0, 1), (ii) ũ ≥ û and (iii) for any nonnegative vector function η = (η1, . . . , ηN) ∈
◦
W1,1

2 (DT ) and any τ ∈ (0, T]

Hl(τ ; ũ,η) ≥
∫∫

Dτ

gl
(
x, t, ũl, [ũ]al , [û]bl , [J ∗ ũ]cl , [J ∗ û]dl

)
ηl dxdt,

Hl(τ ; û,η) ≤
∫∫

Dτ

gl
(
x, t, ûl, [û]al , [ũ]bl , [J ∗ û]cl , [J ∗ ũ]dl

)
ηl dxdt,

ûl ≤ gl(x, t) ≤ ũl ((x, t) ∈ ST ),

ûl(x, t) ≤ ψl(x, t) ≤ ũl(x, t)
(
(x, t) ∈ Ql

0

)
, l = 1, . . . ,N.

(2.6)

Throughout this paper the following hypotheses will be used.

(H) (i) ∂Ω and Γk, k = 1, . . . , K′, are of C2+α0 for some exponent α0 ∈ (0, 1), and there
exist positive numbers a0 and θ0 such that

mes
(
Kρ ∩Ω

) ≤ (1 − θ0)mesKρ (2.7)

holds for any open ball Kρ with center on ∂Ω of radius ρ ≤ a0.
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(ii) There exist a pair of bounded and coupled weak upper and lower solutions ũ, û.
We set

S :=
{
u ∈ C

(
QT

)
: û ≤ u ≤ ũ

}
, S∗ :=

{
w ∈ C

(
QT

)
: J ∗ û ≤ w ≤ J ∗ ũ

}
,

S∗l :=
{
wl ∈ C

(
Q
l

T

)
: Jl ∗ û ≤ wl ≤ Jl ∗ ũ

}
, l = 1, . . . ,N.

(2.8)

(iii) For each k = 1, . . . , K, l = 1, . . . ,N, alij(x, t, u
l), blj(x, t, u

l) ∈ C1+α0(Dk,T × R) (i, j =

1, . . . , n),gl(x, t,u,v) ∈ C1+α0(Dk,T × S × S∗), hl(x, t) ∈ C2+α0(ST ), ψl(x, 0) ∈
Cα0(Ω) ∩ C2+α0(Ωk). There exist a positive nonincreasing function ν(θ), a positive
nondecreasing function μ(θ) for θ ∈ [0,+∞), and a positive constant μ1 such that

ν
(∣∣∣ul

∣∣∣
) n∑
i′=1

ξ2i′ ≤
n∑

i′,j ′=1

ali′j ′
(
x, t, ul

)
ξi′ξj ′ ≤ μ

(∣∣∣ul
∣∣∣
) n∑
i′=1

ξ2i′ , (2.9)

alij = a
l
ji,

∣∣∣alij
(
x, t, ul

)
; blj

(
x, t, ul

)∣∣∣ ≤ μ
(∣∣∣ul

∣∣∣
)
, i, j = 1, . . . ,N, (2.10)

∥∥∥gl(x, t,u,v)
∥∥∥
C1(Dk,T×S×S∗)

≤ μ1, (2.11)

∥∥∥hl
∥∥∥
C2+α0 (ST )

+
∥∥∥ψl(x, 0)

∥∥∥
Cα0 (Ω)

+
∥∥∥ψl(x, 0)

∥∥∥
C2+α0 (Ωk)

≤ μ1. (2.12)

(iv) For each l = 1, . . . ,N, Jl(x, t) ∈ Cα0(Ω × Il∗) ∩ C1+α0(Dk,T ),

Jl(x, t) ≥ 0
(
(x, t) ∈ Ω × Il∗

)
,

∫

Il∗

Jl(x, t)dt = 1 (x ∈ Ω), (2.13)

where Il∗ := [0,+∞) for l = 1, . . . ,N0 and Il∗ := [0, rl] for l = N0 + 1, . . . ,N, ψl(x, t) ∈
Cα0(Q

l

0), and
∫
Il J

l(x, t − s)ψl(x, s)ds, Jl ∗ ũl, Jl ∗ ûl ∈ C1+α0(Dk,T ). There exists a
constant μ2 such that

∥∥∥ψl(x, t)
∥∥∥
C(Q

l

0)
≤ μ2,

∥∥∥∥
∫

Il
Jl(x, t − s)ψl(x, s)ds; Jl ∗ ũl; Jl ∗ ûl

∥∥∥∥
C1+α0 (Dk,T )

≤ μ2.

(2.14)

(v) The vector function g(·,u,v) = (g1(·,u,v), . . . , gN(·,u,v)) is mixed quasimonotone
in S × S∗.

(vi) The following compatibility conditions hold:

hl(x, 0) = ψl(x, 0) (x ∈ ∂Ω),
[
alij

(
x, 0, ψl(x, 0)

)∂ψl(x, 0)
∂xj

cos
(−→n , xi

)]

Γ

= 0, l = 1, . . . ,N.
(2.15)
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The weak upper and lower solutions ũ, û in hypothesis (H)-(ii) will be used as the
initial iterations to construct two monotone convergent sequences.

Definition 2.3. A function u is called a piecewise classical solution of (1.1) if (i) u ∈ Cα(QT ),
ut ∈ Cα,α/2(DT ), uxj ∈ Cα,α/2(Dk,T ) for some α ∈ (0, 1), uxj t ∈ L2(DT ), j = 1, . . . , n; and for any
given k, k = 1, . . . , K, and any given Ω′′ ⊂⊂ Ωk and t′′ ∈ (0, T), there exists α′′ ∈ (0, 1) such

that ulxixj ∈ Cα′′,α′′/2(Ω
′′ × [t′′, T]), i, j = 1, . . . , n, l = 1, . . . ,N, and if (ii) u satisfies pointwise the

equations in (1.1) for (x, t) ∈ Dk,T , k = 1, . . . , K, and satisfies pointwise the inner boundary
conditions in (1.1) on ΓT , the parabolic conditions on ST , and the initial conditions ul(x, t) =
ψl(x, t) in Ql

0.

To construct the monotone sequences, we next prove the weak comparison principle.

Lemma 2.4. Let functions alij(x, t, u
l), blj(x, t, u

l), l = 1, . . . ,N, satisfy the conditions in hypothesis
(H).

(i) Assume that ql(x, t,Y,Z) ∈ C1+α0(Dk,T × S × S∗), l = 1, . . . ,N, and the vector function
q(·,Y,Z) = (q1(·,Y,Z), . . . , qN(·,Y,Z)) is mixed quasimonotone in S × S∗. If v,u ∈
C(DT ) ∩W1,1

∞ (DT ) ∩ S and if

Hl(τ ;v,η) −
∫∫

Dτ

ql
(
x, t, vl, [v]al , [u]bl , [J ∗ v]cl , [J ∗ u]dl

)
ηl dxdt

≤ Hl(τ ;u,η) −
∫∫

Dτ

ql
(
x, t, ul, [u]al , [v]bl , [J ∗ u]cl , [J ∗ v]dl

)
ηl dxdt,

vl(x, t) ≤ ul(x, t) ((x, t) ∈ ST ),

vl(x, t) = ul(x, t) = ψl(x, t)
(
(x, t) ∈ Ql

0

)
, l = 1, . . . ,N,

(2.16)

for any nonnegative bounded vector function η = (η1, . . . , ηN) ∈
◦
W1,1

2 (DT ) and any τ ∈
(0, T], then v ≤ u for (x, t) ∈ DT .

