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Nonaxisymmetric solutions to time-fractional diffusion-wave equation with a source term in
cylindrical coordinates are obtained for an infinite medium. The solutions are found using the
Laplace transform with respect to time t, the Hankel transform with respect to the radial coordinate
r, the finite Fourier transform with respect to the angular coordinate ϕ, and the exponential Fourier
transform with respect to the spatial coordinate z. Numerical results are illustrated graphically.

1. Introduction

The time-fractional diffusion-wave equation

∂αu

∂tα
= aΔu (1.1)

is a mathematical model of important physical phenomena ranging from amorphous, colloid,
glassy, and porous materials through fractals, percolation clusters, random, and disordered
media to comb structures, dielectrics and semiconductors, polymers, and biological systems
(see [1–10] and references therein).

The fundamental solution for the fractional diffusion-wave equation in one space-
dimension was obtained by Mainardi [11]. Wyss [12] obtained the solutions to the
Cauchy problem in terms of H-functions using the Mellin transform. Schneider and Wyss
[13] converted the diffusion-wave equation with appropriate initial conditions into the
integrodifferential equation and found the corresponding Green functions in terms of Fox
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Figure 1: Dependence of nondimensional fundamental solutionGf (r, ϕ, z, ρ, φ, ζ, t) on the radial coordinate
r for φ = 0, ζ = 0, z = 0, ϕ = 0, and κ = 0.5.

functions. Fujita [14] treated integrodifferential equation which interpolates the diffusion
equation and the wave equation. Hanyga [15] studied Green functions and propagator
functions in one, two, and three dimensions.

Previously, in studies concerning time-fractional diffusion-wave equation in cylindri-
cal coordinates, only one or two spatial coordinates have been considered [16–27]. In this
paper, we investigate solutions to (1.1) in an infinite medium in cylindrical coordinates in the
case of three spatial coordinates r, ϕ, and z.

2. Statement of the Problem

Consider the time-fractional diffusion-wave equation with a source term in cylindrical
coordinates

∂αu

∂tα
= a

(
∂2u

∂r2 +
1
r

∂u

∂r
+

1
r2

∂2u

∂ϕ2 +
∂2u

∂z2

)
+Q
(
r, ϕ, z, t

)
, 0 ≤ r <∞,

0 ≤ ϕ ≤ 2π, −∞ < z <∞, 0 < t <∞, 0 < α ≤ 2.

(2.1)

The initial conditions are prescribed:

t = 0 : u = f
(
r, ϕ, z

)
, 0 < α ≤ 2,

t = 0 :
∂u

∂t
= F
(
r, ϕ, z

)
, 1 < α ≤ 2.

(2.2)
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Figure 2: Dependence of nondimensional fundamental solution Gf (r, ϕ, z, ρ, φ, ζ, t) on the angular
coordinate ϕ for φ = 0, ζ = 0, r = ρ, z = 0, and κ = 0.5.

In (2.1), we use the Caputo fractional derivative [28–30]

dαu(t)
dtα

=

⎧⎪⎪⎨
⎪⎪⎩

1
Γ(n − α)

∫ t
0
(t − τ)n−α−1 dnu(τ)

dτn
dτ, n − 1 < α < n,

dn

dtn
u(t), α = n,

(2.3)

where Γ(α) is the gamma function. For its Laplace transform rule, the Caputo fractional
derivative requires the knowledge of the initial values of the function u(t) and its integer
derivatives of order k = 1, 2, . . . , n − 1:

L
{

dαu(t)
dtα

}
= sαL{u(t)} −

n−1∑
k=0

u(k)(0+)sα−1−k, n − 1 < α < n, (2.4)

where s is the transform variable.
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Figure 3: Dependence of nondimensional fundamental solution Gf (r, ϕ, z, ρ, φ, ζ, t) on the angular
coordinate ϕ for φ = 0, ζ = 0, r = 0.6ρ, z = 0, and κ = 0.5.

The solution to the initial-value problem (2.1)-(2.2) can be written in the following
form:

u =
∫∞

−∞

∫2π

0

∫∞

0
f
(
ρ, φ, ζ

)
Gf

(
r, ϕ, z, ρ, φ, ζ, t

)
ρdρdφdζ

+
∫∞

−∞

∫2π

0

∫∞

0
F
(
ρ, φ, ζ

)
GF

(
r, ϕ, z, ρ, φ, ζ, t

)
ρdρdφ dζ

+
∫ t

0

∫∞

−∞

∫2π

0

∫∞

0
Q
(
ρ, φ, ζ, τ

)
GQ

(
r, ϕ, z, ρ, φ, ζ, t − τ

)
ρdρdφ dζdτ.