(ii) If v,u ∈ C(DT ) ∩W1,1
∞ (DT ) and if

Hl(τ ;v,η) +
∫∫

Dτ

el(x, t)vlηl dxdt ≤ Hl(τ ;u,η) +
∫∫

Dτ

el(x, t)ulηl dxdt,

vl(x, t) ≤ ul(x, t) ((x, t) ∈ ST ), vl(x, 0) ≤ ul(x, 0) (x ∈ Ω), l = 1, . . . ,N,

(2.17)

for any nonnegative bounded vector function η ∈
◦
W1,1

2 (DT ), where el(x, t), l = 1, . . . ,N,
are functions in C(Dk,T ) (k = 1, . . . , K), then v ≤ u for (x, t) ∈ DT .
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Proof. We first prove part (i) of the lemma. Let w = v − u, w+ = ((w1)+, . . . , (wN)+) :=
(max(w1, 0), . . . ,max(wN, 0)). Then (wl)+ = 0 for (x, t) ∈ ST ∪ Ql

0, l = 1, . . . ,N. Choosing
η = w+ in (2.16), we obtain

N∑
l=1

[
Hl(τ ;v,w+) −Hl(τ ;u,w+)

]

≤
N∑
l=1

∫∫

Dτ

[
ql
(
x, t, vl, [v]al , [u]bl , [J ∗ v]cl , [J ∗ u]dl

)

− ql
(
x, t, ul, [u]al , [v]bl , [J ∗ u]cl , [J ∗ v]dl

)](
wl

)+
dxdt

=
N∑
l=1

∫∫

Dτ

⎡
⎣El1lwl +

∑
wl′ ∈[w]al

El1l′w
l′ +

∑
wl′ ∈[w]bl

El1l′
(
−wl′

)

+
∑

Jl′ ∗wl′ ∈[J∗w]cl

El2l′
(
Jl

′ ∗wl′
)
+

∑
Jl′ ∗wl′ ∈[J∗w]dl

El2l′
(
−Jl′ ∗wl′

)
⎤
⎦
(
wl

)+
dxdt,

(2.18)

where

El1l′ =
∫1

0

∂ql(x, t,Yθ,Zθ)

∂yl
′
θ

dθ, El2l′ =
∫1

0

∂ql(x, t,Yθ,Zθ)

∂zl
′
θ

dθ,

(Yθ,Zθ) =
(
ylθ, [Yθ]al , [Yθ]bl , [Zθ]cl , [Zθ]dl

)

:= θ
(
vl, [v]al , [u]bl , [J ∗ v]cl , [J ∗ u]dl

)
+ (1 − θ)

(
ul, [u]al , [v]bl , [J ∗ u]cl , [J ∗ v]dl

)
.

(2.19)

Let us estimate the terms in (2.18). It follows from the mixed quasimonotone property
of q(·,Y,Z), (2.13) and (2.14) that, for each l = 1, . . . ,N,

El1l′w
l′ ≤ El1l′

(
wl′

)+
for wl′ ∈ [w]al , −El1l′wl′ ≤ −El1l′

(
wl′

)+
for wl′ ∈ [w]bl ,

El2l′
(
Jl

′ ∗wl′
)
≤ El2l′

(
Jl

′ ∗wl′
)+ ≤ El2l′

[
Jl

′ ∗
(
wl′

)+]
for Jl

′ ∗wl′ ∈ [J ∗w]cl ,

−El2l′Jl
′ ∗wl′ ≤ −El2l′

(
Jl

′ ∗wl′
)+ ≤ −El2l′

[
Jl

′ ∗
(
wl′

)+]
for Jl

′ ∗wl′ ∈ [J ∗w]dl ,

(2.20)

∣∣∣El1l′
∣∣∣ +

∣∣∣El2l′
∣∣∣ ≤ C(O), l′ = 1, . . . ,N, (2.21)

where O = ‖|u|‖C(DT ) + ‖|v|‖C(DT ) + ‖|J ∗ u|‖C(DT ) + ‖|J ∗ v|‖C(DT ). Here and below in this
section, C(· · · ) denotes the constant depending only on μ1, μ2, and the quantities appearing
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in parentheses. Constant C in different expressions may be different. By hypothesis (H)-(iv)
and Hölder’s inequality, we have that

∫∫

Dτ

[
Jl

′ ∗
(
wl′

)+]2
dxdt =

∫∫

Dτ

[∫ t

0
Jl

′
(x, t − s)

(
wl′(x, s)

)+
ds

]2

dxdt

≤
∫∫

Dτ

[∫ t

0

(
Jl

′
(x, t − s)

)2
ds

∫ t

0

((
wl′(x, s)

)+)2
ds

]
dxdt

≤ C
∫∫

Dτ

{∫ τ

0

[(
wl′(x, s)

)+]2
ds

}
dxdt

≤ Cτ
∫∫

Dτ

[(
wl′(x, t)

)+]2
dxdt, l′ = 1, . . . ,N,

(2.22)

and by (2.5), (2.9), (2.10), and Cauchy’s inequality, we have that

N∑
l=1

[
Hl(τ ;v,w+) −Hl(τ ;u,w+)

]

=
1
2

∫

Ω

[
(w(x, τ))+

]2dx

+
N∑
l=1

∫∫

Dτ

{[
alij

(
x, t, vl

)((
wl

)+)
xj

(
alij

(
x, t, vl

)
− alij

(
x, t, ul

))
ulxj

]((
wl

)+)
xi

+
[
blj

(
x, t, vl

)
vlxj − blj

(
x, t, ul

)
ulxj

](
wl

)+
}
dxdt

≥ 1
2

∫

Ω

[
(w(x, τ))+

]2dx + (ν(O) − ε)
N∑
l=1

∫∫

Dτ

∣∣∣
((
wl

)+)
x

∣∣∣
2
dxdt − C(O1)

∫∫

Dτ

|w+|2dxdt,

(2.23)

where O1 = ‖|u|‖C(DT ) + ‖|v|‖C(DT ) +
∑N

l=1(‖|ulx|‖L∞(DT ) + ‖|vlx|‖L∞(DT )).
Setting ε = ν(O)/2 and substituting relations (2.20)–(2.23) into (2.18), we see that

∫

Ω

[
(w(x, τ))+

]2dx +
N∑
l=1

∫∫

Dτ

∣∣∣
((
wl

)+)
x

∣∣∣
2
dxdt ≤ C(O,O1)

∫∫

Dτ

[
|w+|2 + |J ∗w+|2

]
dxdt

≤ C(O,O1)
∫∫

Dτ

|w+|2dxdt.
(2.24)

Hence, we deduce the relation w+ ≡ 0 from this inequality with the use of Gronwall
inequality. Then, v ≤ u inDT , and the proof of part (i) of the lemma is completed. The similar
argument gives the proof of part (ii) of the lemma.
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2.2. Construction of Monotone Sequences

In this subsection, we construct the monotone sequences. By hypothesis (H)-(iii), for each
l = 1, . . . ,N, there exists �l = �l(x, t) ∈ C2(Dk) (k = 1, . . . , K) satisfying

�l(x, t) ≥ max

{
−∂g

l(x, t,u,v)
∂ul

: (u,v) ∈ S × S∗
}
. (2.25)

Define

Gl(x, t,u,v) = Gl
(
x, t, ul, [u]al , [u]bl , [v]cl , [v]dl

)
:= �lul + gl

(
x, t, ul, [u]al , [u]bl , [v]cl , [v]dl

)
.

(2.26)

Since g(·,u) = (g1(·,u), . . . , gN(·,u)) is mixed quasimonotone in S × S∗, then, for any
(u,v), (u∗,v∗) ∈ S × S∗, (u,v) ≤ (u∗,v∗),

Gl
(
·, ul, [u]al , [u∗]bl , [v]cl , [v

∗]dl
)
≤ Gl

(
·, u∗l, [u∗]al , [u]bl , [v

∗]cl , [v]dl
)
. (2.27)

It is obvious that the following problem is equivalent to (1.1):

L
l
(
ul
)
:= ult − Ll

(
ul
)
+ �lul = Gl

(
x, t, ul, [u]al , [u]bl , [J ∗ u]cl , [J ∗ u]dl

)
((x, t) ∈ DT ),

[
ul
]
ΓT

= 0,
[
alij

(
x, t, ul

)
ulxj cos

(−→n , xi
)]

ΓT
= 0,

ul = hl(x, t) ((x, t) ∈ ST ), ul(x, t) = ψl(x, t)
(
(x, t) ∈ Ql

0

)
, l = 1, . . . ,N.

(2.28)

We construct two sequences {um}, {um} from the iteration process

L
l
(
ulm

)
= Gl

(
x, t, ulm−1, [um−1]al ,

[
um−1

]
bl
, [J ∗ um−1]cl ,

[
J ∗ um−1

]
dl

)
((x, t) ∈ DT ),

L
l
(
ulm

)
= Gl

(
x, t, ulm−1,

[
um−1

]
al
, [um−1]bl ,

[
J ∗ um−1

]
cl
, [J ∗ um−1]dl

)
((x, t) ∈ DT ),

[
ulm

]
ΓT

= 0,
[
ulm

]
ΓT

= 0,

[
alij

(
x, t, ulm

)
ulmxj cos

(−→n , xi
)]

ΓT
= 0,

[
alij

(
x, t, ulm

)
ulmxj cos

(−→n , xi
)]

ΓT
= 0,

ulm = hl(x, t), ulm = hl(x, t) ((x, t) ∈ ST ),

ulm(x, t) = ψ
l(x, t), ulm(x, t) = ψ

l(x, t)
(
(x, t) ∈ Ql

0

)
, l = 1, . . . ,N, m = 1, 2, . . . ,

(2.29)

where u0 = ũ, u0 = û, um = (u1m, . . . , u
N
m ), and um = (u1m, . . . , u

N
m ).
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Lemma 2.5. The sequences {um}, {um} given by (2.29) are well defined and possess the regularity

um ∈ Cβm
(
QT

)
, umt ∈ Cβm,βm/2

(
DT

)
, umxj ∈ Cβm,βm/2

(
Dk,T

)
,

umxixj ∈ Cβm,βm/2(Dk,T ), umxjt ∈ L2(DT ) for some βm ∈ (0, α0),
(2.30)

and the monotone property

û ≤ um−1 ≤ um ≤ um ≤ um−1 ≤ ũ
(
(x, t) ∈ Ql

T

)
, m = 1, 2, . . . . (2.31)

Proof. Let

f
l

m−1 = f
l

m−1(x, t) := G
l
(
x, t, ulm−1, [um−1]al ,

[
um−1

]
bl
, [J ∗ um−1]cl ,

[
J ∗ um−1

]
dl

)
,

f l
m−1

= fl
m−1

(x, t) := Gl
(
x, t, ulm−1,

[
um−1

]
al
, [um−1]bl ,

[
J ∗ um−1

]
cl
, [J ∗ um−1]dl

)
.

(2.32)

Then, for any fixed l,m, l ∈ {1, . . . ,N}, m ∈ {1, 2, . . .}, and for given um−1 and um−1, problem
(2.29) is equivalent to require that ulm = ulm = ψl for (x, t) ∈ Ql

0, u
l
m is governed by the

problem for one equation with discontinuous coefficients

L
l
(
ulm

)
= f

l

m−1(x, t) ((x, t) ∈ DT ),

[
ulm

]
ΓT

= 0,
[
alij(x, t, um)umxj cos

(−→n , xi
)]

ΓT
= 0,

ulm = hl(x, t) ((x, t) ∈ ST ), ulm(x, 0) = ψ
l(x, 0) (x ∈ Ω),

(2.33)

and ulm is governed by the problem

L
l
(
ulm

)
= fl

m−1
(x, t) ((x, t) ∈ DT ),

[
ulm

]
ΓT

= 0,
[
alij

(
x, t, ulm

)
ulmxj cos

(−→n , xi
)]

ΓT
= 0,

ulm = hl(x, t) ((x, t) ∈ ST ), ulm(x, 0) = ψ
l(x, 0) (x ∈ Ω).

(2.34)

Problems (2.33) and (2.34) are the special case of [16, problem (1), (2), (5)] for
one equation. Reference [16, Theorem 5] shows that problems (2.33) and (2.34) have a
unique piecewise classical solution ulm and ulm satisfying (2.30), respectively, whenever

f
l

m−1(x, t), f
l

m−1
(x, t) ∈ C1+β′m−1(Dk,T ) (k = 1, . . . , K) for some β′m−1 ∈ (0, α0]. Furthermore,
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by the formula of integration by parts we get from (2.33) and (2.34) that for, any nonnegative

bounded vector function η = (η1, . . . , ηN) ∈
◦
W1,1

2 (DT ) and any τ ∈ [0, T],

Hl(τ ;um,η) +
∫∫

Dτ

�lulmη
ldxdt =

∫∫

Dτ

f
l

m−1(x, t)η
ldxdt,

Hl(τ ;um,η
)
+
∫∫

Dτ

�lulmη
ldxdt =

∫∫

Dτ

fl
m−1

(x, t)ηldxdt.

(2.35)

We next prove the lemma by the principle of induction. When m = 1, Definition 2.2
and hypotheses (H)-(iii) and (iv) show that ũ, û ∈ Cα0(QT ) ∩ C1+α0(Dk,T ), J ∗ ũ, J ∗ û ∈
C1+α0(Dk,T ) and gl(x, t,u,v) ∈ C1+α0(Dk,T × S × S∗). Thus, for each l = 1, . . . ,N, f

l

0(x, t) and
fl
0
(x, t) are in C1+β′0(Dk,T ) for some β′0 ∈ (0, α0) and problems (2.33) and (2.34) form = 1 have

a unique piecewise classical solution ul1 and u
l
1, respectively. Since the relation û ≤ ũ implies

that J ∗ û ≤ J ∗ ũ, then (2.27) and (2.32) yield that fl
0
− fl0 ≤ 0. By using (2.6) and (2.35) for

m = 1, we have that

Hl(τ ;u1,η) −Hl(τ ; ũ,η) +
∫∫

Dτ

(
�lul1 − �lũl

)
ηldxdt

≤
∫∫

Dτ

(
f
l

0 − f
l

0

)
ηldxdt = 0, l = 1, . . . ,N,

Hl(τ ;u1,η
) −Hl(τ ;u1,η) +

∫ ∫

Dτ

(
�lul1 − �lul1

)
ηldxdt

=
∫ ∫

Dτ

(
fl
0
− fl0

)
ηldxdt ≤ 0, l = 1, . . . ,N.

(2.36)

Note that u1(x, t) = u1(x, t) ≤ ũ(x, t) for (x, t) ∈ ST ∪ {(x, t) :x ∈ Ω, t = 0}. It follows from part
(ii) of Lemma 2.4 that u1 ≤ u1 ≤ ũ for (x, t) ∈ DT . Similar argument gives the relation û ≤ u1

for (x, t) ∈ DT . Since ûl ≤ ul1 = ul1 = ψl ≤ ũl for (x, t) ∈ Q
l

0, the above conclusions show that u1
and u1 are well defined and possess the properties (2.30) and (2.31) form = 1.

Assume, by induction, that um and um given by (2.29) are well defined and possess
the properties (2.30) and (2.31). Thus, ulm(x, t) = ulm(x, t) = ψl(x, t) for (x, t) ∈ Ql

0. By (1.2)
and hypothesis (H)-(iv),

Jl ∗ ulm =
∫ t

0
Jl(x, t − s)ulm(x, s)ds +

∫

Il
Jl(x, t − s)ψl(x, s)ds ∈ C1+β∗m

(
Dk,T

)
∩ S∗l,

Jl ∗ ulm =
∫ t

0
Jl(x, t − s)ulm(x, s)ds +

∫

Il
Jl(x, t − s)ψl(x, s)ds ∈ C1+β∗m

(
Dk,T

)
∩ S∗l,

Jl ∗ ûl ≤ Jl ∗ ulm−1 ≤ Jl ∗ ulm ≤ Jl ∗ ulm ≤ Jl ∗ ulm−1 ≤ Jl ∗ ũl, l = 1, . . . ,N,

(2.37)
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where β∗m ∈ (0, α0]. Hypothesis (H)-(iii) and (2.37)imply that f
l

m(x, t) and fl
m
(x, t) are in

C1+β′m(Dk,T ) (k = 1, . . . , K) for some β′m ∈ (0, α0]. Again by using [16, Theorem 5], we obtain
that for each l = 1, . . . ,N, problems (2.33) and (2.34) for the casem+1 have a unique piecewise
classical solution ulm+1 and u

l
m+1, respectively. It follows from (2.27), (2.32), (2.37), and (2.35)

for the casesm andm + 1 that

Hl(τ ;um+1,η) −Hl(τ ;um,η) +
∫∫

Dτ

(
�lulm+1 − �lulm

)
ηldxdt

=
∫∫

Dτ

{
Gl

(
x, t, ulm, [um]al ,

[
um

]
bl
, [J ∗ um]cl ,

[
J ∗ um

]
dl

)

− Gl
(
x, t, ulm−1, [um−1]al ,

[
um−1

]
bl
, [J ∗ um−1]cl ,

[
J ∗ um−1

]
dl

)}
ηldxdt

≤ 0, l = 1, . . . ,N,

Hl(τ ;um+1,η
) −Hl(τ ;um+1,η) +

∫∫

Dτ

(
�lulm+1 − �lulm+1

)
ηldxdt

=
∫∫

Dτ

{
Gl

(
x, t, ulm,

[
um

]
al
, [um]bl ,

[
J ∗ um

]
cl
, [J ∗ um]dl

)

− Gl
(
x, t, ulm, [um]al ,

[
um

]
bl
, [J ∗ um]cl ,

[
J ∗ um

]
dl

)}
ηldxdt

≤ 0, l = 1, . . . ,N.