(2.5)

Now, we investigate the fundamental solutions Gf(r, ϕ, z, ρ, φ, ζ, t), GF(r, ϕ, z, ρ, φ, ζ, t), and
GQ(r, ϕ, z, ρ, φ, ζ, t).

3. Fundamental Solution to the First Cauchy Problem

In the case of the first Cauchy problem, the initial value of a sought-for function is prescribed.
Hence,
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Figure 4: Dependence of nondimensional fundamental solution Gf (r, ϕ, z, ρ, φ, ζ, t) on the spatial coordi-
nate z for φ = 0, ζ = 0, r = ρ, ϕ = 0, and κ = 0.5.

∂αGf

∂tα
= a

(
∂2Gf

∂r2 +
1
r

∂Gf

∂r
+

1
r2

∂2Gf

∂ϕ2 +
∂2Gf

∂z2

)
, 0 ≤ r < ∞,

0 ≤ ϕ ≤ 2π, −∞ < z <∞, 0 < t <∞,

(3.1)

t = 0 : Gf = f0
δ
(
r − ρ

)
r

δ
(
ϕ − φ

)
δ(z − ζ), 0 < α ≤ 2, (3.2)

t = 0 :
∂Gf

∂t
= 0, 1 < α ≤ 2. (3.3)

The two-dimensional Dirac delta function δ(x) δ(y) after passing to the polar
coordinates takes the form (1/2πr)δ+(r), but for the sake of simplicity, we have omitted
the multiplier 2π in the solution (2.5) as well as 1/2π in (3.2). In the initial condition (3.2),
we have introduced the constant multiplier f0 to obtain the nondimensional quantity Gf

(see (3.10)).
The solution is found using the Laplace transform with respect to time t, the Hankel

transform with respect to the radial coordinate r, the finite Fourier transform with respect to
the angular coordinate ϕ, and the exponential Fourier transform with respect to the spatial
coordinate z. In the transforms domain we get

G∗
f =

1
√

2π
eiηζ cos

[
n
(
ϕ − φ

)]
Jn
(
ρξ
) sα−1

sα + a
(
ξ2 + η2

) , (3.4)
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Figure 5: Dependence of nondimensional fundamental solutionGF(r, ϕ, z, ρ, φ, ζ, t) on the radial coordinate
r for φ = 0, ζ = 0, z = 0, ϕ = 0, and κ = 0.5.

where Jn(r) is the Bessel function of the first kind of order n, the asterisk indicates the
transforms, s is the Laplace transform variable, ξ is the Hankel transform variable, η is
exponential Fourier transform variable, and the integer n is finite Fourier transform variable.

Inversion of integral transforms gives

Gf

(
r, ϕ, z, ρ, φ, ζ, t

)
=

1
2π2

∞∑
n=0

′ ∫∞

−∞

∫∞

0
Eα
[
−a
(
ξ2 + η2

)
tα
]

× cos
[
n
(
ϕ − φ

)]
cos
[
(z − ζ)η

]
Jn
(
ρξ
)
Jn(rξ)ξ dξ dη,

(3.5)

where the prime denotes that the term corresponding to n = 0 in the sum should be multiplied
by 1/2. In (3.5), Eα(z) is the Mittag-Leffler function [28–31]

Eα(z) =
∞∑
n=0

zn

Γ(αn + 1)
, α > 0, z ∈ C. (3.6)

The essential role of the Mittag-Leffler function in fractional calculus results from the
following formula for the inverse Laplace transform [28–30]:

L−1

{
sα−1

sα + b

}
= Eα(−btα). (3.7)



Advances in Difference Equations 7

α = 1.5

α = 1.85

ππ/20−π/2−π
ϕ

0

0.5

1

1.5

2

G
F

Figure 6: Dependence of nondimensional fundamental solution GF(r, ϕ, z, ρ, φ, ζ, t) on the angular
coordinate ϕ for φ = 0, ζ = 0, r = ρ, z = 0, and κ = 0.5.

If the solution does not depend on the coordinate z, then

Gf

(
r, ϕ, ρ, φ, t

)
=

1
π

∞∑
n=0

′ ∫∞

0
Eα
(
−aξ2tα

)
cos
[
n
(
ϕ − φ

)]
Jn
(
ρξ
)
Jn(rξ)ξ dξ. (3.8)

The fundamental solution (3.8) was considered in [25] for 0 ≤ α ≤ 1.
In the case when the solution does not also depend on the angular coordinate ϕ, we

get [17]

Gf

(
r, ρ, t

)
=
∫∞

0
Eα
(
−aξ2tα

)
J0
(
ρξ
)
J0(rξ)ξ dξ. (3.9)

Dependence of fundamental solution (3.5) on the coordinates r, ϕ, and z is presented
in Figures 1, 2, 3, and 4.

In calculations, we have introduced nondimensional quantities:

Gf =
ρ3

f0
Gf , κ =

√
atα/2

ρ
. (3.10)
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Figure 7: Dependence of nondimensional fundamental solution GF(r, ϕ, z, ρ, φ, ζ, t) on the angular
coordinate ϕ for φ = 0, ζ = 0, r = 0.6ρ, z = 0, and κ = 0.5.

4. Fundamental Solution to the Second Cauchy Problem

In the case of the second Cauchy problem, the initial value of the time derivative of a sought-
for function is prescribed, and for the corresponding fundamental solution we have

∂αGF

∂tα
= a

(
∂2GF

∂r2
+

1
r

∂GF

∂r
+

1
r2

∂2GF

∂ϕ2
+
∂2GF

∂z2

)
, 0 ≤ r < ∞,

0 ≤ ϕ ≤ 2π, −∞ < z <∞, 0 < t <∞,

t = 0 : GF = 0, 1 < α ≤ 2,

t = 0 :
∂GF

∂t
= F0

δ
(
r − ρ

)
r

δ
(
ϕ − φ

)
δ(z − ζ), 1 < α ≤ 2.

(4.1)

In this instance, the fundamental solution is expressed as

GF

(
r, ϕ, z, ρ, φ, ζ, t

)
=

1
2π2

∞∑
n=0

′ ∫∞

−∞

∫∞

0
tEα,2

[
−a
(
ξ2 + η2

)
tα
]

× cos
[
n
(
ϕ − φ

)]
cos
[
(z − ζ)η

]
Jn
(
ρξ
)
Jn(rξ)ξ dξ dη,

(4.2)
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Figure 8: Dependence of nondimensional fundamental solution GF(r, ϕ, z, ρ, φ, ζ, t) on the spatial
coordinate z for φ = 0, ζ = 0, r = ρ, ϕ = 0, and κ = 0.5.

where Eα,β(z) is the generalized Mittag-Leffler function in two parameters α and β [29–32]:

Eα,β(z) =
∞∑
n=0

zn

Γ
(
αn + β

) , α > 0, β > 0, z ∈ C. (4.3)

We have used the following formula for the inverse Laplace transform [29–31]

L−1

{
sα−β

sα + b

}
= tβ−1Eα,β(−btα). (4.4)

It is evident that (3.7) is the particular case of (4.4) corresponding to β = 1.
If the solution does not depend on the coordinate z, then

GF

(
r, ϕ, ρ, φ, t

)
=

1
π

∞∑
n=0

′ ∫∞

0
tEα,2

(
−aξ2tα

)
cos
[
n
(
ϕ − φ

)]
Jn
(
ρξ
)
Jn(rξ)ξ dξ. (4.5)

In the case of axial symmetry [17],

GF

(
r, ρ, t

)
=
∫∞

0
tEα,2

(
−aξ2tα

)
J0
(
ρξ
)
J0(rξ)ξ dξ. (4.6)
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Figure 9: Dependence of nondimensional fundamental solution GQ(r, ϕ, z, ρ, φ, ζ, t) on the radial
coordinate r for φ = 0, ζ = 0, z = 0, ϕ = 0, and κ = 0.5.

Figures 5, 6, 7, and 8 show dependence of fundamental solution (4.2) on coordinates
r, ϕ, and z, where

GF =
ρ3

tF0
GF, (4.7)

and the nondimensional quantity κ is the same as in (3.10).

5. Fundamental Solution to the Source Problem

Consider the time-fractional diffusion-wave equation with a source term under zero initial
conditions:

∂αGQ

∂tα
= a

(
∂2GQ

∂r2 +
1
r

∂GQ

∂r
+

1
r2

∂2GQ

∂ϕ2 +
∂2GQ

∂z2

)

+Q0
δ
(
r − ρ

)
r

δ
(
ϕ − φ

)
δ(z − ζ)δ+(t), 0 ≤ r <∞,

0 ≤ ϕ ≤ 2π, −∞ < z <∞, 0 < t <∞,

t = 0 : GQ = 0, 0 < α ≤ 2,

t = 0 :
∂GQ

∂t
= 0, 1 < α ≤ 2.