(2.38)

Since um+1 = um+1 = um for (x, t) ∈ ST ∪ {(x, t) :x ∈ Ω, t = 0}, using again part (ii) of
Lemma 2.4, we obtain that um+1 ≤ um+1 ≤ um inDT . The similar proof gives that um ≤ um+1 in
DT . Notice that ulm = ulm+1 = u

l
m+1 = u

l
m = ψl for (x, t) ∈ Ql

0, l = 1, . . . ,N. We get that um+1 and
um+1 are well defined and possess the properties (2.30) and (2.31) for the case m + 1. By the
principle of induction, we complete the proof of the lemma.

3. Uniform Estimates of {um}, {um}
To prove the existence of solutions to (1.1), in this section, we show the uniform estimates of
{um}, {um}.

3.1. Preliminaries

In this section we introduce more notations. Let

aN+l
ij (x, t, v) := alij(x, t, v), bN+l

j (x, t, v) := blj(x, t, v), hN+l(x, t) := hl(x, t),

JN+l(x, t) := Jl(x, t), ψN+l(x, t) := ψl(x, t), QN+l
0 := Ql

0,

Ǧl(x, t,Um−1, J ∗Um−1) := Gl
(
x, t, ulm−1, [um−1]al ,

[
um−1

]
bl
, [J ∗ um−1]cl ,

[
J ∗ um−1

]
dl

)
,

ǦN+l(x, t,Um−1, J ∗Um−1) := Gl
(
x, t, ulm−1,

[
um−1

]
al
, [um−1]bl ,

[
J ∗ um−1

]
cl
, [J ∗ um−1]dl

)
,

Um =
(
U1
m, . . . , U

2N
m

)
:=

(
um,um

)
, J ∗Um−1 :=

(
J1 ∗U1

m−1, . . . , J
2N ∗U2N

m−1
)
, l = 1, . . . ,N.

(3.1)
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Kρ is an arbitrary open ball of radius ρ with center at x0, and Qρ is an arbitrary cylinder of
the form Kρ × [t0 − ρ2, t0]. K2ρ is concentric with Kρ. Ωρ := Kρ ∩Ω.

In this section, C(· · · ) denotes the constant depending only on the parameters
M, a0, θ0, α0, μ1, μ2, ν(M), μ(M), and �0 from hypothesis (H) and (2.25) and on the
quantities appearing in parentheses, independent of m, where M := maxl=1,...,N{‖ũl‖

C(Q
l

T )
+

‖ûl‖
C(Q

l

T )
} and �0 := max1≤l≤Nmaxk=1,...,K‖�l(x, t)‖C1(Dk,T ).

Write (2.29) in the form

L
l
(
Ul
m

)
= Ǧl(x, t,Um−1, J ∗Um−1) ((x, t) ∈ DT ),

[
Ul
m

]
ΓT

= 0,
[
alij

(
x, t,Ul

m

)
Ul
mxj cos

(−→n , xi
)]

ΓT
= 0,

Ul
m = hl(x, t) ((x, t) ∈ ST ),

Ul
m(x, t) = ψ

l(x, t)
(
(x, t) ∈ Ql

0

)
, l = 1, . . . , 2N, m = 1, 2, . . . .

(3.2)

Consider the equalities
∑K

k=1

∫T
0

∫
Ωk

L
l(Ul

m)η
ldxdt =

∫∫
DT
Ǧl(x, t,Um−1, J ∗Um−1)ηldxdt for any

η = η(x, t) = (η1, . . . , η2N) ∈
◦
W1,0

2 (DT ). From the formula of integration by parts, we see that

∫∫

DT

alij

(
x, t,Ul

)
Ul
mxj η

l
xidxdt

=
∫∫

DT

[
−Umt − blj

(
x, t,Ul

m

)
Ul
mxj − �lUl + Ǧl(x, t,Um−1, J ∗Um−1)

]
ηldxdt,

l = 1, . . . , 2N, m = 1, 2, . . . .

(3.3)

Similarly, for any φ = φ(x) = (φ1, . . . , φ2N) ∈
◦
W1

2(Ω) and for every t ∈ [0, T], we get

∫

Ω
alij

(
x, t,Ul

)
Ul
mxjφ

l
xi dx

=
∫

Ω

[
−Umt − blj

(
x, t,Ul

m

)
Ul
mxj − �lUl + Ǧl(x, t,Um−1, J ∗Um−1)

]
φldx,

l = 1, . . . , 2N, m = 1, 2, . . . .

(3.4)

3.2. Uniform Estimates of ‖Ul
m‖Cα1 ,α1/2(DT ), ‖Ul

mx‖L2(DT )

Lemma 3.1. There exist constants α1 and C depending only onM, a0, θ0,α0, μ1, μ2, ν(M), μ(M),
and �0, independent ofm, such that

∥∥∥Ul
m

∥∥∥
Cα1 ,α1/2(DT )

≤ C, 0 < α1 < 1, (3.5)

∥∥∥Ul
mx

∥∥∥
L2(DT )

≤ C, l = 1, . . . , 2N, m = 1, 2, . . . . (3.6)
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Proof. Fix l,m, l ∈ {1, . . . , 2N},m ∈ {1, 2, . . .}. Letw = Ul
m. Thenw is the bounded generalized

solution of the following single equation:

L
l(w) = Ǧl(x, t,Um−1, J ∗Um−1) ((x, t) ∈ DT ) (3.7)

in the sense of [10, Section 1, Chapter V]. Equation (3.7) is the special case of [10, Chapter
V, (0.1)] with ai(x, t,w,wx) = alij(x, t,w)wxj and a(x, t,w,wx) = blj(x, t,w)wxj + �

l(x, t)w −
Ǧl(x, t,Um−1, J ∗Um−1). From (2.31) and hypotheses (H)-(iii)–(v), we see that

ali

(
x, t, ul, p

)
pi = alij(x, t,w)pjpi ≥ ν(M)

∣∣p∣∣2,

∣∣ai
(
x, t,w, p

)∣∣ +
∣∣∣∣∣
∂ai

(
x, t,w, p

)

∂xj

∣∣∣∣∣ +
∣∣∣∣∣
∂ai

(
x, t,w, p

)

∂w

∣∣∣∣∣ ≤ C
∣∣p∣∣,

∣∣a(x, t,w, p)∣∣ =
∣∣∣blj(x, t,w)pj + �l(x, t)w − Ǧl(x, t,Um−1, J ∗Um−1)

∣∣∣ ≤ C(
∣∣p∣∣ + 1

)
,

(3.8)

where p = (p1, . . . , pn). Then (3.8) and [10, Chapter V, Theorem 1.1] give (3.5), and the proof
similar to that of [10, Chapter V, formula 4.1] gives (3.6).

Lemma 3.2. There exists a positive constant ρ1 depending only on M,a0, θ0, α0, μ1, μ2, ν(M),
μ(M), and �0, such that when ρ ≤ ρ1, for any cylinder Qρ with (x0, t0) ∈ DT and for any bounded

function ζ = ζ(x, t) ∈
◦
W1, 0

2 (Qρ),

∫∫

Qρ∩DT

∣∣∣Ul
mx

∣∣∣
2
ζ2dxdt

≤ Cρα1
∫∫

Qρ∩DT

[
|ζx|2 +

(
1 +

∣∣∣Ul
mt

∣∣∣
)
ζ2
]
dxdt, l = 1, . . . , 2N, m = 1, 2, . . . .

(3.9)

and, for any bounded function λ = λ(x) ∈
◦
W1

2(Kρ) and for every t ∈ [0, T],

∫

Ωρ

∣∣∣Ul
mx

∣∣∣
2
λ2dx ≤ Cρα1

∫

Ωρ

[
|λx|2 +

(
1 +

∣∣∣Ul
mt

∣∣∣
)
λ2

]
dx, l = 1, . . . , 2N, m = 1, 2, . . . . (3.10)

Proof. WhenKρ ⊂ Ω, set ηl = (Ul
m(x, t)−Ul

m(x1, t1))ζ
2 in (3.3) and φl = (Ul

m(x, t)−Ul
m(x1, t))λ

2

in (3.4), where (x1, t1) is an arbitrary point in Qρ. When Kρ ∩ ∂Ω/= ∅, set ηl = (Ul
m(x, t) −

hl(x, t))ζ2 in (3.3) and φl = (Ul
m(x, t) − hl(x, t))λ2 in (3.4). Thus (3.9) and (3.10) follow from

(3.8) and the proofs similar to those of [15, formulas (2.7) and (4.2)].

3.3. Uniform Estimates on Ω
′ × [0, T]

The bounds in this subsection will be of a local nature. By hypothesis (H)-(i) for any given
point x0 ∈ Γ there exists a ball Kρ with center at x0 such that we can straighten Γ ∩ Kρ out
introducing new nondegenerate coordinates y = y(x) possessing bounded first and second
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derivatives with respect to x. It is possible to divide Γ into a finite number of pieces and
introduce for each of them coordinates y (see [11, Chapter 3, Section 16]). Therefore, without
loss of generality we assume that the interface Γ lies in the plane xn = 0.

In [15], Tan and Leng investigate the Hölder estimates for the first derivatives of
the generalized solution u for one parabolic equation with discontinuous coefficients and
without time delays. The estimates ‖uxj‖Cα((Ω′∩Ωk)×[t′,T]), ‖ut‖Cα(Ω

′×[t′,T]) in [15] depend on
max[t′,T](‖ut‖Lq/2(Ω) + ‖ut‖L2(Ω)) for some q > n, where Ω′ ⊂⊂ Ω, 0 < t′ < T . The results of
[15] can not be used directly in this paper, but, by a slight modification, the methods and
the framework of [15] can be used to obtain the uniform estimates of ‖Ul

mxj‖Cα((Ω′∩Ωk)×[0,T]),
‖Ul

mt‖Cα(Ω
′×[0,T]) in this subsection. We omit most of the detailed proofs and only sketch the

main steps. The main changes in the derivations are the following: (i) [15, formulas (2.7) and
(4.2)] are replaced by (3.9) and (3.10), respectively; (ii) the estimates in this subsection are
on Ω′ × [0, T], while the estimates in [15] are on Ω′ × [t′, T]; (iii) the behavior of the reaction
functions with continuous delays requires special considerations.

Lemma 3.3. LetKρ,K2ρ ⊂ Ω. Then there exists a positive constant ρ2 depending only onM, a0, θ0,
α0, μ1, μ2, ν(M), μ(M), and �0, such that, when ρ ≤ ρ2,

∫T

0

∫

Kρ

[(
Ul
mt

)2
+
∣∣∣Ul

mx

∣∣∣
4
+
∣∣∣Ul

mxx

∣∣∣
2
]
dxdt ≤ C

(
1
ρ

)
, l = 1, . . . , 2N, m = 1, 2, . . . , (3.11)

where
∫T
0

∫
Kρ

|Ul
mxx|2dxdt :=

∑K
k=1

∫T
0

∫
Kρ∩Ωk

|Ul
mxx|2dxdt.

Proof. Let λ = λ(x, t) be an arbitrary smooth function taking values in [0, 1] such that λ = 0
for x /∈ K2ρ or t ≤ t0 − 4ρ2, and |λx|2 + |λt| ≤ C/ρ2 for (x, t) ∈ Q2ρ. Hypothesis (H)-(iv) shows
that form = 1,

∫T
0

∫
Ω2ρ

|(Jl ∗Ul
(m−1))x|2dxdt(l = 1, . . . , 2N) are estimated by a constant C, and,

form > 1,

∫T

0

∫

K2ρ

∣∣∣
(
Jl ∗Ul

(m−1)
)
x

∣∣∣
2
dxdt

=
∫T

0

∫

K2ρ

∣∣∣∣∣

(∫ t

0
Jl(x, t − s)Ul

(m−1)(x, s)ds +
∫

Il
Jl(x, t − s)ψl(m−1)(x, s)ds

)

x

∣∣∣∣∣
2

dxdt

≤ C + C
∫T

0

∫

K2ρ

∣∣∣Ul
(m−1)x

∣∣∣
2
dxdt, l = 1, . . . , 2N.

(3.12)

These inequalities, together with (2.11), (3.6), and (2.37), imply that

∫T

0

∫

K2ρ

∣∣∣∣∣
dǦl(x, t,Um−1, J ∗Um−1)

dxs

∣∣∣∣∣
∣∣∣Ul

mxs

∣∣∣λ2dxdt

≤ C +
∫T

0

∫

K2ρ

[
|Umx|2 +

∣∣(J ∗U(m−1)
)
x

∣∣2]dxdt

≤ C, s = 1, . . . , n − 1, l = 1, . . . , 2N, m = 1, 2, . . . .

(3.13)
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Based on these inequalities, we can get

n−1∑
s=1

∫T

0

∫

K2ρ

∣∣∣Ul
mxsx

∣∣∣
2
λ2 dxdt ≤ C

(
1
ρ

)
+
∫T

0

∫

K2ρ

∣∣∣Ul
mx

∣∣∣
4
λ2 dxdt, l = 1, . . . , 2N, m = 1, 2, . . . .

(3.14)

For this purpose, similar to [15, Lemma 3.1], we consider not the estimate of the second
derivatives ofUl but the estimate of the difference ratiosΔ/Δxs of the first derivativesUl

xi by
setting ηl = (Δ/Δxs)(((ΔUl(x−Δxs, t))/Δxs)λ2(x−Δxs, t)) in (3.3), whereΔv(x, t)/Δxs, s =
1, . . . , n − 1, denote the difference ratios v(x + Δxs, t) − (v(x, t))/Δxs with respect to xs, and
then we obtain (3.14) by letting Δxs → 0.

We next show that

∫T

0

∫

K2ρ

∣∣∣Ul
mt

∣∣∣
2
λ2 dxdt ≤ C

(
1
ρ

)
+ C

∫T

0

∫

K2ρ

∣∣∣Ul
mx

∣∣∣
4
λ2 dxdt, l = 1, . . . , 2N, m = 1, 2, . . . .

(3.15)

To do this, consider
∑K

k=1

∫T
0

∫
Ωk

L
l(Ul

m)U
l
mtλ

l dxdt =
∫∫

DT
Ǧl(x, t,Um−1, J ∗ Um−1)Ul

mtλ
l dxdt.

From an integration by parts we get

1
2

∫

K2ρ

alij

(
x, t,Ul

m

)
Ul
mxjU

l
mxiλ

2 dx
∣∣∣
t=t0

t=0

+
∫T

0

∫

K2ρ

⎧
⎨
⎩

(
Ul
mt

)2
λ2 − 1

2

∂alij

∂Ul
m

Ul
mxjU

l
mxiUmtλ

2

− 1
2

∂alij

∂t
Ul
mxjU

l
mxiλ

2 − alijUl
mxjU

l
mxiλλt + 2alijU

l
mxjUmtλλxi

+
[
bljU

l
mxj + �

lUl
m − Ǧl(x, t,Um−1, J ∗Um−1)

]
Ul
mtλ

2

⎫
⎬
⎭dxdt = 0,

l = 1, . . . , 2N, m = 1, 2, . . . .

(3.16)

By hypothesis (H)-(iii) and Cauchy’s inequality with εwe conclude from the above equalities
that

∫T

0

∫

K2ρ

(
Ul
mt

)2
λ2 dxdt

≤ ε
∫T

0

∫

K2ρ

(
Ul
mt

)2
λ2 dxdt + C

+ C(ε)
∫T

0

∫

K2ρ

[(
1 +

∣∣∣Ul
mx

∣∣∣
2
)(

λ2 + λ2t + |λx|2
)
+
∣∣∣Ul

mx

∣∣∣
4
λ2

]
dxdt.