(5.1)
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Figure 10: Dependence of nondimensional fundamental solution GQ(r, ϕ, z, ρ, φ, ζ, t) on the angular coor-
dinate ϕ for φ = 0, ζ = 0, r = ρ, z = 0, and κ = 0.5.

The solution is obtained using the integral transform technique and reads

GQ

(
r, ϕ, z, ρ, φ, ζ, t

)
=

1
2π2

∞∑
n=0

′ ∫∞

−∞

∫∞

0
tα−1Eα,α

[
−a
(
ξ2 + η2

)
tα
]

× cos
[
n
(
ϕ − φ

)]
cos
[
(z − ζ)η

]
Jn
(
ρξ
)
Jn(rξ)ξ dξ dη.

(5.2)

If dependence of solution on the coordinate z is not taken into account, then

GQ

(
r, ϕ, ρ, φ, t

)
=

1
π

∞∑
n=0

′ ∫∞

0
tα−1Eα,α

(
−aξ2tα

)
cos
[
n
(
ϕ − φ

)]
Jn
(
ρξ
)
Jn(rξ)ξ dξ. (5.3)

In the case of axial symmetry [17],

GQ

(
r, ρ, t

)
=
∫∞

0
tα−1Eα,α

(
−aξ2tα

)
J0
(
ρξ
)
J0(rξ)ξ dξ. (5.4)

Dependence of the solution (5.2) on the coordinates r, ϕ, and z is depicted in Figures 9,
10, and 11 with

GQ =
ρ3

tα−1Q0
GQ. (5.5)
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Figure 11: Dependence of nondimensional fundamental solution GQ(r, ϕ, z, ρ, φ, ζ, t) on the spatial
coordinate z for φ = 0, ζ = 0, r = ρ, ϕ = 0, and κ = 0.5.

6. Discussion

The solutions to the Cauchy and source problems for time-fractional diffusion-wave equation
have been found in cylindrical coordinates. The considered equation in the case 0 < α < 1
interpolates the Helmholtz and diffusion equation. In the case 1 < α < 2, the time-fractional
diffusion-wave equation interpolates the standard diffusion equation and the classical wave
equation.

For 1 < α < 2, the solutions to the fractional diffusion-wave equation feature
propagating humps, underlining the proximity to the standard wave equation in contrast
to the shape of curves describing the subdiffusion regime (0 < α < 1).

For better understanding of behavior of solutions, it is worthwhile to compare the
obtained results with those for delta pulse applied at the origin investigated in [32]. The
Mittag-Leffler functions arising in (3.5), (4.2), and (5.2) for large values of argument are
represented as

Eα
[
−a
(
ξ2 + η2

)
tα
]
∼ 1
Γ(1 − α)

1
a
(
ξ2 + η2

)
tα
,

Eα,2
[
−a
(
ξ2 + η2

)
tα
]
∼ 1
Γ(2 − α)

1
a
(
ξ2 + η2

)
tα
,

Eα,α
[
−a
(
ξ2 + η2

)
tα
]
∼ − 1

Γ(−α)
1[

a
(
ξ2 + η2

)
tα
]2 .

(6.1)

Such asymptotic results in singularities of the solution to the first and the second
Cauchy problems at the point of application of the delta pulse, whereas the solution to the
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source problem does not have singularity. Dependence of the solution on the angular coor-
dinate ϕ at some distance from the point of the delta pulse application (r = 0.6ρ in Figures 3
and 7) features only humps with no singularity.
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[21] N. Özdemir, O. P. Agrawal, D. Karadeniz, and B. B. Iskender, “Axis-symmetric fractional diffusion-
wave problem: part I—analysis,” in Proceedings of the 6th Euromech Nonlinear Dynamics Conference
(ENOC ’08), Saint Petrsburg, Russia, June-July 2008.

[22] E. K. Lenzi, L. R. da Silva, A. T. Silva, L. R. Evangelista, and M. K. Lenzi, “Some results for a fractional
diffusion equation with radial symmetry in a confined region,” Physica A, vol. 388, no. 6, pp. 806–810,
2009.
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