(3.17)

In view of (3.6), setting ε = 1/2, we have (3.15).
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Next, the proof similar to the first inequality of (3.5) of [15] gives that there exists a
positive constant ρ2 depending only onM, a0, θ0, α0, μ1, μ2, ν(M), μ(M), and �0, such that,
when ρ ≤ ρ2,

∫T

0

∫

K2ρ

∣∣∣Ul
mx

∣∣∣
4
λ2 dxdt ≤ C

(
1
ρ

)
, l = 1, . . . , 2N, m = 1, 2, . . . . (3.18)

Furthermore, since the equations in (3.2) and Hypothesis (H)-(iii) show that

∣∣∣Ul
mxnxn

∣∣∣ ≤ C
(∣∣∣Ul

mt

∣∣∣ +
n−1∑
s=1

∣∣∣Ul
mxsx

∣∣∣ +
∣∣∣Ul

x

∣∣∣
2
+ 1

)
((x, t) ∈ Dk,T ), k = 1, . . . , K, (3.19)

then (3.11) follows from (3.14)–(3.19).

Lemma 3.4. Let Kρ,K2ρ ⊂ Ω. Then there exists a positive constant ρ3 depending only on M, a0,
θ0,α0, μ1, μ2, ν(M), μ(M), and �0, such that, when ρ ≤ ρ3,

max
[0,T]

∫

K2ρ

|Umt|r+1dx +
∫T

0

∫

K2ρ

(
|Umt|r−1|Umtx|2 + |Umt|r+2

)
dxdt

≤ C
(
q,

1
ρ

)
. r = 1, . . . , q, m = 1, 2, . . . ,

(3.20)

where |Umt| := [
∑2N

l=1 |Ul
mt|2]1/2, |Umtx| := [

∑2N
l=1 |Ul

mtx|2]1/2.

Proof. Let λ = λ(x, t) be an arbitrary smooth function taking values in [0, 1] such that λ = 0
for x /∈ K2ρ or t ≤ t0 − 4ρ2, and |λx|2 + |λt| ≤ C/ρ2 for (x, t) ∈ Q2ρ. Similar to (3.12), from
hypotheses (H)-(iii)-(iv), (2.37) for the casem − 1, and Hölder’s inequality we see that

∫ τ

0

∫

K2ρ

∣∣∣∣∣
dǦl(x, t,Um−1, J ∗Um−1)

dt

∣∣∣∣∣
∣∣∣Ul

mt

∣∣∣
r
λ2 dxdt

≤ C +
∫ τ

0

∫

K2ρ

(
|Umt|r+1 +

∣∣U(m−1)t
∣∣r+1)dxdt, l = 1, . . . , 2N, m = 1, 2, . . . .

(3.21)

Next, let us examine the difference ratio with respect to t on both sides of L
l(Ul

m) =
Ǧl(x, t,Um−1, J∗Um−1). Multiplying the equations obtained by |Ul

m(t)|r−1Ul
m(t)λ

2, whereUl
m(t) =

(Ul
m(x, t+Δt)−Ul

m(x, t))/(Δt), integrating by parts, and then letting Δt → 0, from (3.9) and
the proof similar to that of [15, formula (3.26)], we find that there exists a positive constant
ρ3,1 depending only onM, a0, θ0, α0, μ1, μ2, ν(M), μ(M), and �0, such that, when ρ ≤ ρ3,1,
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∫

K2ρ

|Umt|r+1λ2 dx
∣∣∣
t=τ

t=0

+
∫ τ

0

∫

K2ρ

|Umt|r−1|Umtx|2λ2 dxdt ≤ Cρα1
∫ τ

0

∫

K2ρ

|Umt|r+2λ2 dxdt

+ C
∫ τ

0

∫

K2ρ

[(
1 + |Umt|r+1

)(
λ2 + λ|λt| + |λx|2

)
+
(
1 + |(Um−1)t|r+1

)
λ2

]
dxdt.

(3.22)

To estimate
∫τ
0

∫
K2ρ

|Umt|r+2λ2dxdt, we take η = |Ul
mt|rUl

mtλ
2 in (3.3). Hence, by

hypotheses (H)-(iii)-(iv) and Cauchy’s inequality we get

∫ τ

0

∫

K2ρ

|Umt|r+2λ2 dxdt

≤ C(q)
∫ τ

0

∫

K2ρ

[
|Umt|r−1|Umtx|2λ2 + |Umx|2|Umt|r+1ξ2 + |Umt|r+1

(
λ2 + |λx|2

)]
dxdt,

(3.23)

and by (3.9) with ζ = (|Umt|2)(r+1)/4λwe get

∫ τ

0

∫

K2ρ

|Umx|2|Umt|r+1 λ2 dxdt

≤ C(q)ρα1
∫ τ

0

∫

K2ρ

{
|Umt|r−1|Umtx|2λ2 +

(
1 + |Umt|r+1

)
|λx|2 + |Umt|r+2λ2

}
dxdt.

(3.24)

Furthermore, (3.22)–(3.24) show that

∫ τ

0

∫

K2ρ

|Umt|r+2λ2 dxdt ≤ C3,1
(
q
)
ρα1

∫ τ

0

∫

K2ρ

|Umt|r+2λ2 dxdt

+ C
∫ τ

0

∫

K2ρ

[(
1 + |Umt|r+1

)(
λ2 + λ|λt| + |λx|2

)
+
(
1 + |(Um−1)t|r+1

)
λ2

]
dxdt.

(3.25)

Set ρ3,2 := min{ρ3,1, (2C3,1(q))
−1/α1}. Thus, when 0 < ρ ≤ ρ3,2,

∫ τ

0

∫

K2ρ

|Umt|r+2λ2dxdt

≤ C
∫ τ

0

∫

K2ρ

[(
1 + |Umt|r+1

)(
λ2 + λ|λt| + |λx|2

)
+
(
1 + |(Um−1)t|r+1

)
λ2

]
dxdt.

(3.26)

Note that by property (2.30), hypothesis (H)-(iii), and the equations in (3.2),

Ul
mt(x, 0) =

d
dxi

(
alij

(
x, 0, ψl

)
ψlxj

)
+ blj

(
x, t, ψl

)
ψlxj + Ǧ

l(x, 0,ψ , J ∗ ψ)
(
x ∈ Ω

)
, (3.27)
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where ψ := (ψ1, . . . , ψ2N). Therefore,
∫
Ω |Umt(x, 0)|rdx can be estimated from above by C(q).

Thus, using the same arguments given in the derivation of [15, formula (3.29)], we get (3.20)
from (3.26), (3.22), and (3.27).

Lemma 3.5. Let Kρ,K2ρ ⊂ Ω. For any given positive integer q, one has that

∫

Kρ

[∣∣∣Ul
mxx

∣∣∣
2
(
1 +

∣∣∣Ul
mx

∣∣∣
2r
)
+
∣∣∣Ul

mx

∣∣∣
2r+4

]
dx

≤ C
(
q,

1
ρ

)
, r = 0, 1, . . . , q, l = 1, . . . , 2N, m = 1, 2, . . .

(3.28)

for every t ∈ [0, T].

Proof. By using (3.20) and [10, Chapter II, Lemmas 5.2 and 5.3′], from the same argument as
that in the proof of [15, formula (2.2)], we find that, for every t ∈ [0, T],

∫

Kρ

(
Ul
mt

)2
ζ2 dx ≤ Cρα1

∫

Kρ

|ζx|2dx, l = 1, . . . , 2N, m = 1, 2, . . . , (3.29)

where ζ = ζ(x) is an arbitrary bounded function from
◦
W1

2(Kρ). Then by (3.4), (3.8), (3.10),
and (3.29), the proof similar to [15, formula (4.6)] implies (3.6).

Based on the above uniform estimates, we can get the following local Hölder estimates
of the first derivatives.

Lemma 3.6. Let Kρ ⊂ Ω′ ⊂⊂ Ω. There exist positive constants α2, α3, and C(d′), 0 < α2, α3 < 1,
such that

max
Qρ∩Dk,T

∣∣∣Ul
xj

∣∣∣ + ρ−α2osc
{
Ul
xj , Qρ ∩Dk,T

}
≤ C(d′), j = 1, . . . , n, k = 1, . . . , K, l = 1, . . . , 2N,

(3.30)

max
Qρ∩DT

∣∣∣Ul
t

∣∣∣ + ρ−α3osc
{
Ul
t,Qρ ∩DT

}
≤ C(d′), l = 1, . . . , 2N, m = 1, 2, . . . , (3.31)

where α2 and α3 depend only on d′ and the parameters M, a0, θ0, α0, μ1, μ2, ν(M), μ(M), and �0,
independent ofm.

Proof. By Hypothesis (H), (3.20), and (3.27), the proof similar to that of [15, Lemma 4.4] gives
(3.31), and, by (3.20) and (3.28), the proof similar to that of [15, Lemma 4.3] gives

max
Kρ

∣∣∣Ul
xs

∣∣∣ + ρ−β∗1osc
{
Ul
xs ,Kρ

}
≤ C(d′), s = 1, . . . , n − 1, l = 1, . . . , 2N, (3.32)

max
Kρ∩Ωk

∣∣∣Ul
xn

∣∣∣ + ρ−β∗2osc
{
Ul
xn ,Kρ ∩Ωk

}
≤ C(d′), l = 1, . . . , 2N, m = 1, 2, . . . , k = 1, . . . , K,

(3.33)
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where β∗1 and β
∗
2 depend only on d′ and the parametersM, a0, θ0,α0, μ1, μ2, ν(M), μ(M), and

�0. By using (3.5), (3.32), (3.33), and [10, Chapter II, Lemma 3.1] we see that for any given
k (k = 1, . . . , K),

∣∣∣Ul
mxj (x, t1) −Ul

mxj (x, t2)
∣∣∣

≤ C(d′)|t1 − t2|β
∗
3

(
(x, t1), (x, t2) ∈

(
Ω′ ∩Ωk

)
× [0, T]

)
, j = 1, . . . , n,

(3.34)

where β∗3 = (α1/2)min(β∗1, β
∗
2)/(1 +min(β∗1, β

∗
2)). Then (3.30) follows from (3.32)–(3.34).

3.4. Uniform Estimates on DT

Theorem 3.7. Let hypothesis (H) holds, and let the sequence {Um} be given by (3.2). Then

∥∥∥Ul
mxj

∥∥∥
Cα4 ,α4/2(Dk,T )

+
∥∥∥Ul

mt

∥∥∥
Cα4 ,α4/2(DT )

≤ C, 0 < α4 < 1, (3.35)

∥∥∥Ul
mxixj

∥∥∥
L2(Dk,T )

+
∥∥∥Ul

mxj t

∥∥∥
L2(DT )

≤ C, k = 1, . . . , K, l = 1, . . . , 2N, (3.36)

where α4 depends only on M, a0, θ0, α0, μ1, μ2, ν(M), μ(M), and �0, independent of m. For any
given k, k ∈ {1, . . . , K}, letting Ω′′ ⊂⊂ Ωk and t′′ < T , there exists a positive constant α5 ∈ (0, 1)
depending only on d′′ := dist(Ω′′, ∂Ωk), t′′ and the parameters M,a0, θ0,α0, μ1, μ2, ν(M), μ(M),
and �0, such that

∥∥∥Ul
m

∥∥∥
C2+α5 ,1+α5/2(Ω

′′×[t′′,T])
≤ C(d′′, t′′

)
, l = 1, . . . , 2N, m = 1, 2, . . . . (3.37)

Proof. Since Γ∩∂Ω = ∅, then there exists a subdomain ofΩ, denoted byΩK, such that ∂Ω ⊂ ΩK.
Then the coefficients of the equations L

l(Ul
m) = Ǧ

l(x, t,Um−1, J ∗Um−1) are continuous in ΩK.
In [10], the estimates near ∂Ω for the equations with continuous coefficients and without
time delays are well known. By the methods of Section 3.3 and [10] we can get the estimates
near ∂Ω. The details are omitted. Then the estimates near ∂Ω and the results of the above
subsections give (3.35) and (3.36).

We next prove (3.37). For any fixed l,m, k, l ∈ {1, . . . , 2N}, m ∈ {1, 2, . . .}, k ∈
{1, . . . , K}, Ul

m satisfies the linear equation with continuous coefficients

Ul
mt − âij(x, t)Ul

mxixj + b̂j(x, t)U
l
mxj = f̂(x, t) ((x, t) ∈ Ωk × (0, T]), (3.38)

where

âij(x, t) = alij
(
x, t,Ul

m

)
, b̂j(x, t) = −

∂alij
(
x, t,Ul

m

)

∂Ul
m

Ul
mxi −

∂alij
(
x, t,Ul

m

)

∂xi
+ blj

(
x, t,Ul

m

)
,

f̂(x, t) = −�l(x, t)Ul
m + Ǧl(x, t,Um−1, J ∗Um−1).

(3.39)
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It follows from (3.35), (3.36), and hypotheses (H)-(iii)-(iv) that

∥∥∥âij(x, t); b̂j(x, t); f̂(x, t)
∥∥∥
C
β∗4 (Dk,T )

≤ C, i, j = 1, . . . , n, (3.40)

where β∗4 ∈ (0, 1) depends only on α4 and the parametersM, a0,θ0,α0,μ1, μ2, ν(M), μ(M), and
�0. Therefore, (3.40) and the Schauder estimate for linear parabolic equation yield (3.37).

4. Existence and Uniqueness of Solutions for (1.1)

In this section we show that the sequences {um}, {um} converge to the unique solution of
(1.1) and prove the main theorem of this paper.

Theorem 4.1. Let hypothesis (H) hold. Then, problem (1.1) has a unique piecewise classical solution
u∗ in S, and the sequences {um}, {um} given by (2.29) converge monotonically to u∗. The relation

û ≤ um−1 ≤ um ≤ u∗ ≤ um ≤ um−1 ≤ ũ
(
(x, t) ∈ Ql

T

)
, m = 1, 2, . . . (4.1)

holds.

Proof. It follows from Lemma 2.5 that the pointwise limits

lim
m→∞

um = u, lim
m→∞

um = u (4.2)

exist and satisfy the relation

û ≤ um−1 ≤ um ≤ u ≤ u ≤ um ≤ um−1 ≤ ũ. (4.3)

Let {um} denote either the sequence {um} or the sequence {um}, and let u be the
corresponding limit.

Estimates (3.5), (3.6), (3.35), and (3.36) imply that there exists a subsequence {um′ }
(denoted by {um} still) such that {um} and {umt} converge in C(DT ) to u and ut, respectively,
for each i, j = 1, . . . , n, {umxj} converges in C(Dk,T ) to uxj , {umxixj} converges weakly in
L2(Dk,T ) to uxixj , and {umxjt} converges weakly in L2(DT ) to uxj t (k = 1, . . . , K). Thus,
u ∈ Cα1,α1/2(DT ), uxj ∈ Cα4,α4/2(Dk,T ), ut ∈ Cα4,α4/2(DT ), and uxj t ∈ L2(DT ). Since ul = ψl

in Ql
0, l = 1, . . . ,N, then u ∈ Cα1,α1/2(QT ). For any given k, k = 1, . . . , K, and any given

Ω′′ ⊂⊂ Ωk and t′′ ∈ (0, T), (3.37) in Theorem 3.7 implies that there exists a subsequence
{um′ } (denoted by {um} still) such that {um} converges in C2,1(Ω

′′ × [t
′ ′, T]) to u. Then

u ∈ C2+α5,1+α5/2(Ω
′′ × [t′′, T]).
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Letm → ∞. The above conclusions and (2.29) yield that u,u satisfy

ult − Ll
(
ul
)
= gl

(
x, t, ul, [u]al ,

[
u
]
bl , [J ∗ u]cl ,

[
J ∗ u]dl

)
((x, t) ∈ DT ),

ult − Ll
(
ul
)
= gl

(
x, t, ul,

[
u
]
al , [u]bl ,

[
J ∗ u]cl , [J ∗ u]dl

)
((x, t) ∈ DT ),

[
ul
]
ΓT

= 0,
[
ul
]
ΓT

= 0,

[
alij

(
x, t, ul

)
ulxj cos

(−→n , xi
)]

ΓT
= 0,

[
alij

(
x, t, ul

)
ulxj cos

(−→n , xi
)]

ΓT
= 0,

ul = hl(x, t), ul = hl(x, t) ((x, t) ∈ ST ),

ul(x, t) = ψl(x, t), ul(x, t) = ψl(x, t)
(
(x, t) ∈ Ql

0

)
, l = 1, . . . ,N, m = 1, 2, . . . .

(4.4)

Furthermore, (2.35) shows that u,u satisfy (2.16) with u, v, ql and the symbol “≤” replaced
by u,u, gl, and the symbol “=”, respectively. By Lemma 2.4 we get that u = u for (x, t) ∈ DT .

In view of ul(x, t) = ul(x, t) = ψl(x, t) for (x, t) ∈ Ql
0, then u

l = ul for (x, t) ∈ Ql

T , l = 1, . . . ,N.
Consequently, by (4.4) and Definition 2.3, u∗ := u = u is a piecewise classical solution of (1.1)
in S and satisfies the relation (4.1). If u∗∗ is also a piecewise classical solution of (1.1) in S,
then by Lemma 2.4 the same argument shows that u∗ ≡ u∗∗. Therefore, the piecewise classical
solution of (1.1) in S is unique.

Since T is an arbitrary positive number, the piecewise classical solution u∗ given by
Theorem 4.1 is global.

5. Applications in Ecology

Consider 2-species Volterra-Lotka models with diffusion and continuous delays (see [2, 3]).
Suppose that the natural conditions for the subdomains Ωk, k = 1, . . . , K, are different. Then
the diffusion coefficients are allowed to be discontinuous on the interface Γ. Assume that near
Γ, the density and the flux are continuous. Then

[
ul
]
ΓT

= 0,
[
alij

(
x, t, ul

)
ulxj cos

(−→n , xi
)]

ΓT
= 0, l = 1, 2, (5.1)

where u1, u2 are the densities of the populations of the two species. Therefore, u1, u2 are
governed by the system (1.1), where the reaction functions are explicitly given as follows.

(1) For the Volterra-Lotka cooperation model with continuous delays,

g1(x, t,u, J ∗ u) = u1
(
r1k − δ1ku1 + σ1

kJ
2 ∗ u2

)
((x, t) ∈ Dk,T ), k = 1, . . . , K,

g2(x, t,u, J ∗ u) = u2
(
r2k + δ

2
kJ

1 ∗ u1 − σ2
ku

2
)

((x, t) ∈ Dk,T ), k = 1, . . . , K.
(5.2)
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(2) For the Volterra-Lotka competition model with continuous delays,

g1(x, t,u, J ∗ u) = u1
(
r1k − δ1ku1 − σ1

kJ
2 ∗ u2

)
((x, t) ∈ Dk,T ), k = 1, . . . , K,

g2(x, t,u, J ∗ u) = u2
(
r2k − δ2kJ1 ∗ u1 − σ2

ku
2
)

((x, t) ∈ Dk,T ), k = 1, . . . , K.
(5.3)

(3) For the Volterra-Lotka prey-predator model with continuous delays,

g1(x, t,u, J ∗ u) = u1
(
r1k − δ1ku1 − σ1

kJ
2 ∗ u2

)
((x, t) ∈ Dk,T ), k = 1, . . . , K,

g2(x, t,u, J ∗ u) = u2
(
r2k + δ

2
kJ

1 ∗ u1 − σ2
ku

2
)

((x, t) ∈ Dk,T ), k = 1, . . . , K.
(5.4)

Here rl
k
, δl

k
, and σl

k
are all positive constants for k = 1, . . . , K, l = 1, 2.

Theorem 5.1. Let the functions alij(x, t, u
l), blj(x, t, u

l), hl(x, t), and ψl(x, t), l = 1, 2, satisfy
the hypotheses in (H). If hl(x, t) and ψl(x, t), l = 1, 2, are nonnegative functions and the

condition b
2
/b

1
< c2/c1 holds for the cooperation model, where b

1
= mink=1,...,K(δ1k/r

1
k), c

1 =

maxk=1,...,K(σ1
k/r

1
k), b

2
= maxk=1,...,K(δ2k/r

2
k), and c2 = mink=1,...,K(σ2

k/r
2
k), and if N = 2 and

gl(x, t,u, J ∗u), l = 1, 2, are given by one of (5.2)–(5.4), then problem (1.1) has a unique nonnegative
piecewise classical solution.

Proof. By Theorem 4.1, the proof of this theorem is completed if there exist a pair of coupled
weak upper and lower solutions ũ = (M1,M2), û = (0, 0) for each case of (5.2)–(5.4), where
M1 andM2 are positive constants. We next prove the existence ofM1 andM2 for each case.
Note that (1.2) and (2.13) imply that J ∗ (M1,M2) = (M1,M2).

Case 1. gl(x, t,u, J ∗ u), l = 1, 2, are given by (5.2). Then g(·,u,v) = (g1(·,u,v), g2(·,u,v)) is
quasimonotone nondecreasing. The requirement of ũ = (M1,M2), û = (0, 0) in Definition 2.2
becomes

M1

[
1 − δ1k

r1
k

M1 +
σ1
k

r1
k

M2

]
≤ 0, M2

[
1 +

δ2k
r2
k

M1 − σ2
k

r2
k

M2

]
≤ 0, k = 1, . . . , K. (5.5)

Since b
2
/b

1
< c2/c1, by the argument in [1, Page 676] we conclude that there exist positive

constants η1 and η2 such that, for any R ≥ 1,

1 − b1Rη1 + c1Rη2 ≤ 0, 1 + b
2
Rη1 − c2Rη2 ≤ 0. (5.6)

There exists R0 such that R0η
l ≥ hl(x, t) for (x, t) ∈ ST and R0η

l ≥ ψl(x, t) for (x, t) ∈ Q
l

0, l =
1, 2. If (M1,M2) ≥ (R0η

1, R0η
2), then (M1,M2) satisfies (5.5), and ũ = (M1,M2), û = (0, 0)

are a pair of coupled weak upper and lower solutions of (1.1).
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Case 2. gl(x, t,u, J ∗ u), l = 1, 2, are given by (5.3). g(·,u,v) is mixed quasimonotone. The
requirement of ũ = (M1,M2), û = (0, 0) in Definition 2.2 becomes

M1
(
r1k − δ1kM1

)
≤ 0, M2

(
r2k − σ2

kM
2
)
≤ 0, k = 1, . . . , K. (5.7)

If (M1,M2) ≥ (maxk=1,...,K(r1k/δ
1
k), maxk=1,...,K(r2k/σ

2
k)),M

l ≥ hl(x, t) for (x, t) ∈ ST , andMl ≥
ψl(x, t) for (x, t) ∈ Ql

0, l = 1, 2, then ũ = (M1,M2), û = (0, 0) are a pair of coupled weak upper
and lower solutions of (1.1).

Case 3. gl(x, t,u, J ∗ u), l = 1, 2, are given by (5.4). g(·,u,v) is mixed quasimonotone. The
requirement of ũ = (M1,M2), û = (0, 0) in Definition 2.2 becomes

M1
(
r1k − δ1kM1

)
≤ 0, M2

(
r2k + δ

2
kM

1 − σ2
kM

2
)
≤ 0, k = 1, . . . , K. (5.8)

We first choose M1 satisfying M1 ≥ maxk=1,...,K(r1k, /δ
1
k), M

1 ≥ h1(x, t) for (x, t) ∈ ST and

M1 ≥ ψ1(x, t) for (x, t) ∈ Q
1
0, and then we choose M2 satisfying M2 ≥ maxk=1,...,K(r2k/σ

2
k
+

δ2
k
M1/σ2

k
), M2 ≥ h2(x, t) for (x, t) ∈ ST , and M2 ≥ ψ2(x, t) for (x, t) ∈ Q

2
0. Thus, ũ =

(M1,M2), û = (0, 0) are a pair of coupled weak upper and lower solutions of (1.1).
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